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Abstract: The Generalized Likelihood Ratio (GLR) test fault detection as derived by
Willsky and Jones is a recursive method to detect additianghs in linear systems in
a Kalman filter framework. Here, we evaluate the GLR test oficing window and
compare it to stochastic parity space approaches. Rohustftection defined as being
insensitive to faults in the signal space is also studietlénGLR framework.
Copyright(©2005 IFAC

Keywords: fault detection, statistical signal processmogust estimation, parity space

1. INTRODUCTION this means thak’ does not belong to the rangeHﬁiO

S ) and the hypothesis test becomes
The work concerns primarily linear Gaussian models,

which over a sliding window can be represented by the Hy: FeTR(HIO) (3a)
following signal model H: F¢ R(H}O) (3b)

Y=0c+ HU+HV+HF+E, (1) whereR(-) denotes the range. These two tests will be
whereY is a vector of outputs during a sliding window treated in parallel.
time period,x is the initial state of the systend? is
the extended observability matri¥/,,, H, and Hy
are Toeplitz matrices describing how the inpuis,
process noiséy/, and faults,F', enter the system and
E is additive measurement noise. The sum of two

noise terms is a Gaussian noise witbv(H,V + the null f the observability matrix B6Tr —
E) = S. The details are described in Section 2 and WeT Ilj{ ;paczov eE i< inde gndent o,fgiﬁlersgate
in (Gustafsson 2001). Fault detection is here seen asT i oV ) P . N
: he original parity space approach is a deterministic
the hypothesis test . : .
one, so this residual is non-zero for non-zero faults.
Hy: F=0 (2a)  The extension to process and measurement noise was
Hy: F#0. (2b) done in (Gustafsson 2002), and analytical results on
detectability of an all-one fault vectdf was derived.

The basic residual to use in fault detectiomis Y —
H,,U, which depends on the stateThe classic parity
space approach (Basseville and Nikiforov 1993, Chow
and Willsky 1984, Dinget al. 1999, Gertler 1997,
Gertler 1998), computes a projection of this residual to

Recently, (Desai and Mangoubi 2003) proposed robust
fault detection as only testing for faults that do not lie The first extension here is to arbitrary fault vectors,
in the signal space. In our notation, the signal spaceincluding incipient faults (slowly increasing) and gen-
is spanned by the observability matrix, which means eral time-varying fault profiles. The GLR approach
that we exclude faultd” such thatd;F' belongs to  (Willsky and Jones 1976) maximizes the likelihood
the column space aP and thus can be explained by ratio function over all faults, and the explicit GLR test
a different state vector. Using the pseudo-inveﬁ@e statistic will be given. It turns out that this in both



hypotheses tests (2) and (3) can be expressed as a.2 Basic definition and mathematical tools

certain projection of the residual.

. . T
A second approach is to estimate the state rather than

projecting the residual to the parity space.

2. NOTATION
2.1 State space model to signal model

The linear system is defined as the state space model

Te41 = Aey + By sur + By fe + By 10y
Yy = Crae + Dy rur + Dy o fr + ey (4)

We separate the following types of input:

e Deterministic known input:;. This is common
in control applications.

e Deterministic unknown fault inpuf;, which is
used in the fault detection literature. The known
matricesBy; and D, determines which part of
the system will be affected by the different faults.

e Stochastic unknown disturbances and e;,
process noise and measurement noise, respec-
tively, which are used in the Kalman filter setting.
Both will here be assumed to be independent
and Gaussian, with zero mean and covariance
matrices); and R;, respectively.

To establish the correspondence of models (4) and
(1), stackL signal values to define the signal vectors

Vi= (Y pirs- ,ytT)T, etc for all signals. We here
use the time index to note that fault detection is a
recursive task. Also define the Toeplitz matrices (time
indices are omitted for simplicity)

D, 0 --- 0

CBs Ds -+ 0
H; = . . . (5)
CA'—2B, ... CB, D,
for all signalss = u, f, v and the observability matrix

C
CA

o= . |- (6)
cal-1

Equation (4) can then be written as

Y, - HU; =
Oxt—py1+ HiF + H Vi + B (7)

which is (1). Note that we use the notatianfor
z+—r+1 to shorten the notation from here on. The
definition of

S = Cov(H,V; + E) (8)

is straightforward.

he basic tools in the derivation are the following:

The pseudo-inverse operatiorused here is the
Moore-Penrosdnverse which can be found in,
i.e., (Golub and van Loan 1996). In the case
where A has full row rank it can be computed
asAl = (AT A)~tAT,

Projection operator. A projection on the range
space,R(A), spanned by the columns iA is
given by P4 = A(ATA)71AT = AAT, with
the obvious propertfP4 A = A. R4 denotes a
basis forR(A).

Projection on null space To remove the state
dependence in (1), the orthogonal projection
Po is used, with the obvious propertyl —
Po)O = 0. No is a basis for the null space of
the columns ir© denotedV (O).

Whitening. Assume thatCov(r) = P, then
Cov(P~1/2r) = 1, so pre-multiplying with
P~1/2 is a whitening operation. A normalized
residual can then be definedas- P—1/?r.
Minimum variance (MV) estimation. For the
equation systemlz = r, the least squares (LS)
solutionz™ = Afr is the minimum variance
estimate if and only i€ov(r) = I. That s, using
pre-whitened residual, we have

i,]\JV — (P—l/QA)TP—l/Qr
= (ATp=ta)y~taTp-iy,

e GLR test. To test whethe#; = 0 or not when

7 ~ N(P~Y2HF,, I), the log likelihood ratio
of the two hypotheses is first formed:

e~ sllF =P~ H Rl
L(F;) =2log =

YRR

= |73 — Ir — P~Y2H 5.

The likelihood ratio is then maximized over the
unknown parameter; to get the GLR test statis-
tic

L = max (|73 — |7 — P~ H B3 ) =
= /P = (P2 Hy) 17/ =

= (IFI3 — llr = P2 (P2 ) 3)

= (= (=P, yu,)F) =T P, yu,T

The test statisticl, is a sum of squared Gaussian
variables with rankPp-1/2 ) degrees of free-
dom. Itis therefore®(rank Pp-1/2, ) distrib-
uted. The assumption here is thrdhas uncorre-
lated elements andim(r) > ranKPp-1/2p, ).
Based on knowledge about the distribution of the
test statistic a suitable threshold for detection can
be chosen.

Fault profile model. To get a low order pa-
rameterization of the fault profile, and a non-
ambigous distinction of fault and process noise,
assume that the fault profile is a smooth function



(rather than noise). Thatis, Lgt = F'm;, where

F' defined a certain fault direction, and, is
the scalar time-varying magnitude. Choose basis
functions p; of smooth functions (for instance
polynomials), so that we get a mode} = ] 0.

For simplicity, assume an orthonormal basis
(for instance Legendre polynomials), such that
Z‘,;:t_LH ol = I.In that case, we preserve
fault energy sof|my|> = Y5_, ;. m? =
0]|%. Then, useBy; = By Fy¢! andF = 0

in (4), which givesF; = 6 in (7).

e Residual with uncorrelated elementsDefine a

prediction error as
e=Y - H,U - O3f.

The prediction errorg, will sometimes not have
uncorrelated elements. This can cause the covari-
ance matrix ofs to be singular. To generate a
residual with uncorrelated elements, the follow-
ing Singular Value Decomposition (SVD) of the
covariance matrix is made.

Cov(e) =
-0 (§0) (57) -
=U,3U (9)
Then the residual
r=Ul¢, (10)
will have the covariance
Cov(r) =Erm? =EU U, =%, (11)

which is nonsingular.

Wl =1-0(s7120)ts-1/2
W =1 - 0pPpP® ' (5-1/20)t5-1/2
p_ (p<1>—1 n p<2>—1)‘1

Form the SVD of the covariances according to
(9) and then form the residuals as

A = s Py y - B,)

W,

=@ U (1 - po)(¥ — H,U)

Wa
PO — 2@ e T (Wi (v - )
—opPpm™ W),
Also define
Wy =@ Pu@ W,

Compute the test statistids . and L, , where

1 indicates the method used (cageand c, r
indicates conventional or robust GLR test respec-
tively.

—1/2

Lye=Li, =7 Py, iV (12a)
LQ c — LQ T _(Q)TPWTHf 2 (12b)
=3)T =(3)

L3 .= rt Pwru, T (12c)
L37 = Tt PwT I— fPo)Hth (12d)

. Compute thresholds for detecting faults. All

thresholds are*(rank(P 4 ))-distributed, where
‘P 4 denotes the projection thatis used to compute
the test statistic. See also section 2.2.

3.1 Case 1: state estimation in sliding window

3. GLR TEST STATISTICS

In this case,x is estimated by minimum variance

estimation from data in the time window as

This section first summarizes and then derives the

+® = (s~120)t s 12(y — H,U)

main results. Three different cases are considered, the _1/2 _1/2 T o1y —1
difference between them is how the initial stateis ~N (H(S ! 0)'s / HyF, (07570 )’
treated. In case 1, estimation is done from the data (13)
window. A parity space method is used in case 2 andthen the prediction error becomes

in case 3 the method in case 1 is combined with an

estimate from old data. The results can be summarized ¢\ =Y — H, U — 0&® =

in the following algorithm. (I _ 0(5_1/2(9)15—1/2) (Y _ HUU)

1. Compute the residuals. In order to do this, the

following covariances have to be known: wi
T (1)

Cov(2M) = PN (Given by a Kalman filter) ~ N (W1 HF, Cov(e, )). (14)
Cov(#®) = (0Ts710)t = p® The covariance becomes

Cov(e!Vy = WTsw; Cov(ey = WTswy. (15)

2y _ _

Cov(e;™) = (I = Po)S(I —Po) To form a residual with uncorrelated elements, an
Cov(e (3)> _ W3 SWy +OPPM ™ pOT SVD is formed according to (9) as
where Cov(elV) = U,(.l)E(l)U,(.l)T.



Then the residual becomes

r,gl) = U,(.l)Tagl).

(16)

To determine the likelihood ratio with a hypothesis
test, a normalized residual is formed as

—1/2
{0 = (Covr)) 7 H

— O Py Ty - g

wi

~NW{LHFI). (17)

Conventional GLR Test The hypotheses in (2) are
here

7~ N(0, 1)
7~ N(WTHF, ).

HQ :
Hl :
This gives the log-likelihood ratio

(1 53
o— 217 =W H F||3

L= 2mFaX log , (18)

o= 311712
which is maximized whed” = (W[ H;)'#"). Then,

Ll,c =
(1 = T (1 (1
— Y~ W H (W Hp) D3+ (7013
N—————
PwlTHf

()T (1
= -7V = Py, )T = Pry, )7

()T _(1 _(1)T _(1
T = TPy )

_(1
=17y, -

(19)

Robust GLR Test The hypotheses in the robust test
questions if there is no fault or if the fault resides in

PROOF. Since
— —1/2 T
Wi ==yt (23)
itis sufficient to prove thatV’{ Pp = 0 to justify (22).
WPy = (1 - 0(5—1/20)TS—1/2) 0ot

- (9(1 - (Sfl/QO)TS*l/QO)OT =0

=1

Then, according to Lemma 1, the robust test statistic
can be written as

_(1
t

1 (1
Ly, =7 G

T .
W1 Hf

T Pyr g, 7 (24)

3.2 Case 2: parity space approach

In this case the residualy — H,U, is multiplied
with the orthogonal complement @, I — Po, to
eliminate the dependence an Then the prediction
error becomes

e = (I —Po)(Y — HLU)
——

wy

~NWS H F, W] SWs). (25)

A residual with uncorrelated elements is formed
by (10) as

T (2
U,EQ) sg ).
(26)
In order to get unit variance, the residual can be
normalized as

WISW, = UDEOU@T = 1 =

the subspace orthogonal to the signal space. Thus, the #?) — 2(2)*1/2T§2>

hypotheses in (3) are
ZRE\[(9))
7 N (WlT(I — Po)H/F, 1).

H() :
H1 :
The log-likelihood ratio becomes

(1 T
o— 37V =W (I-Po)Hy FI|3

Ly, = 2maxlog — . (20)
F efiHTp Hz
This ratio is maximized for
_ T
F = (W (1= Po)H;) 7"
which gives
()T _
Ly, = 7"151) PV’VIT(I—PO)Hngl) (21)

Lemma 1.The robust and conventional tests for case 1

coincide since

Wl =Wl - Po). (22)

— @ PpTwry — m,U)

wy

~N(WJH;F,I). (27)

Conventional GLR Test The hypotheses in (2) are
here

7~ N(0, 1)
7~ N(WLHF,T).

H() :
Hl .
This gives the log-likelihood ratio fault/no fault

(2 T
o~ sIF P —Wl H, F|3

Lo . = 2maxlog =
s _(2
F o= 317313

= max —(||r? — W HyFI3 — 77]13)  (28)

This ratio is maximized whed = (W7 H )7,

then the expression becomes



2 T T _(2
Lo = —IIr? = W Hp(W] Hy) 7?3 where
N———

_ _ —1
Py P= (P<1> Ly p® 1) . (35)

v T
W Hf

,2 2 s .
+ ||7" H2 — ( PWTHth = ||7} 72 ||7’wTHf The prediction error is then formed as

(29) e® -y HU-0f

= (I - 0PP® T (5-120)t5-1/2) x

Robust GLR Test Also for this case the robust hy-

potheses derived from (3) becomes wy
-1 "
Ho: 7@ ~N(0,1I) x (Y — H,U) — oppPM 31
_ T -1 ~(1
H: 7N (WQT(I _ pO)HfFJ)_ = Wi (Ox + H;F + E) — OPPY " (z + W)

= Oz — (OPP@ 'z + OPPDO ™ 'y)

When calculating the test statistic as in section 3.1, it

becomes - Ox )
(2 —1_
Lo, = |7 ”PWTHf (30) + WL (HfF + H,V + E) — PPV 1)
—1
This is the same residuals that we are testing with the =W (H;F + E) — PPW 1
conventional test. So when estimatin@y projection ( T (3) )
X N ’ ~N (W35 H¢F,C
the robust and conventional tests coincide. The reason 3 ov(e;™)

for this is that the the termi — Po is already a partof |\ hare
WQT and([— Po)([ — Po) =1—-"Po.
W =20 — 2 ~ N(0, P<1>) (36)
(3) 1~ T
T . - PO POT. (37
3.3 Case 3: state estimation in preceding and sliding Cov(er™) = W3 SWs +0 © 37

window . .
For the same reasons as in section 3.1 and 3.2 , an

SVD is formed of the covariance matrix to get a basis

In this caser is estimated by a minimum variance esti- ) .
for a residual with uncorrelated elements.

matorz(?) with covarianceP(?) from data in the slid-
ing window as in section 3.1, but also with a Kalman (3) @)@ 73T ( ) _ 3T _(3)
filter from old data, providing:(*) with covariance Covle™)) = U720, =Ur 5238)
matrix P(1). This appears to be a logical approach to
detect faults in the signal space, since the difference in
state estimates should be due to estimation errors and -(3) _ s(3)~/2,(3)
faults in the signal space only. For instance, we have K K

re = 0@® — W)
~N (O(S*l/QO)TS*l/QHth,

The normalized residual is then formed as

~NEO U TWI g E ). (39)

T
W3

orW +P(2))OT)- (31)  Conventional Likelihood Test The hypotheses for

. . . . . the conventional test are
This is a residual for testing faults in the signal space.

For faults orthogonal to the signal space, we proceed Hy : 7:153) ~N(0,1)

by forming the joint state estimate over all data by 3 -7

the standard sensor fusion formula as outlined below. i~ N(W5 HpF,T).
The estimate from the Kalman filter is assumed to be This yields the log-likelihood ratio
Gaussian distributed

W~ N(z, PO, (32) e— I — W H P I3

L3 . = maxlog =
) —(3
F e 317113

The minimum variance estimate offrom data in the A
window is given by = m;}x—(”ﬁgg) ~WEHF|3 - ||f§3)||§). (40)

2 = (s~ V2o) s~ Y2(y — H,U)

Which is maximized fod™ = (W H;)17?), then
~N (:c +(S~Y20) 8712 H, F,

L3.c:
(©7s7'0)7). (@93) | A
e ) = (I = W B 0V H) 18 - 1213
N—————
Then, PwTu,

3)T 3) (3)12
- (p(l) A(l)_i_p(?)*li’(?)), (34) = Pwrn = [I7; HPWSTHf (41)



Robust Likelihood Test The hypotheses for the ro- lim COV(€§3))71/2 _

bust test are P() ool
0 O oT
Ho : 7" ~ N(0, 1) (0 Ne) (0 T-“Q) (NOT) B
Hy <7~ N(W (1 = Po)H, F.1). NoT~12No",  (49)

Similar calculations as for the conventional test yield which is a projection on the space orthogonal?o
the robust log-likelihood ratio O

_(3)T (3
Ls, = 7“15 ) PWST(I—PO)Hfrwg =

—_ =32
- ||rt HPW;jT(I*PO)Hf'

4. CONCLUSIONS

(42)

The original generalized likelihood ratio (GLR) test

for fault detection where derived using a Kalman filter
Comments on the TestsThese tests are closely re- approach, and thus all past data influence the test
lated to case 1 whereis determined only from data  statistic. On the other hand, the parity space approach
in the window. If P(") — oo, then the normalized s defined over a sliding window. In order to compare
residual in (39) is identical to the one in case 1 and these standard approaches, we have derived the GLR
therefore also the detector. test statistic for fault detection in linear Gaussian

Consider the case whefd? — ool. Thenitis easy Systéms based on data over a sliding window. This is
to see thatV = I andP = P(1). The prediction ~ done in a systematic way for different assumption on

error is then the fault range space (robust/non-robust) and residual
®) X @) generators (parity space/state estimation). It turns out
e =Y — HuU — 03V ~ N(HfF, Cov(e; )) that all these cases correspond to different projections
(43) of the basic model residual.
Cov(e!¥) = 5+ 0PWOT. (44)
REFERENCES

Since S has full rank,Cov(e{®) will have full rank.
Therefore, no dimension reduction has to be done
when forming the residual. The normalized residual
then becomes

Basseville, M. and I. V. Nikiforov (1993petection of
Abrupt Changes, Theory and Applicatidnfor-
mation and system sciences series. Prentice-Hall.
Enlewood Cliffs, NJ.

7 = Cov(e®)"V2(y — H,U — 02). (45)  Chow, A. Y. and A. S. Willsky (1984). Analytical re-
dundancy and the design of robust failure detec-

Lemma 2.If the uncertainty inz(") is large, i.e., tion systemsIEEE Transactions on Automatic

PM — ool then the normalized residual in (45) will Control 29(7), 603-614.

not be affected by signals in the signal space. Thus,Desai, M. N. and R. S. Mangoubi (2003). Robust

the test coincides with case 2, where the signal space  gaussian and non-gaussian matched subspace de-

is projected away. tection.IEEE Transactions on Signal Processing
51(12), 3115-3127.

Ding, X., L. Guo and T. Jeinsch (1999). A characteri-
zation of parity space and its application to robust
fault detectionlEEE Transactions on Automatic

PROOF. Rewrite the covariance matrix of the predic-
tion error as

C G _ gL opLeT — Control 44(2), 337-343. _ . _
ov(e:”) + ) T Gertler, J. (1997). Fault detection and isolation us-
S+ ((9 J\/o) (PO 8) (/\(/9 T) (46) ipg parity relations.Control Engineering Prac-
o tice 5(5), 653—-661.

Gertler, J. J. (1998}ault Detection and Diagnosis in
Engineering SystemMarcel Dekker, Inc.

Golub, G. H. and C. F. van Loan (199@Yatrix
Computations 3 ed. John Hopkins University

whereN is a basis of the orthogonal complement to
O. The matrix(O Np) thus span the whole space for

Cov(sff)). We can therefore write

T 0 oT Press.
S = (O NO) <0 T) (NOT> ) (47) Gustafsson, F. (2001Adaptive filtering and change
detection John Wiley & Sons, Inc.
whereT andT is chosen suitably. Then, Gustafsson, F. (2002). Stochastic fault diagnosability
in parity spaces. IrProceedings of the 15th IFAC
Cov(el)=1/2 = World CongressBarcelona, Spain.
(T + POY=1/2 oT Willsky, A. and H. Jones (1976). A generalized likeli-
(O No) ( 0 T1/2) (NOT) (48) hood ratio approach to the detection and estima-

tion of jumps in linear system$EEE Transac-
and when the uncertainty iif") is large then tions on Automatic Contrd1, 108-112.



