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Abstract: The standard prediction error framework provides many theoretical
results under the assumption that the true system is in the model class. An
important example is the expression for the parameter covariance matrix which
is used to derive model uncertainty regions. An essential step in a system
identification procedure is the (in)validation of this assumption that the model
structure is rich enough to contain the true system. The standard test for this
purpose is the sample cross-correlation test between the output residuals and the
input. It turns out that this standard test itself is valid only under exactly those
assumptions it is meant to verify. As a result considerable undermodelling errors
can remain undetected. Besides suggesting caution to users of the standard test,
methods are presented to adapt the test adequately. Copyright c©2005 IFAC
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1. INTRODUCTION

In a standard system identification procedure
an uncertainty region is constructed around the
(nominal) estimate on the basis of the measure-
ment data and prior assumptions on the data
generating process. Particularly in the context of
identification for robust control the uncertainty
region could be argued to be as or even more
important than the nominal model. The set of
models induced by the uncertainty region has to
be guaranteed (at a certain level of probability) to
contain the ”true system”, i.e. the actual process
under consideration, to allow for a robust con-
troller design.
In the system identification theory of the pre-
diction error framework the uncertainty region
follows from a parameter covariance matrix asso-
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ciated with a Gaussian distribution correspond-
ing to a stochastic noise assumption (Ljung,
1999b)(Söderström and Stoica, 1989). This un-
certainty region reflects the effect of noise in the
measurements on the estimated parameters. The
uncertainty region can be said to contain the
actual process (at a certain level of probability)
if the model errors are due to the noise in the
data only and are not due to a limitation of the
model structure. Moreover, the available analyt-
ical expressions for the (noise-induced) parame-
ter covariance matrix themselves are valid under
the assumption that there are no undermodelling
errors. That is, the model uncertainty region is
correct under the assumption that the true system
is in the model class.
Since the 1990’s a number of model uncertainty
bounding techniques are available which explic-
itly take the effect of undermodelling into ac-



count (Goodwin et al., 1992)(Hakvoort and den
Hof, 1997)(De Vries and Van den Hof, 1998). An
alternative approach follows the school of thought
which states that the effect of undermodelling can
be neglected when its effects are indistinguishable
from the effects of measurement noise. A practical
identification procedure then consists of a model
validation step. The model structure is sequen-
tially enlarged until the model estimate passes the
validation test. A best-case scenario is assumed
and a model uncertainty region is constructed
based on the noise induced errors only.
It is clear that this practice stands or falls with
the correctness of the model validation test used
to verify the assumption that the system is in
the model class. In practice, the test on the
sample cross-correlation between the residuals of
the model and the input, as implemented in the
System Identification toolbox of Matlab (Ljung,
2003), is used extensively and nearly exclusively.
This fact not withstanding, an evaluation of this
test shows that a refinement of the test is possible
and warranted. Amongst other things, it turns out
that this test is valid only under exactly that as-
sumption it intends to verify, namely that the sys-
tem is in the model class. Although the test works
well in many situations, the underlying working
principle is not the one that is suggested by the
theory. Figure 1 depicts a motivating example in
which the standard cross-correlation test does not
invalidate a model while in fact the model exhibits
a large undermodelling error with respect to the
true system. Details of the example are provided
at the end of this paper. When the conclusion
is drawn from the cross-correlation test that the
undermodelling is insignificant and that the model
uncertainty can be based on variance errors only,
the resulting model uncertainty region fails to
contain the true system. This paper intends to
highlight the problems with the standard test and
to supply adequate improvements.

2. BACKGROUND

Let M (θ) denote a model class of linear time-
invariant models parametrized by a parameter
vector θ corresponding to a certain model struc-
ture of a plant model G (q, θ) and noise model
H(q, θ) with q the standard shift operator. In
a standard prediction error framework (Ljung,
1999b) (Söderström and Stoica, 1989) a model is
identified from measurement data ZN := {y, u}N

of data length N according to

θ̂N = arg min
θ

VN

(
θ, ZN

)
= arg min

θ

1
N

N∑
t=1

ε2(t, θ),

(1)
where the residuals ε (t, θ) are constructed as

ε (t, θ) = H−1(q, θ) (y(t) −G (q, θ)u(t)) . (2)

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-80
-60
-40
-20

0
20

→
 a

m
p

li
tu

d
e

 [
d

b
]

-400

-200

0

→ frequency [rad/s]

→
 p

h
a

s
e

 [
d

e
g

]

0 10 20 30 40 50 60 70 80
-0.1

0

0.1

→ lags τc
ro

s
s
-c

o
rr

e
la

ti
o

n
 

te
s
t

a 

b 

c

Fig. 1. Bode-plots of a true fourth order model
G0(q) (solid blue), a second order OE-
estimate (dashed green) and the standard
99% variance-based confidence bounds of the
second order OE-estimate (dotted red). Fig-
ure (c) depicts the standard cross-correlation
test. The sample cross-correlation function
between the residuals of the OE-model and
the input is depicted and seen to remain
within the standard test-bounds depicted in
solid lines. In other words, the standard cross-
correlation test does not invalidate the second
order OE-model Moreover, the confidence
bounds of the OE-model based on variance
errors only fail to contain the true system.

Define the parameter θ∗ as
θ∗ = argminθ limN→∞E

[
VN

(
θ, ZN

)]
,with E [·]

the expectation operator. Assume that

y(t) = G0(u(t)) + v(t) (3)

where G0 is a possibly nonlinear operator. We
further assume that v(t) = H0(q)e(t) and e(t) a
zero-mean white noise sequence and we assume
that v(t) is uncorrelated with the input u(t).
Consider a plant and noise model estimateG(q, θ̂N )
and H(q, θ̂N ) corresponding to the least-squares
estimate θ̂N of expression (1). With expression (3)
the associated residual sequence ε(t, θ̂N ) can be
evaluated as

ε(t, θ̂N ) = βb(t, θ̂N , G0, θ
∗) + βv(t, θ̂N , θ

∗)

+εv(t, θ̂N ) (4)

with

βb(t, θ̂N , G0, θ
∗) =

H−1(q, θ̂N ) (G0(u(t)) −G (q, θ∗)u(t)) (5)

βv(t, θ̂N , θ
∗) =

H−1(q, θ̂N )
(
G (q, θ∗)u(t) −G

(
q, θ̂N

)
u(t)

)

εv(t, θ̂N ) = H−1(q, θ̂N )v(t) (6)



such that

i. βb(t, θ̂N , G0, θ
∗) corresponds to the bias of

models estimated within the model class
M (θ) .

ii. βv(t, θ̂N , θ
∗) corresponds to the variance er-

ror in the model G
(
q, θ̂N

)
with respect to

G (q, θ∗).
iii. εv

(
t, θ̂N

)
corresponds to the measurement

noise v(t).

We define the model structure validation problem
as the problem of evaluating the hypothesis

Υ0 : G0 = G (q, θ∗) ∈ M (θ) .

In the context of model structure validation,
the essential term in (4) is therefore the term
βb(t, θ̂N , G0, θ

∗) which reflects the unmodelled dy-
namics, i.e. that part of the output y(t) that
cannot be captured within the model structure
of the model class M (θ).

3. THE STANDARD CROSS-CORRELATION
TEST

Expression (4) shows that if the model G(q, θ̂N )
is ’good’, the contribution of u(t) in ε(t, θ̂N ) will
be ’small’. A test on the cross-correlation between
u(t) and ε(t, θ̂N ), therefore, allows for an indica-
tion of the quality of the model G(q, θ̂N ). The
cross-correlation test as implemented in the Iden-
tification Toolbox in Matlab will be referred to as
the standard cross-correlation test (Ljung, 2003).
This test is based on the sample cross-correlation
R̂εu(τ) between u(t) and ε(t, θ̂N ), i.e. for |τ | ≤
nτ − 1

R̂εu(τ) :=
1
N

N∑
t=1

ε(t, θ̂N )u(t− τ). (7)

Algorithm 1. (The standard cross-correlation test).
The model G(q, θ̂N ) is not invalidated if the se-
quence R̂εu(τ) satisfies, for |τ | ≤ nτ − 1,

∣∣∣R̂εu(τ)
∣∣∣ < γ (α) , with γ (α) = cN (α)

√
P1

N
(8)

P1 = R̂uu(0)R̂εε(0) + 2
nτ−1∑
κ=1

R̂uu(κ)R̂εε(κ) (9)

where, for 0 ≤ κ ≤ nτ − 1,

R̂εε(κ) =
1
N

N∑
t=1

ε(t, θ̂N )ε(t− κ, θ̂N ) (10)

and R̂uu(τ) defined similarly and where cN (α)
corresponds to the Gaussian distribution N (0, 1)
such that for x ∈ N (0, 1) =⇒ p (x ≤ cN (α)) = α
and where the probability level α and the number
of considered lags nτ are a user choice. ✷

The theoretical motivation of the test is based
on an evaluation of the residuals of the model
G(q, θ∗). For this ideal (variance free) model it
holds with expression (4) that

R̂εu(τ) = R̂βbu(τ) + R̂εvu(τ), (11)

It follows that if the hypothesis Υ0 is true, the
term βb(t, θ∗, G0, θ

∗) = 0 and the sample cross
correlation term R̂εu(τ) equals the sample cross-
correlation R̂εvu(τ) between the input u(t) and
the prefiltered noise εv(t, θ∗) = H−1(q, θ∗)v(t).
The cross-correlation test, therefore, intends to
verify whether the data provides evidence that
it is unlikely that the sample cross-correlation
R̂εu(τ) is a realization of sample cross-correlations
R̂εvu(τ). The bound γ (α) of expression (8) reflects
(an estimate of) the α ·100% confidence region for
a realization of the sample cross-correlation term
R̂εvu(τ). If the cross-correlation term R̂εu(τ) ex-
ceeds the bound γ (α), it is unlikely, against a false
alarm rate of 100 (1 − α)%, that the term R̂εu(τ)
has the same statistical properties as R̂εvu(τ).

In particular, it holds that
Υ0 is true and θ̂N = θ∗

=⇒ R̂εu (τ) = R̂εvu(τ) ∈ N (0, Pθ∗ (τ)),
with

Pθ∗ (1) = R̂uu(0)Rεvεv
(0) + 2

N−1∑
κ=1

R̂uu(κ)Rεvεv
(κ)

with Rεvεv
(κ) = E [εv(t, θ∗)εv(t+ κ, θ∗)]. We see

that P1 in the standard cross-correlation test is
an estimate of Pθ∗ (τ) where it is assumed that
Pθ∗ (τ) = Pθ∗(1) at each lag.

While the theoretical motivation is sound so far,
a crucial problem with the standard test appears
when expression (10) is used to estimate the
auto-correlation Rεvεv

(τ) which is required to
formulate the bounds based on Pθ∗ . The line of
reasoning is followed that if Υ0 is true, ε(t, θ∗) =
εv(t, θ∗) and the residuals ε(t, θ∗) can be used to
estimate the properties of εv(t, θ∗). That is,

Υ0 is true and θ̂N = θ∗

=⇒ Λεv
= Λε = E

[
ε(θ∗)εT (θ∗)

]

However, this cannot be extended to the situation
in which Υ0 is not true. When undermodelling
is present, the residuals ε(t, θ∗) are not equal to
εv(t, θ∗). The next section will show that expres-
sion (10) is not a good estimator of the noise prop-
erties and that its use is detrimental in the context
of model validation. Two alternative approaches
to estimating the noise properties are presented,
based on a repeated input sequence and on an
auxiliary high-order model, respectively.



4. EFFECT OF UNDERMODELLING ON
NOISE MODELS

4.1 Difficulties when estimating noise properties

Expression (4) immediately reveals the problem
which occurs when using expression (10) to esti-
mate the required noise properties. For low model
orders n (with respect to G0) the residual se-
quence ε(t, θ̂N ) contains a large undermodelling
contribution βb(t, θ̂N , G0, θ

∗). On the other hand,
while for large model orders n the undermod-
elling contribution will be small, a part of the
measurement noise realization v(t) is fitted by
the parameter θ̂N (becoming its variance error)
and as such does not appear in the residuals as
reflected in the term βv(t, θ̂N , θ

∗). In other words,
the residual error ε(t,θ̂N ) cannot be considered to
be representative for εv(t, θ̂N ) without due care.

4.2 Effect for the validation test

In the standard cross-correlation test the noise
properties are estimated from the residuals of the
model to be evaluated. When a model is under-
modelled the residual sequence ε(t, θ̂N ) contains
the undermodelling contribution βb(t, θ̂N , G0, θ

∗).
Therefore, the standard test is based on bounds
which has the undermodelling incorporated which
it intends to detect. In other words, the bound
γ (a) becomes too large and the validation test too
lenient. From a practical point of view it follows
that many models with significant undermodelling
can pass the standard test (cf. the example in
Figure 1).

From a theoretical point of view it is awkward
that the test is valid only under the assumptions
it is meant to evaluated. Moreover, the theoretical
principle underlying the test is to detect under-
modelling with respect to the statistical behaviour
of the noise. In the standard test, however, the rea-
son that in many cases undermodelling is detected
is different. Undermodelling is now detected if
its contribution to the sample cross-correlation
R̂εu (τ) (left-hand side of inequality (8)) is larger
than its contribution to the estimation of the noise
properties (appearing in the right-hand side of
inequality (8)). That is, from expressions (10),
(11) and (8) it holds (approximately) that a model
can only be invalidated if

∣∣∣R̂βbu(τ)
∣∣∣ > cN (α)

N

√√√√ N∑
t=1

β2
b (t, θ̂N , G0, θ∗).

This explains why the standard test still works
well in many cases as the bound γ (α) is based
on an average behaviour of the undermodelling
errors while the actual undermodelling contribu-
tion to R̂εu (τ) will not be evenly distributed over

the lags τ . For example, if the undermodelling
Ḡ0(q) := G0 − G (q, θ∗) is linear and the input
u(t) is white, the term on the left corresponds to
the pulse response of H−1(q, θ̂N )Ḡ0(q). Since the
pulse response of Ĥ−1(q)Ḡ0(q) decays with τ , for
the first lags τ the left hand side will often be
larger than its ”average over τ” on the right hand
side.

4.3 Alternatives for estimating noise properties

In the following we focus on estimating the
properties of the measurement noise v(t), from
which the required properties of εv(t, θ̂N ) =
H−1(q, θ̂N )v(t) are readily derived. The problem
of separating the noise contributions from mod-
elling errors in the residuals ε(t, θ̂N ) can conve-
niently be circumvented if use can be made of a
repeated input signal. Consider two sets of mea-
surement data {u, y1} and {u, y2}, both generated
with the same input u. With expression (3) it
holds that the difference εd(t) between the two
measured outputs satisfies

εd(t) = y1(t) − y2(t) = {v1(t) − v2(t)} . (12)

The scaled difference signal
√

2εd(t) qualifies for
estimating the noise properties. Indeed, the differ-
ence signal εd(t) does not contain terms related
to the input u. Only some care has to be taken
with the initial conditions, i.e. the effect of past
input values. Note that in a subsequent plant
model identification step use can be made of all
the measurements.

In case the input signal is not a user’s choice,
we suggest to estimate an auxiliary plant model
Ga(q, θ̂a) of a model order high enough to be rea-
sonably certain that the effects of undermodelling
are small. Construct the residual signal ε(t, θ̂a)
as in expression (2) with G(q, θ) = G(q, θ̂a) and
H (q, θ) = 1. Since it holds with expression (4)
that ε(t, θ̂a) ≈ βv(t, θ̂N , θ

∗) + v(t), ε(t, θ̂a) can
be used to estimate a noise model H(q, θ̂v). We
suggest to use a parametric model structure and
proper model order selection (cf. the ARMASA
toolbox of (Broersen, 2003)(Broersen, 2002)).
Finally, estimate the noise variance Rv (0) =
E [v(t)]2 as

R̂v (0) =
N

N − n

1
N

∥∥∥H−1(q, θ̂v)ε(t, θ̂a)
∥∥∥2

2
, (13)

where ‖x(t)‖2
2 denotes

∑N
t=1 x

2(t) and n is the
order of the auxiliary model Ga(q, θ̂a). This is
a consistent estimate of the noise variance (if θ̂v

is consistent), a proof of which can be found in
(Ljung, 1999b, p. 471).

Note that the method does suffer from the fact
that the noise model H(q, θ̂v) is based on the



properties of ε(t, θ̂a) rather than v(t) itself. Still,
the distortion will be much smaller than the effect
of allowing undermodelling to be present in the
residuals. Important is the fact that the variance
is estimated consistently. Finally, note that the
auxiliary model can be a very poor model from a
variance point of view; the variance in the model
is of no consequence for the purpose of estimating
the variance Rv (0) consistently.

Other approaches to the estimation of noise prop-
erties in case of undermodelling are suggested in
(Tjärnström and Ljung, 2002)(Hjalmarsson and
Ljung, 1992). In (Tjärnström and Ljung, 2002)
the use of high order models for noise variance
estimation is also suggested. The estimation pro-
cedure applied there is based on bootstrapping.
The effect of modelling part of the noise into the
model is not taken into account in that paper.

5. IMPROVED TEST

To improve the standard test three adaptations
are suggested. Firstly and most importantly, an
improved cross-correlation test is based on a more
accurate estimation of the noise properties as
suggested in the previous section. Secondly, the
standard test evaluates the cross-correlation at
each lag separately. However, the presence of an
undermodelling term βv(t, θ̂N , θ

∗) is much more
accurately detected when considering the correla-
tion over lags. In other words, the test should be
vector-valued. In particular, it can be shown that

Υ0 is true and θ̂N = θ∗

=⇒ R̂εu = R̂εvu = Φuεv(θ∗)

=⇒ R̂εu ∈ N (0, 1
N2Pθ∗) with

Pθ∗ = ΦT
u Λεv

Φu and Λεv
= E

[
εv(θ∗)εT

v (θ∗)
]
,

where the boldface indicates a vector, i.e. x =[
x(1) · · · x(N)

]T , and where Φu ∈ R
n×N de-

notes the matrix with columns given by
φ(t) :=

[
u(t) . . . q−1u(t) . . . q−(nτ−1)u(t)

]T
for

t = [1, N ]. The literature (Ljung, 1999b)(Söderström
and Stoica, 1989) indeed mentions a vector-valued
cross-correlation test based on the inequality

R̂T
εuP

−1
θ∗ R̂εu ≤ cχ (α, nτ ) , (14)

with cχ (α, nτ ) corresponding to the chi-squared
distribution such that for x ∈ χ2(n) =⇒
p (x ≤ cχ (α, n)) = α. That is, the correlation in
the sequence R̂εu(τ) is compared to the correla-
tion in the sequence R̂εvu(τ). Thirdly, the stan-
dard test is derived for θ∗. When applying the test
to an estimate θ̂N the variance error βv(t, θ̂N , θ

∗)
should be taken into account (Söderström and
Stoica, 1989)(Hjalmarsson, 1993). In (Söderström
and Stoica, 1989) it was shown that this cor-
responds to adapting the covariance matrix Pθ∗

by considering the properties of βv(t, θ̂N , θ
∗) +

εv(t, θ̂N ) instead of those of εv(t, θ̂N ) only. Un-
fortunately, the last two improvements are not
considered as standard yet. More importantly,
however, is the fact that these two improvements
alone do not result in a better test when the
bounds are still based on an estimate of the noise
properties derived from the residuals of the model
to be evaluated.

Remark 1. The tests considered here are non-
parametric. Alternatively, the model error model
approach (Ljung, 1999a) uses a parametric model
to detect undermodelling, which is favourable
from a variance point of view. Still, it is empha-
sized that a model structure validation stands or
falls with a proper noise model.

6. ILLUSTRATIVE EXAMPLE

This example corresponds to Figure 1 of the
introduction. Consider N = 256 measurements
{y, u}N generated according to y(t) = G0(q)u(t)+
v(t) with u(t) and v(t) white noise sequences with
variances σ2

u = 1 and σ2
v = 0.09, respectively, and

with the true system

G0(q) = 0.01293q−1+0.1062q−2+0.1058q−3+0.01279q−4

1−0.2482q−1+1.091q−2−0.2441q−3+0.9822q−4

OE-models of orders 1 to 10 are estimated from
this data; in particular, a model structure given
by

G(q, θ, n) =
q−1

(∑n
k=1 b(k)q

−k
)

1 +
∑n

k=1 f(k)q−k
for n = [1, 10]

(15)
and noise model H (q, θ) = 1.
Figure 1 clearly shows the undermodelling er-
ror in the second order OE-estimate ĜOE(q, θ, 2)
(dotted green). However, the standard cross-
correlation test does not invalidate this second
OE-estimate ĜOE(q, θ, 2), while its confidence re-
gion based on variance errors only fails to contain
the true system. The bound γ(a) is overestimating
the noise contribution, due to the incorporation of
the undermodelling terms itself in the estimation
of the variance with expression (10). Using the
second method of Section 4.3 by estimating the
noise model with the ARMASA-toolbox on the
residuals of an OE-model of order N/5 (which is
extreme to show the potential of the method) and
estimating the variance according to (13), new
bounds (dashed-dotted black) are obtained. The
new bounds are not corrupted by undermodelling
effects. They do detect the effect of undermod-
elling and the model will correctly be invalidated.

Figure 2 depicts the results of vector-valued cross-
correlation tests. The curves depict the test value
R̂T

εuP
−1R̂εu, for R̂εu ∈ R

nτ and different P ,
which should be below the bound cχ(a, nτ ) for
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Fig. 2. The vector-valued cross-correlation test for
an OE-model of increasing order n = [1, 10].
If the test value R̂T

εuP
−1R̂εu is below the

bound cχ(.99, 128) the model is not invali-
dated. The matrix P is based on the true
noise covariance (solid blue), on the estimate
of expression (10) (dotted black) and on the
estimate following Section 4.3 (dashed-dotted
red).

the model not to be invalidated (cf. expression
(14)) against a false-alarm rate of (1 − α). The
blue solid line depicts the test value R̂T

εuP
−1
θ∗ R̂εu

when using the true noise properties to estimate
Pθ∗ . The correct model order of four is easily
identified from the graph as the first model order
for which the test value becomes smaller than
the bound (α = .99). When estimating the noise
covariance following Section 4.3 to estimate Pθ∗

the test levels differ from the actual levels, but
the model orders are still properly evaluated (red
dashed-dotted line). When estimating the noise
properties from the residuals of the model to be
evaluated (cf. expression (10)) to estimate Pθ∗

the undermodelling errors are incorporated in the
covariance estimate and a vector-valued cross-
correlation test would let all model orders (1 to 10)
pass (dotted black curve). That is, upgrading the
standard point-wise test to a vector-valued test
would not be beneficial if the noise properties are
still estimated from the residuals of the model to
be tested itself.

7. CONCLUDING REMARKS

The standard cross-correlation test works very
well in many practical situations. However, sig-
nificant undermodelling errors can remain unde-
tected. This is due to the fact that the test is based
on an estimation of the noise properties derived
from residual signals that may contain consid-
erable undermodelling errors. From a theoretical
point of view it is important to note that the test
actually operates under exactly those assumptions
it intends to verify.

In this paper we propose an alternative approach
which is based on a vector-valued test for which
the bounds are based on an improved estimation
of the noise properties allowing undermodelling
in the plant model. The former issue has been
suggested before in the literature, but is not con-
sidered as standard yet. It has been shown in
a simulation example, that improved noise mod-
elling is necessary to avoid large undermodelling
errors to remain undetected.
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