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Abstract: This paper presents the design of a closed-loop micromachined
accelerometer using a sensitivity functions shaping approach in order to reach the
desired measurement performance. The controller design is based on an identified
model of the plant (MEMS, readout circuit and actuator) and a pole placement
strategy. Simulation results and real-time application on a prototype show the
feasibility and the interest of this methodology for high performance microsystem
design. Copyright c©2005 IFAC.
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1. INTRODUCTION

Microsystems are dynamic systems which often
contain feedback. Their design and their usage
rise problems which can be solved by automatic
control although, at present time, this is
not systematically done. The specificities of
those microsystems, their small dimensions, the
resulting physical phenomena and the high
electronic integration, call for a very thorough
study if we want to apply control strategies
(identification, observation, feedback control).
Indeed, microsystems can include non-linearities,
couplings, various noise sources. Moreover, the
dynamics of their electronics, which can often be
neglected in macrosystems, can play an important
role concerning the achievable performance.
Therefore, these systems necessitate a detailed
preliminary analysis to translate the existing

physical schemes into (virtual) ones suitable for
control design.

Most of the commercial accelerometers operate
in open loop. However, closed-loop accelerometers
appear as their performance (linearity, sensitivity,
noise rejection) can be higher than the open-
loop ones (Chau et al. 1996, Kraft 2000, Lemkin
et al. 1997). This paper presents feedback
control strategy applied to the design of a
high performance closed-loop micromachined
accelerometer.

Section 2 presents the system overview and
the problem statement. The control strategy is
described in section 3. Simulation results and the
prototype performance are given in sections 4 and
5.
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Fig. 1. Scanning Electron Microscope view of the capacitive accelerometer MEMS and detailed schematics

2. SYSTEM OVERVIEW AND PROBLEM
STATEMENT

2.1 Sensing element and measurement/actuation
principle

The micromachined accelerometer (fig. 1) is
fabricated on a SOI substrate. It is composed
of a movable proof mass m maintained in its
rest position (x = 0) by two suspension beams.
Two variable sense capacitances C1(x, t) and
C2(x, t) are obtained between the interdigitated
comb fingers of the fixed electrodes and those
of the movable proof mass m. This capacitive
interface will be used both as the sensing element
and the feedback actuator. Indeed, under an
external acceleration γ(t), inertial forces act on
the movable proof mass m. Its displacement x(t) is
proportional to the external acceleration γ(t) for
low frequencies. This displacement translates into
a variation of capacitance ∆C(x, t), proportional
to C1(x, t)-C2(x, t), which can be measured
by an appropriate sensing and pickup circuit.
Applying a potential difference Vfb between
the fixed electrode 1 and the movable proof
mass will create an attractive electrostatic force
and the proof mass m will move towards the
right (fig. 1) (respectively towards the left if
Vfb is applied between electrode 2 and the
proof mass). In closed-loop operation, capacitance
readout and feedback actuation will be performed
through Σ∆ interfaces. They carry out a direct
analog capacitance to digital word conversion
(readout ADC) and a digital word to electrostatic
forces conversion (feedback actuation DAC) with
reduced analog electronics (Delorme et al. 2003).

Table 1. Desired performance

Characteristic Requirements

Measurement Full Scale (FS) γmax= ± 10 g
Meas. BandWidth (MBW) 0− 122 Hz

Measurement Accuracy |εm(t)/γ(t)| ≤ −100 dB

Measurement Linearity THD ≤ −100 dB
Digital Resolution SQNR ≥ 100 dB

Resulting SNDR SNDR ≥ 100 dB
Temperature Range 0− 85◦C
Pressure Range 0.8− 1.2 atm

Fig. 2. Achievable SNDR versus amplitude of
mass displacement x: Harmonic Distortion
contribution (solid line) and Distortion
products contribution (dashed line).

2.2 Capacitive sensing nonlinearities

The nonlinearity of the capacitive sensing
interface introduces distortions in the
measurement signal. These distortions
dramatically affect the measurement Signal
to Noise and Distortion Ratio (SNDR). Reducing
those effects will be the main goal of this
closed-loop design. Considering figure 2, it can
be inferred that, in order to comply with the
system specification for SNDR (table 1), the mass
displacement should be kept smaller than 2%
of the mass maximum open-loop displacement
xmax. This can be achieved by an appropriate
feedback controller design.

2.3 Technological dispersion and design choices

Since MEMS fabrication is subject to
technological dispersions, a model based on
the discretization of the nominal physical model
of the system may lead to a non-robust design.
Indeed, especially in the prototyping step, the
designed mechanical part and the fabricated one
could be (slightly) different, so that the mass
and the mechanical stiffness can be modified as
well as the interdigitated capacitance gap and
consequently the readout gain, the actuation gain
and the effective natural frequency. In order to
draw aside this problem of robustness towards
parameter value mismatch, the microsystem’s



Integrated Circuit has been designed in order
to allow the identification of the plant to be
controlled. This identification will provide a
discrete-time model of the whole plant, including
the dynamics of the mechanical part, those of
the ADC and DAC 1 , as well as the effects of the
readout and the actuation on the mass dynamics.
For flexibility purpose, it has been chosen to
implement a RS-type digital controller whose
coefficients can be uploaded into the memory of
the digital part of the specific Integrated Circuit.

3. CONTROL STRATEGY

3.1 Block diagram of the closed loop measurement
system

The closed-loop architecture resulting from the
previous considerations is given in figure 3a. In
order to separate the controller and the plant to
be controlled, this schematic is modified according
to figure 3b, by rotating the diagram blocks.
This physical system can now be modelled as
a standard (virtual) feedback loop with linear
transfers (fig. 3c). This representation is valid
since the mass displacement x(t) is kept small
by feedback. In this schematic, all signals are
normalized. Some of the transfer functions are
considered to be known (Gd0(q−1), Gd1(q−1) &
Gd2(q−1)), whereas the plant transfer function
G(q−1) will be obtained by identification (cf.
subsection 3.3).

3.2 Physical plant model

Although real plant model G(q−1) will be
obtained by identification, a physical model is
required for validation purpose. The system
dynamics is mainly represented by a classical
damped mass-spring system, in which the mass
is the proof mass m and the damping coefficient
b(x, T, t), due to air viscosity, is nonlinear and
temperature dependant. The spring coefficient
keff results from a combined action of the
suspension beam mechanical stiffness and the
electrostatic softening stiffness (Handtmann et al.
2002). The resulting approximate mass motion
equation is finally given by:

m.ẍ(t) + b(x, T, t).ẋ(t) + keff .x(t) = ...

= m.g.γ(t) +Ku.u(k) (1)

1 Σ∆ ADC and DAC of figure 3 include digital down/up
sampling filters in order to adapt the relatively low
frequency required for identification and control purpose
(fs = 62.5kHz) to the high frequency (250 kHz) required

for quantization noise shaping (Norsworthy et al. 1996).
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Fig. 3. a) Closed-loop sensing schematic. b)
Modified schematic. c) Control schematic

where γ(t) the external acceleration, u(k) the
sampled control signal and Ku the actuation gain.
Considering the linearized value blin of b(x, T, t)
around the rest position (x = 0) at ambient
temperature T = 300K, an approximate transfer
function from the control signal u(k) to the mass
displacement x(t) can be proposed (2).

Gth(s) =
X(s)
U∗(s)

=
Ku

m.s2 + blin.s+ keff
(2)

where U∗(s) is the starred Laplace transform of
u(k).

3.3 Identified plant model (simulation)

The identification of the plant’s transfer function
G(z−1) is performed in open loop between input
u(k) and output y1(k) (fig. 3c), where y1(k) is
the image of the mass position x(t) through
the capacitive position sensing element. The
excitation signal proposed for identification is a
PRBS signal. Using the Matlab r© Identification
Toolbox, the best fit was obtained with a 4th

order ARMAX model which is in good accordance
with the physical model Gth (2) multiplied by the
capacitance readout gain KLC (fig. 4).

3.4 Performance and stability robustness

Using the control block diagram (fig. 3c), stability
and performance requirements can easily be
expressed by means of templates on the closed
loop sensitivity functions K, S, KS and SG
(Landau and Karimi 1998) (cf. arrows on fig. 3c).



Fig. 4. Bode diagram of the identified transfer
G(z−1) (solid line) and of the theoretical
modelKLC .Gth(dashed line). The dashed dot
line represents theoretical model phase fit
adding 1 sampled delay at fs.

In order to ensure sufficient stability
margins (Skogestad and Postlethwaite 1996),
the maximum ‖S‖∞ of the sensitivity function
S should be inferior to 6 dB (3). The related
graphical template is denoted Template 1 on
figure 5. In the same manner, the complementary
sensitivity function maximum ‖T‖∞ should be
inferior to 3.5 dB (4) - Template 2. Template 3
on the sensitivity KS (5) is added to prevent
instability due to saturation effects in the
electronic part - numerical computation overflow
in the implemented digital controller K(z−1).

‖Tεcr(z−1)‖∞ = ‖S(z−1)‖∞ ≤ 6 dB (3)

‖Ty1r(z
−1)‖∞ = ‖T(z−1)‖∞ ≤ 3.5 dB (4)

‖Tup(z−1)‖∞ = ‖KS(z−1)‖∞ ≤ 15 dB (5)

Nominal (measurement) performance can also be
expressed by means of templates. For instance,
the measurement accuracy - relative measurement
error in table 1- is equal to the ratio between
the magnitude of the measurement error signal
| − εm(k)| = |y0(k) − p1(k)| and the magnitude
of the (normalized) external acceleration |p1(k)|.
This ratio depends on the input frequency and can
be associated to the transfer function Tεmp1(z−1).
Considering figure 3c and table 1, the relation
(6) 2 can be written, which is equivalent to
Template 5 on the S sensitivity function plot
(fig. 5).

|Tεmp1(z−1)| = |S.Gd1(z−1)| ≤ −100 dB in MBW

⇒ |S(z−1)| ≤ −100 dB in MBW (6)

In the same manner, other templates (not
detailed here) should be fulfilled such as:
• Template 4 to ensure measurement bandwidth;
• Template 6 for measurement linearity;

2 Design choice imposes that |Gd1 (z−1)| ' 1 in the MBW.

• Template 9 for analog to digital conversion
resolution;
• Template 10 for stability robustness towards
parameter variation (temperature varying
damping coefficient b(x, T, t)) (Doyle et al. 1992).

In order to characterize performance robustness,
it will be verified a posteriori if the sensitivity
functions identified on the perturbed system
(worst case parameter variation: blin ± 15%) still
fulfil the performance templates.

4. SIMULATION RESULTS

The controller has been designed using the
pole placement with sensitivity function shaping
method (Landau and Karimi 1998). This
method has several advantages. It provides an
instantaneous view of expectable sensor and
control loop performance in terms of sensitivity
functions, so that the compromise between
stability and measurement performance can be
realized. Furthermore, the designer fixes the
controller order by choosing the fixed polynomials
degrees, so that no controller order reduction
method has to be applied a posteriori. In this
study, the maximum order of the controller is
imposed by the electronics. It must be lower than
8.

4.1 Control-loop performance

The following results have been obtained for a
controller designed in order to closely comply
with the nominal (measurement) performance
specifications (table 1 and related templates). As
a consequence, stability margins are a bit weak.
The sensitivity functions are plotted in figure 5.

The templates for nominal stability are nearly
respected (Templates 1, 2 and 3 ). The maxima of
the sensitivity function and of the complementary
sensitivity function are equal to 8 dB, which
is high but acceptable (4.4 dB of gain margin
and 22.8◦ of phase margin). The maxima of
the closed-loop identified sensitivity functions
(dashed lines) are a little bit higher than the
designed ones, so that stability margins of
the real system may be lower than expected
margins. Bandwidth, linearity and noise shaping
templates (4, 6 and 9 ) are fulfilled, so that the
sensor system should respect linearity (THD)
and analog to digital conversion resolution
requirements (SQNR). Unfortunately Template
5, which concerns measurement accuracy, could
not be respected (too restrictive). Nevertheless,
the system displays good accuracy results.
Indeed, as accuracy is equal to the inverse of
the sensitivity function S, the S sensitivity



Fig. 5. Templates, sensitivity functions calculated
from the identified model in grey lines and
sensitivity functions identified on the realistic
Simulink r© model (with non-linearity, Σ∆
ADC/DAC, ...) in black dashed lines.

plot shows that the sensor accuracy will be
theoretically infinite for constant accelerations
γ(t) (limited by the quantization noise). For
low frequency accelerations (≤ 1 Hz), the
measurement accuracy will be over 100 dB (55 dB
for the specified Measurement Bandwidth).
The last template (Template 10 ) concerns
stability robustness towards parameter variations
(damping coefficient). This template is not
respected. Further investigations showed that
stability robustness should be ensured for
operating temperatures varying from 3◦C
to 52◦C. Nevertheless, the system has been
simulated for operating temperatures of 0◦C and
85◦C and in both cases, the system was stable.
The resulting sensitivity functions were not
modified for frequencies under 122 Hz, showing
(measurement) performance robustness.

4.2 Sensor performance analysis

The aim of the sensor is to measure and to convert
the external acceleration γ(t). Several criteria
exist in order to characterize sensor performance.
Their computations are performed using the
spectrum of the measurement output signal γm(k)
(fig. 3a.) for a sine input acceleration γ(t) at a
given amplitude and frequency (example in fig. 6).
Matlab simulations of the complete model forecast
excellent results. The Maximum Signal to Noise
Ratio reaches 100 dB for 3 g acceleration input.
The Smallest detectable acceleration amplitude
equals to 20µg, so that the Dynamic Range is
over 100 dB, while the Total Harmonic Distortion
remains under the quantization noise floor. So the
control loop design fulfils its first aim, which was
to reduce nonlinearity effects.

Fig. 6. Example of measurement output (γm(t))
spectrum for an input signal γ(t) =
3gsin(2.π.15.t)

5. REAL SENSOR

A prototype of the presented microsensor has been
realized (Condemine et al. 2005). The mechanical
part area measures around 6 mm2 while the
electronic part measures around 15 mm2.
The measurement performance of the first
prototype is more than promising despite some
limitations. Indeed, in order to reduce some
additional electronic noise attributed to the test
card, the sampling frequencies had to be reduced.
Furthermore, the MEMS behaviour is not exactly
as expected, so that the feedback actuation
voltage Vfb had to be reduced. As a consequence,
the identified plant’s natural frequency is around
400 Hz and its gain equals −4 dB. Nevertheless,
the controller design methodology applied to this
new system allowed to achieve the following
measurement performance (fig. 7 and table 2):
(1) The Analog to Digital conversion resolution
is equal to 15 bits for a 50 Hz bandwidth (noise
floor Erms(50 Hz) = −88 dB), fig. 7.a.
(2) The proof mass displacement in the
measurement bandwidth is lower than the size
of an atom for a constant external acceleration
(fig. 7.b). For an acceleration input amplitude
equal to ±4.5g, the mass displacement can be
estimated (fig. 7.d&f) to be around 4Å (0.05%
of the mass normalized displacement). It can be
deduced (fig. 2) that, in most cases, the harmonic
distortion will remain under the quantization
noise floor. For this prototype, the maximum
measurement nonlinearity is expected (starred
value in table 2) to be lower than 0.05%FS for
any acceleration in the measurement bandwidth
and in the dynamic range.
(3) The signal y1(t) (fig. 7.d&f) can also
be considered as the measurement error εm(t)
multiplied by the plant gain (fig. 3). Consequently,
comparing figures 7.c&d, it can be deduced that
the relative measurement error εm(t)/γ(t) is
arround −50 dB (0.3%) for this ±4.5g imposed
acceleration.



Table 2. Performance comparison to commercial sensors (From datasheets. Typical values of
output noise includes noise from recommended RC-antialiasing filter in case of analog output.)

Company AnalogDevice Applied MEMS MEMS IC VTI This study

Sensor References ADXL320 SF1500L MXD7210 SCA320 Prototype Units

Type Open-loop Closed-loop Open-loop Open-loop Closed-loop

Measurement Full Scale 5 3 10 12 10 g
Number of sensing axes 2 1 2 1 1

Meas. BandWidth (MBW ) 50 100 1 400± 150 50 Hz

Output Noise in MBW 318 0.5 400 96 60 µg/
√
Hz

Meas. Non-Linearity 0.2 0.1 1 1.7 0.05∗ %FS

Output type analog analog PWM analog digital (Σ∆)

Supply Voltage 3 ±6 to± 15 5 3 3.3 V olt
Power Consumption 1.5 ≤ 300 16 10 2.7 mW

Fig. 7. Measured Results: PSD of measurement
output and capacitive position sensing
output for a constant acceleration (a&b) and
for a ± 4.5 g hand-generated acceleration
(c&d). e&f Corresponding temporal response.
Normalizing frequency fnorm = 87.5 kHz.

6. CONCLUSION

A control system approach was applied to design
a micromachined accelerometer with improved
measurement characteristics. In particular, the
initial measurement performance specifications
have been translated into frequency templates to
be fulfilled by the closed-loop system sensitivity
functions. The simulation results show that
the closed-loop microsystem fulfils its main
specifications, while the good real-time results
of the first prototypes show the validity of the
methodology, despite the fact that the system’s
behaviour is slightly different compared to the
designed one. This methodology is believed to be
transposable to other low-pass microsensors.
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