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Abstract: A whole variety of robust analysis and synthesis problems can be formulated
as robust Semi-Definite Programs (SDPs), i.e. SDPs with data matrices that are
functions of an uncertain parameter which is only known to be contained in some
set. We consider uncertainty sets described by general polynomial semi-definite
constraints, which allows to represent norm-bounded and structured uncertainties as
encountered in p-analysis, polytopes and various other possibly non-convex compact
uncertainty sets. As the main novel result we present a family of Linear Matrix
Inequalities (LMI) relaxations based on sum-of-squares (sos) decompositions of
polynomial matrices whose optimal values converge to the optimal value of the robust
SDP. The number of variables and constraints in the LMI relaxations grow only
quadratically in the dimension of the underlying data matrices. We demonstrate the
benefit of this a priori complexity bound by an example and apply the method in
order to asses the stability of a fourth order LPV model of the longitudinal dynamics
of a helicopter. Copyright© 2005 IFAC
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1. INTRODUCTION

Many robust analysis and synthesis problems
can be translated into so-called robust Semi-
Definite Programs (SDPs). The modelling power
of this framework, in particular for robust opti-
mization and robust linear algebra is known for
long (Ben-Tal and Nemirovski, 2001; El Ghaoui
et al., 1999). It captures a large class of ro-
bust performance analysis and synthesis prob-
lems, such as in standard singular value theory
and considerable generalizations thereof (Packard
and Doyle, 1993), and stability and performance
analysis of Linear Parameter Varying (LPV) sys-
tems with quadratic-in-state Lyapunov functions
(Trofino and de Souza, 1999; Iwasaki and Shi-
bata, 2001).
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Robust SDP problems are variants of stan-
dard SDPs where the data matrices Fj(x), ¢ =
0,1,...,n, are functions of some parameter x that
is only known to be contained in some set A and
the goal is to infimize ¢’y over all y € R™ such
that F(x,y) > 0 for all x € A, where

F($7y) = F0<x) + ylFl(x) T+ +ynFn(x) (1)

For a large number of problems it can be assumed
that the data matrices F;(z), i = 1,...,n are
symmetric p X p matrix-valued polynomial func-
tions (i.e. polynomials with matrix-coefficients)
and that the set A is described by a polynomial
semi-definite constraint A = {z € RV |G(z) ¥
0}, where G is a ¢ X ¢ symmetric matrix-valued
polynomial. This brings us to the problem consid-
ered in this paper:

infimize 'y
subject to  F(z,y) = 0 (2)
for all x € R™ with G(z) <0



where F'(z,y) isasin (1). Let us denote its optimal
value by popt. If F(x,y) is rationally dependent
on x, we can, under a well-posedness condition,
multiply by the smallest common denominator of
F(z,y) that is positive on A to render the SDP
polynomial in z. In (Jibetean and De Klerk, 2003)
this technique is applied to problems with scalar
rational constraints. Complex-valued uncertainty
are reduced to real values in a standard fashion.

As an example of a problem that can be molded
into (2), consider the uncertain system 2(t) =
A(6(t))z(t), where A(-) is a matrix-valued poly-
nomial and §(-) varies in the set of continuously
differentiable parameter curves ¢ : [0,00) — R™
with 6(t) € A for all ¢ € [0,00). Consider for
instance the following combination of polytopic
and norm-bounded uncertainties A = {p =
(m pz)T :opr € R™, pp € C™2, H(py) <
0, |lp2]] < 1} where H is affine. Then the system
is uniformly exponentially stable if there exists a
Y = 0 such that A(p)TY + YA(p) < 0 for all
p € A. With 1 = p1, 25 = §R(p2), xr3 = %(pQ),
y = vec(Y), ¢ = 0, G(z) = diag(H(x1), z o +
¥ — 1) and F(z,y) = diag(Y,—A(z)TY —
Y A(x)) this problem is of type (2), where # and
S denote real and imaginary part respectively and
diag denotes block diagonal augmentation.

In addition to robustness problems, the framework
of (2) includes polynomial Semi-definite Program-
ming (Hol and Scherer, 2004; Kojima, 2003) as a
special case. Since (2) is not a standard polyno-
mial SDP, the class of problems considered in this
paper is significantly larger.

Solving (2) is very difficult and various relaxations
have been proposed in the literature. The full
block S-procedure (Iwasaki and Shibata, 2001;
Scherer, 2001) allows to construct various relax-
ations, but in general it cannot be expected that
these relaxations are exact. We focus here on
a sequence of Sum-Of-Squares (sos) relaxations
that are asymptotically exact. Such schemes have
recently been applied to robust stability analysis
problems as described above (Chesi et al., 2003a;
Chesi et al., 2003b; Henrion et al., 2003; Scherer,
2003). These papers only consider polytopic un-
certainty sets. The uncertainty description in (2)
allows to describe many other sets, such as norm-
bounded and structured uncertainty as encoun-
tered in p-analysis and various other possibly non-
convex compact uncertainty sets.

This paper presents asymptotically exact sos re-
laxations for (2), and is as such a natural ex-
tension of (Scherer and Hol, 2004) to robustness
problems with matrix-valued constraints. More
precisely the main novel result is the construction
of a sequence of sos polynomial relaxations of (2)

e that require the solution of standard Linear
Matrix Inequalities (LMI) problems whose
size grows only quadratically in the dimen-
sion p and ¢ (i.e. the number of rows/columns)
of F' and G respectively and

e whose optimal values converge from below
to popt if a certain constraint qualification is
satisfied.

A crucial concept in this construction is the ‘sum
of squares of polynomial matrices’, as will be
explained in Section 2. Based on this concept
and on scalar sos results (Jacobi and Prestel,
2001; Putinar, 1993; Lasserre, 2001; Parrilo and
Sturmfels, 2001), we will present a sequence of
sos relaxations for (2) with the desired properties
in Section 3. In Section 4 we demonstrate the
benefit of the a priori bound on the LMI size
by an example and discuss why straightforward
scalarisation of the matrix valued problem fails in
general to admit such bounds. Finally in Section
5 we apply the approach to stability analysis for
a fourth order LPV model of the longitudinal
dynamics of a helicopter.

2. SUM OF SQUARES OF POLYNOMIAL
MATRICES

A symmetric matrix-valued p x p-polynomial ma-
trix S(z) in « € R™ is said to be a sum-of-squares
(sos) if there exists a (not necessarily square and
typically tall) polynomial matrix T'(z) such that

S(z) = T(x)"T(z). (3)

Ifuj(z) j =1,...,n, are pairwise different mono-
mials, then S(x) is said to be sos with respect to
monomial basis u(x) = col(uy(x),...,un, (x)), if
T in (3) can be chosen as T'(x) = 37", Tju;(),
where T} = T]T € RP*P 4 = 1,...,ny. To
compactly represent the sos decompositions we
define for M € RPI*P?  partitioned in blocks
M;; e R1*9 4,5 =1,...,p, the operator
Trace(Mi1) --- Trace(Mip)

Trace,(M) = : - : ,

Trace(Mp1) --- Trace(Mpp)
and for A, B € RP7*P4 the bilinear mapping
(A, B), = Trace, (A" B).

Ifw;(z),j=1,...,s,denote the pairwise different
monomials that appear in u(z)u(z)? one can
determine the unique symmetric matrices Z; with

u(@u@)” = 3 Zyuy(@).

Using these definitions the following result reduces
the question of whether S(x) is sos with respect
to u(x) to an LMI feasibility problem.



Lemma 1. The polynomial matrix S(x) of dimen-
sion p is sos with respect to the monomial basis
u(z) iff there exist symmetric S; with S(z) =
> 5—1 Sjw;(x) and the following linear system has
a solution W > 0:

W,L,®Z))py =55, j=1,....s. (4

If W solves (4) then S(z) = (W, L,@u(z)u(x)T), =
(I, @ u(z))TW(I, ® u(z)).

Trace,(-) satisfies the following easily verified
properties: for all A and B of appropriate size

Trace,((I, ® B)A) = Trace,(A(I, ® B)) (5)
and (Choi, 1975)

Trace,(A) = 0 for every A>0,A €SP, (6)
for arbitrary p,q € N.

3. MATRIX VALUED SOS DECOMPOSITION

Consider the optimization problem
infimize Ty
subject to
F(z,y) —elp, + (S(x), I, @ G(x))p = So(z)
S(x) and Sp(x) are sos, € >0
(7)

with optimal value dops. Note that the sizes of
So(z) and S(z) are p x p and pg X pq respectively.
In this section we present our main result, which
shows that the optimal values of (2) and (7)
are equal if G satisfies a constraint qualification.
This result allows to construct an asymptotically
exact family of LMI relaxations of (2). Indeed,
by choosing fixed monomial bases ug(z) and u(x)
of the sos matrices Sp(x) and S(z) respectively,
upper bounds on the optimal value of (7) can
be computed by solving an LMI problem, as
explained in the previous section. These upper
bounds converge to the optimal value of (7) if
the monomial basis vectors are infinitely extended
with new monomials.

Before discussing the main result let us first as-
sume that G is diagonal, i.e.

G = diag(g1(2), g2(x), .-, g (). (8)

Feasibility of y, for (2) comes down to computa-
tionally verifying whether

F(z,y.) =0 forall G(z)<0. 9)

The following theorem shows that this is possible
using a representation with matrix-valued sos
polynomials.

Theorem 2. Suppose G is as in (8) for some g;,
i=1,...,r, and suppose the following constraint
qualification holds true: There exists some M > 0,
an sos polynomial t(z) and an sos matrix ¥(x)
such that

M — |lz|* + (¥(2), G(2)) = ¢(x). (10)

Then (9) implies there exist € > 0 and matrix sos
So(x), S1(x), ..., S.(x) such that

Fla,y.) —cly+ 3 Si(@)gi(x) = Sola).  (11)
=1

Proof. The proof is a straightforward extension
of Theorem 2 in (Scherer and Hol, 2004) and
therefore omitted.
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Now let us drop the assumption on G(z) being di-
agonal. This brings us to the central contribution
of this paper.

Theorem 3. Suppose there exist M > 0, an sos
polynomial ¢(z) and an sos matrix ¥(x) such that
(10) holds true. If popy and dop are the optimal
values of (2) and (7) respectively then popy = dopt-

Proof. We first prove popt < dops, by showing
that the constraint in (2) is implied by the con-
straint in (7). Consider arbitrary y, € R™ and z.
with G(z.) < 0. Let us now suppose that S(x)
and So(z) = F(z,y.) — el + (S(2),I, @ G(z)),
are sos. Due to (6) one infers

F(x*,y*) = F(m*,y*)—efp—l—(S(x*),IP®G(x*)>p =

Since =, with G(x,) < 0 was arbitrary the
implication is shown which implies popt < dopt-

To prove popt > dopty NOte that, as a consequence
of the constraint qualification, if G(z) < 0 is
replaced by

G(x) := diag(G(2), |l|* = M) < 0
then the value of (2) is not modified. In a first step

of the proof of popt > dopt, let us show that the
same is true for the sos reformulation (7).

Indeed suppose F(x,y)—el,+(S(x), [,QG(x)), =
So(z) with sos matrices Sp(z) and S(z). If
we partition S(z) = (Sk(x))r into ¢ x ¢-
blocks then S(z) := (diag(Sjx(z),0));, satisfies
(S(z), I, 2 G(x)), = (S(z), I, ®G(x)), and there-
fore F(z,y) + (S(x), I, ® G(x)), — eI, = So(x).

Conversely suppose F(z,y) — eI, + (S(z),I, ®
G(z)), = So(z) with sos matrices So(x), S(z).
Now we make explicit use of (10) with sos matrices
Y(x), ¥(x). Let us partition

S(x) = (<Sjk*(m) sj:(i?) ))jk

into blocks of size (¢ + 1) x (¢ + 1) and define
S(x) := (Sjk(2) +55n () ¥ (2)) 1

and s(z) = (s;jx(x));r of dimension pg and p
respectively. It is easy to verify that both matrices
are sos and satisfy

(8(x), I,@G(x)), = (S(2), [LOG(@))p ()i (x).



This implies F(z,y) — el, + (S(z), I, ® G(x))p =
So(x) + s(z)y(x) and it remains to observe that

So(x) + s(z)y(x) is sos.

Therefore, from now on we can assume w.l.o.g.
that

vi Gz)vr = ||lz]|* = M (12)

where v; is the last standard unit vector. It
remains to show popt > dopt, and for this purpose
it suffices to choose an arbitrary y, which is
feasible for (2) and to prove that y, is as well
feasible for (7).

Let us hence assume F(x,y,) > 0 for all x € A.

Choose a sequence of unit vectors vg, vs, ... such
that v;, « = 1,2,... is dense in the unit sphere
{v€R?: ||v]| = 1}. Define

Ay :={z e R" v/ G(z)v; <0, i=1,...,N}

to infer that Ay is compact (by (12)) and that
ANx D Any1 D A for N = 1,2,.... Therefore
pN = min{ i (F(x,y.)) 1 « € Ayx} is attained
by some xy and py < py4q forall N =1,2,....
Let us prove that there exists some Ny for which
PN, > 0 which implies

F(z,y.) = 0 forall z € Ap,. (13)

Indeed otherwise py < 0 for all N = 1,2,...
and hence limy_,.opny < 0. Choose a sub-
sequence N, with zy, — xp to infer 0 >
hmv—»oo Amin (F(ZNW y*)) = )\min (F(IOa y*)) This
contradicts the choice of y, if we can show that
G(z9) < 0. In fact, otherwise there exists a unit
vector v with § := vT G(2¢)v > 0. By convergence
there exists some K with ||G(zn,)|| < K for all v.
By density there exists a sufficiently large v such
that K|jv; — v||? + 2K|lv; — v|| < §/2 for some
i€ {l,...,N,}. Since vIG(zn,)v — vTG(z0)v
we can increase v to even guarantee v G(xy, Jv >
0/2 and arrive at the following contradiction:

0> vl Glzy,)vi =
= (v; —v) ' G(xn,)(v; —v) + 207G (2N, ) (v; —v)+
+ 0T G(xn, v >
> —K|lv; — v||* = 2K|jv; —v|| + /2 > 0.

We are now in the position to apply Theorem 2 to
(13) since, due to (12), the constraint qualification
is trivially satisfied. Hence there exist ¢ > 0
and polynomial matrices U;(x) with p columns,
i=1,..., Ny, such that

F(x,y. —eI—|—Z

is sos in z. With elementary Kronecker product
manipulations and (5) we conclude

2))(v] G(x)vi) (14)

[Ui(2)" Ui(@)](v] G(z)v;) =
:Tracep([U'(fv) Ui(2)] ® (o] G(z)vy))

(( ( x)] vl ) (I, © G(x))(I,
:Tracep( ()] ® viv; )( ®G(a:)))
= ((Ui(z) @ v ) (Ui(w) ® v ), Ip ® G(z))y.
With the sos polynomial matrix

No

S(x) = (Uilz) @ o] )T (Ui(z) © v])

i=1

= Trace,

we infer that F(z,y.) — el + (S(z),I, ® G(x))
equals the left-hand side in (14) and is hence sos
in z. Therefore y, is feasible for (7).

|

Remark. The constraint qualification can be
equivalently formulated as follows: There exist sos
polynomials so(z), S(x) such that

{z € R™ : Trace(S(z)G(z)) — so(x) > 0}
is compact.

Theorem 3 is a natural extension of a theorem
of Putinar (Putinar, 1993) for scalar polynomial
problems in two directions:

e the set G(x) < 0 is described by matrix-
valued instead of a scalar polynomials;

e a sos representation of the matrix-valued
(instead of scalar) polynomial F(x) is ob-
tained.

If the variable y is absent, F' is scalar and G is
diagonal as in (8), Lasserre’s approach (Lasserre,
2001) for minimizing f(z) over scalar polynomial
constraints g;(x) > 0, i = 1,...,r is recovered.
Moreover the constraint qualification in Theo-
rem 3 is a natural generalization of that used
by Schweighofer (Schweighofer, 2003) for scalar
polynomial optimization problems.

4. COMPARISON WITH SCALARIZATION

In this section we shed some light on the benefits
of exploiting the matrix structure in the sos relax-
ations compared to straightforward scalarisation.
In particular we explain why scalarisation fails
to lead to the desired properties (of quadratic
growth in the matrix sizes) of the correspond-
ing LMI relaxations. Observe that G(z) < 0 is
equivalent to M;(G(z)) < 0,i = 1,...,r where
M;(A),i=1,...,r are all the principal minors of
a matrix A € R?7? (Horn and Johnson, 1985).
Hence if we define f(v,x,y) := vT F(x,y)v and
hi(v,2) = M;(G(z)) i=1,...,r,
hopi1(v,2) =1 =070, hpyo(v,z) =vlv -2,
then (2) is equivalent to infimizing ¢’y subject to
flo,z,y) >0 forall (z,v) (15)

with h;(v,2) < 04 = 1,...,r + 2. If hy,i =
1,...,r + 2 satisfy a constraint qualification then

®v;))



the scalar results of Putinar (Putinar, 1993) (15)
imply that there exist sos polynomials s;(v,z),
i=1,...,7+ 2, such that

r+2

flv,z,y) + Z si(v,x)h;(v,z) issos.  (16)

However, although f(v,z,y) and h;(v,z) are
quadratic in v, no available result allows to guar-
antee that the sos polynomials s;(v,z), i =
1,...,7 42, can be chosen quadratic in v without
loosing the relaxation’s exactness. Without such a
priori degree information, the corresponding LMI
relaxation size needs to grows fast in the length
of v which equals the dimension of F'(z,y). The-
orem 3 implies that one can indeed confine the
search to sg41(v,z) = 0, sg42(v,2) = 0 and to
sj(v,x) = vTSj(x)v, j = 0,1,...,q, which are
homogenously quadratic in v, without violating
Popt = dopt~

Regarding the matrix-valued constraint polyno-
mial G(z), the maximum of the total degrees
of the minors M;(G(x)),i = 1,...,r is at least
as high as the total degree of G(x) and will
in practice often be higher. A larger polynomial
degree often requires to use a larger monomial
basis and hence more variables and constraints
in the LMI relaxation to obtain good approxima-
tions of pop¢. This is illustrated by the following
example (inspired by a personal communication
with Didier Henrion): Computate lower bounds on
Popt = infg(z)<0 F(x) where = (xl ) )T € R?,
F(z) =21 + x2 and

1 a2 0
2 2
7 9—=x 0
G(z) = 1 2 a2
0o 0 1-—=2_"
100

Table 1 shows lower bounds on the optimal value
and the sizes of the LMI problems for sos re-
laxations based on (7) and based on two ways
of scalarisation, where we used for “Scalar 1”
g1(x) = det(G(1 : 2,1 : 2)), go2(x) = Trace(G(1 :
2,1:2)) and g3(x) = G(3,3) and for “Scalar 2”
the minors g;(z) := M;(G(x)) < 0,i =1,...,7.
We choose monomial bases wug(x) as shown in
the table and wu;(z) = 1, ¢ = 1,2,... respec-
tively to represent S;(z), i = 0,1,2,... as in
Lemma 1. An upper bound on the optimal value
Popt 18 F(—1.148,—2.695) = —3.843, which was
obtained by gridding. As is clear from the ta-
ble, the matrix-valued relaxation is (almost) ex-
act for ug = (1,r1,22)7, obtained by LMI op-
timization with 18 constraints and 13 variables.
The scalarised relaxations are exact if ug =
(1,21, z2, 2%, 2125, 23)7, which required the solu-
tion of an LMI problem with 27 constraints and 16
variables. The table shows that “Scalar 2” requires
even more LMI variables to obtain close to exact
results.

Relax- optim. monomial in LMI LMI
ation value uo(z)T constr  vars
Matrix -3.85 (1,z1,22) 18 13
Scalar 1 -12.65 (1,21, z2) 16 10
Scalar 1 -3.85 (l,xT,xlzT,mg) 27 16
Scalar 2 -2.6e4 (1,21, z2) 29 14
Scalar 2 -3.85 (1,27, 2127, 22) 48 29

Table 1. Optimal values and LMI size
for matrix and scalar relaxations

5. APPLICATION

We consider the stability analysis of an LPV
model of a closed-loop Vertical TakeOff and Land-
ing (VIOL) helicopter (Gahinet et al., 1994;
Iwasaki and Shibata, 2001). The linearized longi-
tudinal dynamic equations of the helicopter, after
applying a static feedback law as in (Iwasaki and
Shibata, 2001), are 2 = A(p)z where

—0.0366 —0.096 0.018 —0.45

Alp) = 0.0482 as(p) 0.0024 —4.02

0.10  ai(p) —0.707 az(p)

0 0 1 0

and ai(p) = 14.0 4+ 0.05p1, as(p) = 1.42 +
0.01p2 and ag = —18.2 —0.0399p3. We analyze its
stability for all uncertainties satisfying ||p|| < v
and |pg| < p, k = 1,2,3 for fixed values of v and
p. We consider affine Lyapunov functions P(p) =
Z?Zl Pym;(p) where m(p) = (1,p1,p2,ps3). Then
the system is robustly stable if there exist P; =
PT e R*™4 i =1,...,4 such that

3
A(p)"P(p) + P(p)A(p) + Y ag;f) g <0
k=1

for all |p|| < v and all |gx| < p, k = 1,2,3.
Hence with the definitions z := (pT qr )T, Y=
(vec(Py),. .., vec(Py) )T7

F(z,y) := A(p)"P(p) + P(p)A(p) + > %}kp)qm
k=1 ’

G = diag(g1,..-,94), g1(x) = []pl]> — +* and
g1+i(x) = |gi| — p i = 1,2,3, feasibility of y in
(2) implies robust stability.

We compute sos relaxations of (2) with sos bases
ug(w) = (1 z) and u;(z) = 1,7 =1,...,4. Figure
1 shows the results. Note that the results can
not directly be compared with those in (Iwasaki
and Shibata, 2001), (Gahinet et al., 1994) and
(Montagner and Peres, 2003), since we consider
a norm-bounded instead of a polytopic set and
the relaxations in those reference can only be
applied to polytopic sets. This illustrates the
additional flexibility of our framework, since it can
be applied to any uncertainty set that admits a
polynomial SDP description. For comparison, we
also computed bounds for the polytope [pr| < v,
k = 1,2,3 together with |px| < p, k = 1,2,3
and compared them to the results of (Gahinet et
al., 1994). The figure shows that the resulting
values are similar.
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Fig. 1. Sos lower bounds for the polytopic (x—)
and norm-bounded set (x - -) and Gahinet’s
lower bounds for the polytopic set (o—).
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