
1. INTRODUCTION

The theory of sensitivity is not new ((Kreindler 1969,

Rao and Soudak 1971, Eslami 1994) and references

therein). Reducing the sensitivity is the main goal of

feedback control. Some notable efforts have been

made to enrich classical LQG/ H2 control in that

direction.

One can quote the parametric LQG/LTR method

proposed in (Tahk and Speyer 1987) and the

“desensitized LQG” control (Heniche and Bourlès

1995, Begovich 1992, Chevrel and Yagoubi 2004).

The Insensitive H2 control (IH2) approach considered

in this paper is a design method able to manage the

compromise between classical specifications on

nominal performance, neglected dynamics and

sensitivity with regards to parametric uncertainties.

In (Chevrel and Yagoubi 2004), IH2 control problem

has been formulated as a structured feedback H2

control problem and solved using an iterative LMI

algorithm dealing with the underlying BMI.

Although efficient,  it becomes time consuming when

the system order increases.

The present paper introduces a new formulation of

the IH2 problem leading to an infinite but convex

optimization problem. This will be possible thanks to

the Youla parameterization (Youla et al., 1976) by

taking into account the specific structure of the

problem. Using the projection on a finite orthonormal

basis and convex optimization tools, a practical way

to find the appropriate (structured) Youla parameter

will be proposed. The underlying optimization

problem can alternatively be treated by other

methods which are also efficient such as the one

proposed in (Qi et al., 2003).
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The paper is organized as follows: The IH2 problem

is first presented in section 2. In section 3, a new

parameterization of the IH2 controllers is given. The

IH2 problem is then formulated as an LMI

optimization problem with respect to a structured

Youla parameter. Finally, a new algorithm is

proposed in section 4 to solve the IH2 problem. This

algorithm is applied to an automotive design

problem. The results obtained are compared with

existing ones in section 5. The conclusion takes place

in section 6.

2. PROBLEM STATEMENT

2.1 Notations

Consider the scheme of Fig.1 in which G is an LTI

operator with partitioned inputs and outputs, and ∆
is an unknown operator related to the parametric

uncertainties.
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Fig.1. Parametric linear fractional representation

Let the transfer matrix ( )G s  associated with G be

defined by
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where n nA ×∈ℝ ,
n n

B γ
γ

×∈ℝ , wn n
wB

×∈ℝ , un n
uB

×∈ℝ
n n

C ζ
ζ

×∈ℝ , zn n
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Let 1( , , )qθ θ θ= …  and 
1 1 2 2

( , ,..., )
P P q Pq

diag I I Iθ θ θ∆∆ =

in which { },  1, ,i i qθ ∈ ∈ℝ ⋯  are the uncertain

parameters.

Finally the feedback transfer matrix K is introduced

according to Fig. 2.
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Fig. 2. The Closed loop system

The closed loop transfer matrix ( ( ), ( ))
l

F G s K s  has

the partitioned form 
 

 

w

z zw

H H

H H

ζγ ζ

γ

 
 
  

 ( ( , )
l

F ⋅ ⋅  denotes the

lower linear fractional transformation (LFT)).

Indeed, all the transfers , ,  and zw z wH H H Hγ ζγ ζ

depend on the feedback K .

Closing the “∆ -loop”, the final transfer H  depends

on both s  and θ  and can be written as
1

( )
zw z w

H H H I H Hγ ζγ ζ
−= + − ∆ ∆ (2)

The parametric sensitivity of the trajectory signals

are denoted by

x
xθ θ

∂=
∂

,
z

zθ θ
∂=
∂

,
y

yθ θ
∂=
∂

 and 
u

uθ θ
∂=
∂

In this paper the notation
m p
pr

×ℜ  (respectively 
m p
spr

×ℜ )

will designate the set of the proper (respectively

strictly proper) real-rational transfer matrices.

2.2 The insensitive 2H  control problem

The insensitive H2 control problem considers a

special H2 criterion. In addition to the standard H2

norm, this criterion involves the H2 norm of the

closed loop parametric sensitivity function H
θ

∂
∂ .

In the following, the sensitivity function will be

considered in the neighborhood of 0∆ =  (nominal

model).
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0

q z w
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∂ ∂∆= ⊗
∂ ∂

(4)

Definition: IH2 control Problem (IH2P)

The IH2 control problem consists in minimizing with

respect to ( )K s , the following criterion under the

constraint of internal stability

2

2
2

2
2

( )  IH zw z wJ K H H Hγ ζθ
∂∆= + Σ ⊗
∂

(5)

Remark:

Let 1 ( ,..., )qdiag σ σΣ = ; then,

2

2
2 2

2
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( )

q

IH zw i z w
ii

J K H H Hγ ζσ
θ=

∂∆= +
∂∑

and each iσ ∈ℜ  may be considered as a weighting

parameter associated with 
i

H
θ

∂
∂ , allowing a

selective action on the parametric sensitivity. The

minimization of the criterion above is not a standard

H2 optimization problem because of the additional

term that containing the product of two transfer

matrices, zH γ  and wHζ , depending both on ( )K s .

3. A PARAMETRIZATION OF THE INSENSITIVE H2

CONTROLLERS

Some assumptions will be made from now :

A1:  For sake of simplicity (and without loss of

generality), it is supposed that qIΣ = .



A2: 0yu zwD D= = .

A3: Only small variations in the neighborhood of

0∆ =  (nominal model) are considered.

Let us now consider some notations:
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Theorem 1:

Considering assumptions ( ) { }1,2,3i
Ai ∈  and the

notations below 1( , )
zw

l a q
z w

H
F G I K

H
θ

+
 

⊗ =   
 

.

Proof:

By construction (cf. (Chevrel and Yagoubi 2004)).

Corollary 1:

The following holds:

• 
2

2

1 2
( ) =  ( , ) 

IH l a q
J K F G I K+ ⊗ .

• The IH2 control problem is equivalent to the

structured standard H2 problem defined thanks to the

augmented plant aG  (associated with Fig. 3).

Fig. 3. A structured H2  control problem

Proof:

The first equality results directly from Theorem 1 and

the H2 norm property. The second proposition is

obvious from Theorem 1.

Let us introduce the Youla parameterization (Youla

et al., 1976) thanks to the change of variable:

( , )lK F J Q= (8)

with 0

0

u c f y f u

c

y

A B K K C K B

J K I

C I

∆
− − 

 
= − 
 − 

.

The problem will consist from now on to find the

best proper and stable Q  according to the IH2

criterion and the closed loop stability condition and

to derive K  according to (8). The standard H2

problem will be solved for 0Q =  if cK  and fK

designate respectively the Kalman state feedback and

observer gains.

Let us define 1( ) ( )qJ s I J s+= ⊗ , 1( ) ( )qQ s I Q s+= ⊗

and ( ) ( , )l aG s F G J= .

Theorem 2 :

The IH2 control problem may be solved as follows:

Find ( )Q s RH∞∈  such that 
2

1 2
 ( , ) 

l q
F G I Q+ ⊗  is

minimized. ( , )lK F J Q=  is then the optimal IH2

controller.

Proof:

For ( ) ( ( ), ( ))lK s F J s Q s= , it is clear by construction

(cf. Figure 4 and Figure 5) and from the result of

Corollary 1, that 
2

2

1 2
( ) =  ( , ) 

IH l q
J K F G I Q+ ⊗ .

Moreover, for each stabilizing controller ( )K s , there

exists a stable
1
 parameter Q  such that

( ) ( ( ), ( ))lK s F J s Q s= .

Finally, the optimal parameter Q  associated to

2

1 2
 ( , ) 

l q
F G I Q+ ⊗  leads to the optimal K  for the

IH2 problem.

Corollary 2 :

The set of all IH2 controllers is given by
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Fig. 4. The parametrized IH2 problem

Fig. 5. A structured Youla parameter

4. SOLVING THE IH2 PROBLEM IN THE STATE SPACE

FRAMEWORK

For simplicity of presentation we will consider the

following notations:

1 2

1 12

2 21

( ) : 0

0

a

a

A B B

G s C D

C D

 
 =  
  

(9)

and T  will denotes the closed-loop transfer matrix

with

1 2 1 3( ( ), ( , ) ( ( ))l a l qT F G s F J Q T T I Q s T
∆ ∆

+= = + ⊗

The set of achievable stable closed loop maps is then

given by

{ }1 2 3 1 / ( ( )),  u yn n

q pT T QT Q I Q s Q
×

+ ⊗ ∈ℜΦ + ==

where Q  is a stable free parameter. The stability of

the transfer matrices 1 2 3,   and T T T  is obvious since

the central controller is the H2 optimal controller.

It is then clear that a realization for T can be given by
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(10)

with:
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0
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0
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The state space matrices

1 2 1 2 12,  ,  ,  ,  ,  cl cl cl cl cl clA B B C C D  and 21clD  depend

affinelly on QM .

In the following, the Q-parameter will be defined in

an orthonormal basis (e.g. the Niness orthonormal

basis (Niness and Gustafsson, 1997)):

1
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qN
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i

Q s Q sθ
=

=∑ (11)

with: 
1

1

2Re( )
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ii k

i k
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a s a
Q s
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−

=

−
=
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The poles of the elements of the basis have to be

chosen accordingly to the problem considered. This

point will be discussed later when dealing with an

example. Note that ( )Q q qA n n×  and ( )Q q uB n n×  are

fixed from (12) (the poles of the Q-basis are chosen a

priori). qn  denotes the size of 
Q

A .

The insensitive H2 control problem now consists in

finding a dynamic parameter Q  solution of the

optimization problem
2

1 2 1 3
2

min ( ( ))
Q

q
M

T T I Q s T++ ⊗ (13)

Using the state space formulation (10), the only free

parameter is QM .

The structure constraint on the Q -parameter

( )1qQ I Q+= ⊗  is a convex structure constraint that

reduces the number of decision variables.

Theorem 4:

For a given Q-basis projection the insensitive 2H

control problem is equivalent to the LMI problem

(14).
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Proof:

According to Theorem 2, the insensitive 2H  control

problem is equivalent to the following problem
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Pb. Find the optimal Q-parameter such that
2

1
2

argmin ( , )l q
Q

Q F J I Q
∗

+= ⊗ (15)

*Q  may be obtained by solving the BMI

optimization problem (16).

, ,

2

2
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1
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0
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cl cl cl
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q
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

 +
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 −  
 = ⊗


(16)

Let us consider the Lyapunov function X  partitioned

into 
T

W Z
X

Z Y

 
=  
 

 according to 1 2 2

2
0

Q
A B M C

A

 
 
 

.

The matrix inequality (16) corresponding to the

insensitive 2H  control problem applied to the closed

loop system are non linear in the decision variables

Q
M  and  X . It can, however, be transformed by a

change of variable and a congruence transformation.

Let us consider the change of variable (see (Scherer

1999, 2000)) :
1 1

1 1T T T T

W Z R S W W Z

Z Y S F Z W Y Z W Z

− −

− −

     −
→ =     

− −      

(17)

and define

0
T

R
N

S I

 
=  
 

(18)

Let ( , , , )diag N I I NΘ =  then pre-multiplying and

post-multiplying the matrix inequality involved in

(16) by TΘ  and Θ  yields to the LMI problem (14).

Remark

The insensitive 2H  control problem can be

formulated as the LMI optimization problems (14)

which depends affinely on the variables ,  ,  R S F  and

Q
M .

Algorithm

Step 1- Synthesize the 2H  optimal controller

( ),c fK K .

Step 2- Derive the J  parameter and then ( , )l aF G J

Step 3- Choose the othonormal Q-basis ( )( )1 q
i N
a
⋯

.

Step 4- Solve the LMI problem (14).

Step 5- Reconstruct the controller ( )( ) ( , )lK s F J Q= .

5. AN AUTOMOTIVE CONTROL EXAMPLE

The practical interest of the new method proposed in

this paper is shown in this example through a robust

vehicle dynamics control as considered in (Gay et al.,

2000).  The lateral velocity Vy and the yaw velocity

ψɺ  have to be controlled through two control inputs:
the yaw moment Cz  that can be obtained by

differential braking and the rear steering 
r

α  (see Fig.

6). The vehicle must stay near to the desired

trajectory as shown in Fig. 7. Disturbance efforts

acting on the vehicle can be summarized into lateral

force F and a yaw moment M.

Fig. 6.  The “bicycle” model
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F
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Track

Real

Trackfα
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Fig. 7. The desired trajectory

The well known “bicycle model” given by (19) is

used to describe the vehicle motions.

 ( ) ( )
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r r r c z Cz

VV
A B d B C dαα

ψψ
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ɺ

ɺɺɺ

(19)

with

2 1
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2 1 1 2
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yv yr x yr yv

x x

yr yv yv yr

x x

C C V l C l C
mV V

A

l C l C l C l C
CV CV

µ µ

µ µ

 − + − + − 
 =
 

− − + 
  

,

2

2

2

yr

r

yr

C

m
B

l C

C

µ

µ

 
 
 =
 −
 
  

 and 
0

1
cB

 
=  
 

.

In this model, m  denotes the mass of the vehicle, C

the inertia, 
1
l  the front wheelbase, 

2
l  the rear

wheelbase and ( , )
yv yr

C C  the nominal cornering

stiffness. Note also that the model is parameterized

by the road friction parameter µ  which is, indeed,

uncertain. The standard H2 problem to be minimized

to meet the control requirements is built following

the Standard State Control methodology (Ph.De

Larminat, 2000) as adopted in (Gay et al., 2000). The

augmented plant including the disturbances model is

of order 4 (see (Gay et al., 2000) for details).

The nominal model has been taken for a constant

longitudinal speed 80 /
x

V km h= . The H2 optimal

controller is denoted by 
0
( )K s . For 0 75σ .=  (a

sensitivity weighting parameter), two controllers,

namely 
1
( )K s  and 

2
( )K s , are derived using

respectively the resolution of the BMI problem

underlying the structured formulation proposed in

rα
F MzC



(Chevrel and Yagoubi 2004) and the new  LMI

algorithm presented in the previous section (based on

a projection of the structured Youla parameter in the

Niness orthonormal basis). Table 1 summarizes the

results obtained.

Table I. Criterions for controllers 0K , 1K  and 2K

Controllers 0
K 1

K
2

K

IH2 criterion 12,88 8.71 7.23

order 4 4 8

It appears that the proposed LMI algorithm gives

better result in term of the IH2 criterion. This comes

probably from two facts:

i) the controller has not been restricted to be of the

same order as the standard model;

ii) the problem to be solved is convex contrary to the
BMI problem (only monotonic convergence to a

local minimum is guaranteed (see (Chevrel and

Yagoubi 2004)).

The computational time of the BMI resolution is

higher than the computational time of the presently

proposed LMI approach. This fact has to be analyzed

more deeply since only a low order (Nq=2) Q-

parameter was used to synthesize the controller 2K .

6. CONCLUSION

Finding an insensitive H2 controller is a difficult

problem. It was recently reformulated as a structured

H2 control problem. To the authors knowledge there

is no algorithm that can solve efficiently such a

problem. This paper proposes a new formulation of

the insensitive H2 control problem based on a

structured Youla parameter. The projection of the

Youla parameter in the Niness orthonormal basis

allows approximating the insensitive H2 control

problem as a finite dimensional problem.

The resulting algorithm has been applied to an

automotive control problem. It improves the results

obtained previously. Although it has to be more

widely tested, the approach is appealing on two

points: optimality and computation time. It requires,

however, some methodology to define a

parsimonious basis for the Youla parameter

description.
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