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Abstract: In this paper, a method for auto-tuning of a fractional order lead-
lag compensator using relay feedback tests is proposed. A design method for
this kind of compensators is discussed, based on the magnitude and phase
measurement of the plant to be controlled from relay feedback tests at a frequency
of interest. Simple relationships among the parameters of this fractional controller
are established and speci�cations such as the static error constant (kss), phase
margin ('m) and gain crossover frequency (!c) can be ful�lled, with a robustness
argument by inspecting the �atness of phase Bode plot of the compensator.
The auto-tuning method proposed can be taken as a �rst step for a latter
generalization of these lead-lag compensators to the fractional PI�D� controllers.
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1. INTRODUCTION

The basic concepts on auto-tuning control de-
sign were born over 1950 with the fundamental
theoretical tools and formulations established in
1960. However, it was in the next decade, the
1970s, when a key method for auto-tuning was
approached by K. J. Åström and Hägglund (see
Åström and Wittenmark, 1973). This method
consists of the use of a relay feedback test. During
relay feedback tests, processes dynamics typically
encountered in process control (e.g., delays) will
usually generate sustaining limit cycle oscillations
and subsequently, the auto-tuner can identify one

point on the Nyquist curve of the process from
this experiment.

In this work, the relay tests will be used for the
auto-tuning of a fractional order lead-lag compen-
sator. Fractional order calculus and its potentials
in many areas of science and engineering have
started to get appreciated. In particular, many
research e¤orts related to the applications of frac-
tional controllers have touched various aspects of
control analysis and synthesis. However, in practi-
cal industrial setting, a similar auto-tuning proce-
dure of fractional order controllers is rarely found
and in strong demand. Therefore, the theme of
our work is to develop auto-tuning techniques for



non-integer order controllers. Our ultimate goal
is develop a method to auto-tune a fractional
PI�D� controller, formulated as:

C �(s) = kp +
ki
s�
+ kds

�: (1)

However, in this work, as a preliminary step to
our research and development theme mentioned
above, we consider the following fractional order
compensator, a generalization of the commonly
used lead-lag compensator:

C(s) = kc

�
s+ 1=�

s+ 1=x�

��
= (2)

= kcx
�

�
�s+ 1

x�s+ 1

��
; 0 < x < 1;

where 1=� = !zero is the zero frequency and
1=x� = !pole is the pole frequency (when � > 0).
As it can be observed, this compensator corre-
sponds to a fractional lead compensator when
� > 0 and 0 < x < 1, and to a fractional lag
compensator when � < 0 and 0 < x < 1: The
condition 0 < x < 1 is maintained in both cases.

In brief, in this paper a method is proposed for the
auto-tuning of the fractional lead-lag compensator
in equation (2), using relay tests. This paper is
organized as follows. In section 2, the basic idea
of relay tests is described. In section 3, a design
method for the fractional order lead-lag compen-
sator is studied and an auto-tuning method is
proposed. In section 4, an illustrative example
is given in details. Finally, some conclusions are
drawn and future works are remarked in section 5.

2. RELAY TEST FOR AUTO-TUNING

The relay auto-tuning scheme is shown in �gure 1.
Let us assume that there is a limit cycle with
period Tu (!u = 2�

Tu
) so that the relay output

is periodically symmetric. If the relay output is
d, a simple Fourier series expansion of the relay
output for � = 0 (no hysteresis) gives the �rst
harmonic with amplitude 4d=�. If it is further
assumed that the process dynamic has low-pass
character and that the contribution of the �rst
harmonic dominates the output, then the output
signal has the amplitude:

a =
4d

�

����G(j 2�Tu )
���� : (3)

The condition for oscillation is thus:

arg

�
G(j

2�

Tu
)

�
= ��; (4)����G(j 2�Tu )

���� = �a

4d
=

1

N(a)
; (5)

Fig. 1. Relay auto-tuning scheme

whereN(a) is the equivalent relay gain. Therefore,
one point on the Nyquist curve of the plant can
be obtained, at the frequency !u = 2�

Tu
. However,

this relay test has the drawback that only one
frequency response point is obtainable, and it may
be insu¢ cient for describing some processes or
for designing model based controllers. In order to
solve this problem, an alternative scheme for the
relay test can be used by introducing an arti�cial
time delay �a in the loop (after the relay) to
change the oscillation frequency due to the relay
feedback (see Chen et al., 2003). For each value
of �a a di¤erent point on the Nyquist curve of
the plant is obtained. Therefore, a point on the
Nyquist curve of the plant at a particular desired
frequency !c can be identi�ed, for example, at
the gain crossover frequency required for the con-
trolled system. Let us denote that the phase and
magnitude at this frequency point are given by:

arg (G(j!c)) = �� + !c�a; (6)

jG(j!c)j =
�a

4d
=

1

N(a)
: (7)

The problem then would be how to select the
right value of �a which corresponds to a spe-
ci�c frequency !c. An iterative method can be
used to solve this problem as presented in (Chen
et al., 2003). The arti�cial time delay parame-
ter can be updated using a simple interpola-
tion/extrapolation scheme, as follows:

�n =
!c � !n�1
!n�1 � !n�2

(�n�1 � �n�2) + �n�1;

where n represents the current iteration num-
ber. With the new �n, after the relay test, the
corresponding frequency !n can be recorded and
compared with the frequency !c so that the iter-
ation can continue or stop. Two initial values of
the delay (��1 and �0) and their corresponding
frequencies (!�1 and !0) are needed to start the
iteration. The pair (��1; �0) can also be easily and
automatically estimated by using a scheme similar
to the one for �n:

In this work, a fractional lead-lag compensator is
used which can be easily tuned from this relay
test experiment and whose parameters relations
are simple and easy to determine. Besides, a
robustness performance of the controlled system



is achieved with the design method proposed for
this kind of compensators, without increasing the
complexity of these parameter relationships.

In the next section the fractional lead-lag com-
pensator and its tuning method are explained in
detail.

3. THE FRACTIONAL LEAD-LAG
CONTROLLER

In this section, we focus on the fractional order
lead-lag compensator (FOLLC) and introduce a
new tuning parameter, �, the fractional order.
An analytical method is proposed for its design,
based on the lead-lag regions de�ned for the
compensator in the complex plane, depending on
the value of �: This method allows a �exible and
direct selection of the parameters of the fractional
structure through the knowledge of the magnitude
and phase of the plant at the frequency of interest,
obtained with the relay tests. Speci�cations of
error constant, kss, gain crossover frequency, !c,
and phase margin, 'm, can be ful�lled, following
a robustness argument based on the �atness of the
phase Bode plot of the compensator.

The proposed FOLLC has the form in equa-
tion (2). This transmittance corresponds to a
frequency bounded fractional derivator/integrator
which is at the very origin of the CRONE con-
trol (see Oustaloup, 1995; Oustaloup, 1988). An
in�nite-dimensional state-space representation for
this kind of controllers has been studied in (Ray-
naud and Zergaïnoh, 2000). It has been also used
on the modeling and the feedback control laws for
the stability of viscoelastic control systems (see
Skaar et al., 1988).

The frequency characteristics of this fractional
compensator when � > 0 (lead compensator)
are shown in �gure 2. For values of � < 0 (lag
compensator) the slope of the magnitude curve is
negative and the compensator introduces a phase
lag. As it can be seen in the �gure, the value of
x sets the distance between the fractional zero
(!zero) and pole (!pole) and the value of � sets
their position in the frequency axis. These two
values depend on the value of �: It is observed
that for a �xed pair (x; �), the higher the absolute
value of �; the higher the slope of the magnitude
of C(s) and the higher the maximum phase �m
that the compensator can give.

As in the case of an integer lead-lag compensator,
the frequency !m is the geometric mean of the
corner frequencies !zero and !pole, and its expres-
sion is given by !m = 1=�

p
x. At this frequency

the characteristics of the compensator C(s) are:

Fig. 2. Bode plots of the transmittance C(s) when
� > 0����C(s)kcx�

����
!=!m

= jC 0(s)j!=!m = (8)

=

 s
(�!m)2 + 1

(x�!m)2 + 1

!�
=

�
1p
x

��
;

arg (C 0(s))!=!m = �m = � sin
�1
�
1� x
1 + x

�
: (9)

Let us give some remarks on the contribution
of the parameter �: For a �xed set (xn; �n; �n)
and considering variations in the parameter �n;
it is observed that the lower the value of � is
(in comparison with its nominal value �n), the
longer the distance between the zero and pole
must be, and vice versa, in order to compensate
the variation of phase produced by the variation of
�: This fact makes the controller more �exible and
allows considerations of robustness in the design.
This point will be explained in more detail next.

3.1 Method of Design

Let us imagine that the fractional lead-lag com-
pensator in equation (2) has to be tuned for a
general unknown process:

G(s) =

k
Q
i

(� is+ 1)

sn
Q
j

(� js+ 1)
: (10)

The static error constant kss = lim
s!0

snG(s) can be

measured and it is assumed to be known (in type
0 systems, n = 0, the static error constant is equal
to the static gain of the system G(0)). Therefore,
the compensator gain k0 = kcx

� can be set in
order to ful�ll an error constant speci�cation for
the compensated system, being both related by
the expression kss = k0k.

For a speci�ed phase margin ('m) and gain
crossover frequency (!c), the following relation-
ship for the open loop system can be given in the
complex plane:



Fig. 3. Lead and lag regions for the integer order
compensator

G(j!c) � k0
�
j�!c + 1

jx�!c + 1

��
= ej(�+'m) ) (11)

)
�
j�!c + 1

jx�!c + 1

��
=
ej(�+'m)

k0G(j!c)
= a1 + jb1 )

)
�
j�!c + 1

jx�!c + 1

�
= (a1 + jb1)

1=�
= a+ jb;

where G(s) is the plant to be controlled and
(a1; b1) is called in this paper the �design point�.
After some simple calculations, the expressions for
x and � can be given by:

x=
a� 1

a(a� 1) + b2 ; (12)

�=
a(a� 1) + b2

b!c
:

Studying the conditions for a and b to �nd a solu-
tion, it can be concluded that a lead compensator
is obtained when a > 1 and b > 0, and a lag
compensator when 1�

p
1�4b2
2 < a < 1+

p
1�4b2
2 and

�1=2 < b < 0: Figure 3 shows these lead and lag
regions in the complex plane for the integer order
compensator.

Let us focus �rstly on the lead compensation. It is
clear that for the conventional lead compensator
(� = 1) the vector a + jb = a1 + jb1 is perfectly
known through the knowledge of the plant (relay
test) and the speci�cations of phase margin and
gain crossover frequency required for the system,
as it can be seen in (11). Knowing the pair (a; b),
the values of x and � are directly obtainable by
(12), and the compensator is then designed.

As shown in �gure 3, the vector 1+ j tan � de�nes
the borderline of the lead region. Using the polar
form of this vector:

p
1 + tan2 �ej� =

1

cos �
ej�; (13)

and expressing the vector (a1+jb1)1=� in its polar
form:

Fig. 4. Lead regions for the fractional compensator
for 0 � � � 2

�q
a21 + b

2
1

�1=�
ej

tan�1(b1=a1)
� = �1=�ej

�
� ; (14)

where � =
�p

a21 + b
2
1

�
and � = tan�1(b1=a1);

the following relationships can be established from
(11):

� = ��; (15)

�1=� =
1

cos �
) 1 = �

�
cos

�
�

�

���
:

Then, solving numerically the function 1 =
�
�
cos
�
�
�

���
; the lead compensation regions in the

complex plane for di¤erent positive values of �
are obtained, as shown in �gure 4. The zone to
the right of each curve is the lead region, and any
design point in this zone can be ful�lled with a
fractional compensator having a value of � equal
or bigger than the one de�ning the curve which
passes through the design point (�min). For in-
stance, for the design point in �gure 4, the value
of �min is 0.48. By choosing the minimum value
�min; the distance between the zero and the pole
of the compensator will be the maximum possible
(minimum value of parameter x). In this case,
the phase curve of the compensator is the most
�at possible and variations in a frequency range
centered at !c will not produce a signi�cant phase
change as in other cases, improving the robustness
of the system.

Figure 5 shows the pairs (x; �) obtained for each
value of � in the range �min � � � 2, with
�min = 0:48 (compensation of the design point in
�gure 4). It is observed that the minimum value
of x is obtained for �min (maximum robustness).
Therefore, through the curves in Figs 4 and 5 the
selection of the parameters of the compensator is
�exible and direct.

This method proposed for the fractional lead
compensator (Monje et al., 2004) can be used here
for the design of a fractional lag compensator with
some modi�cations that are explained next.



Fig. 5. Pairs (x; �) for �min � � � 2

First of all, to determine whether a lead or lag
compensator is required to ful�ll the speci�cation
of phase margin, a simple computation has to be
done:

1) If � + arg(G(j!c))<'m ! Lead Compensator

2) If � + arg(G(j!c))>'m ! Lag Compensator

In case a phase lag ('lag) is required for the
system, the compensator will be designed as a lead
one giving a phase 'lead = �'lead, and then the
sign of � is changed. Therefore, in order to keep
the speci�cation of phase margin, the phase of the
compensator ('lag) will now be given by:

'lag = ��+2[�+arg(G(j!c))]�'m�arg(G(j!c)):
(16)

Let us remember that in the case of a lead com-
pensation the phase of the compensator ('lead)
is given by 'lead = �� + 'm � arg(G(j!c)):
Besides, it has to be taken into account that
the fact of changing the sign of � for the lag
compensation also changes the magnitude of the
compensator designed (makes it the inverse). So,
in order to keep the gain unchanged (ful�lling al-
ready the speci�cation of crossover frequency), the
lag compensator should be multiplied by a gain
klag = 1=(k

0 � jG(j!c)j)2: Therefore, the fractional
lag compensator will be given by:

Clag(s) = klagk
0
�
�s+ 1

x�s+ 1

���
; (17)

with � a positive real number.

4. AN ILLUSTRATIVE EXAMPLE

In this section the auto-tuning method proposed
will be illustrated. First, with the relay test the
value of the magnitude and phase of the plant
to control will be obtained at the crossover fre-
quency, !c: With these values and the value of
the desired phase margin, 'm; the �design point�

Fig. 6. Output signal from the relay test

a1 + jb1 is de�ned, and the parameters of the
compensator are then obtained by simple calcula-
tions, following the robustness feature explained
in the previous section. In this case the plant to
be controlled is a position servo given by:

G(s) =
2

s(0:5s+ 1)
:

The design speci�cations considered here are just
taken as an example of application. In our case,
the gain crossover frequency is speci�ed as !c =
10rad= sec. The relay will have an output am-
plitude of d = 5, without hysteresis, � = 0.
The two initial values (��1 and �0) of the delay
used to reach the frequency speci�ed are 0:05 sec
and 0:02 sec, respectively. The iterative process
explained before is done and �nally it is obtained
the output signal shown in �gure 6.

The value of the delay �a obtained for the
selection of the frequency speci�ed is �a =
0:0180 sec; and the corresponding frequency is
!u = 10:0088rad= sec : The amplitude and pe-
riod of this oscillatory signal are a = 0:256 and
Tu = 0:627 sec, respectively. Therefore, the mag-
nitude and phase of the plant estimated through
the relay experiment at the frequency !u =
10:0088rad= sec are jG(j!u)jdB = �28:1188dB
and arg(G(j!u)) = �169:6534�; respectively. At
this frequency, the plant has a real magnitude of
�28:1441dB and a phase of �168:6997�. So, only
a slight error is committed in the estimation.

Next, a fractional compensator will be designed
with the proposed tuning method to obtain a
velocity error constant kv = 20 and a phase
margin of 'm = 50� at the gain crossover fre-
quency !c = 10rad= sec. As it can be observed,
a lead compensator is needed in this case. Using
the method proposed in the previous section, the
resulting compensator is:

C(s) = 10

�
0:6404s+ 1

0:0032s+ 1

�0:5
;

with k0 = 10, x = 0:0050, � = 0:6404 and
� = 0:5: The Bode plots of this compensator
are shown in �gure 7. At the crossover frequency



Fig. 7. Bode plots of the compensator C(s)

Fig. 8. Bode plots of the open loop system with
compensator C(s)

Fig. 9. Step response of the system with compen-
sator C(s)

!c = 10rad= sec, the compensator has a magni-
tude of 28:1188dB and a phase of 39:65�. At that
frequency the magnitude of the open loop system
is �0:0253dB, and the phase margin obtained is
50:9503� (see �gure 8). So, the speci�cations are
ful�lled with only a slight error.

For the sake of implementation a discrete version
of the controller must be used. Several discretiza-
tion methods can be considered, for instance the
Tustin method (see Vinagre et al., 2003). How-
ever, for simulation, this compensator has been re-
alized by using a frequency identi�cation method
(Matlab function invfreqs), with a 4th order nu-
merator and denominator, resulting the step re-
sponse of the closed-loop system shown in �gure
9.

5. CONCLUDING REMARKS AND FUTURE
WORKS

In this paper an auto-tuning method for the frac-
tional lead-lag compensator using the relay test
has been proposed. This method allows a �exible
and direct selection of the parameters of the com-
pensator through the knowledge of the magnitude
and phase of the plant at the frequency of interest,
obtained with the relay tests. Speci�cations of
error constant, kss, gain crossover frequency, !c,
and phase margin, 'm, can be ful�lled with a
robustness property based on the �atness of the
phase curve of the compensator. The simulation
results illustrates the e¤ectiveness of the control
tuning method proposed.

We are currently working on the generalization
of this auto-tuning method to the fractional PID
controller (PI�D�). Besides, good experimental
results have been obtained from the implementa-
tion of the auto-tuning method proposed here.
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