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Abstract: This paper treats direct identification of continuous-time autoregressive
moving average (CARMA) noise models. The approach has its point of origin in
the frequency domain Whittle likelihood estimator. The discrete- or continuous-
time spectral densities are estimated from equidistant samples of the output. For
low sampling rates the discrete-time spectral density is modeled directly by its
continuous-time spectral density using the Poisson summation formula. In the
case of rapid sampling the continuous-time spectral density is estimated directly
by modifying its discrete-time counterpart.Copyright c©2005 IFAC
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1. INTRODUCTION

Approaching parameter estimation from the dis-
crete time domain has been the dominating
paradigm in system identification. Identification
of continuous-time models on the other hand is
motivated by the fact that modeling of physical
systems often take place in the continuous-time
domain. In many practical applications there is
also a genuine interest in the physical parameters.
In the black-box discrete-time modeling frame-
work however, the identified parameters often lack
a physical interpretation.

Parameter identification of continuous-time sys-
tems is an important subject of its own. See for
example the survey article by Unbehauen and
Rao, (Unbehauen and Rao, 1990), the monograph
by Sinha and Rao (Sihna and Rao, 1991) or the
PhD thesis by Mensler (Mensler, 1999).

The research in identification of continuous-time
models has primarily been concentrated to the

time-domain, with approaches such as: Pois-
son moment functionals, integrated sampling, or-
thogonal functions etc. A few authors on the
other hand, have tackled the problem in the fre-
quency domain. An early reference is by Shinbrot
(Shinbrot, 1957) followed by the Fourier modulat-
ing function approach introduced by Pearson et
al. (Pearson and Shen, 1993). Frequency-domain
analysis for periodic and arbitrary signals has also
been the starting point for the work by Pintelon
et al. (Pintelon and Schoukens, 1997).

Recently there has been a renewed interest in
continuous-time system identification in general
and continuous-time noise models in particular,
(Rao and Garnier, 2002),(Ljung, 2003a),(Larsson,
2003). See for instance the articles by Larsson
and Söderström on continuous-time AR (Larsson
and Söderström, 2002) and ARMA (Larsson and
Mossberg, 2003) parameter estimation. The work
on hybrid Box-Jenkins and ARMAX modeling by
Pintelon et.al (Pintelon and Schoukens, 2000) and



Johansson (Johansson, 1994) also concerns this
problem. These approaches have in common that
they use approximations of the noise or the noise
model and consequently suffer from a bias in the
model parameters.

The goal in this paper is to derive a method for
the identification of continuous-time autoregres-
sive moving average (CARMA) noise models. As
a tool for this a frequency-domain Whittle like-
lihood approach together with some rudimentary
theory for continuous- and discrete-time stochas-
tic processes is used.

2. THE MODEL AND THE DATA

We shall consider continuous-time ARMA models
represented as

yt = Gc(p)et (1)

where et is continuous time white noise such that

E[et] = 0

E[etes] = σ2δ(t− s)

The operator p is here the differentiation operator.
We assume that G(p) is strictly proper, so yt itself
does not have a white-noise component, but is a
well defined second order, stationary process. Its
spectrum (spectral density) can be written as

Φc(ω) = σ2|Gc(iω)|2 (2)

We shall consider a general model parameteriza-
tion

Gc(p, θ) (3)

where the model parameter vector θ includes the
noise variance λ (whose true value is σ2). The
transfer function G can be parameterized by θ in
an arbitrary way, for example by the conventional
numerator and denominator parameters:

G(p, θ) =
B(p)
A(p)

A(p) = pn + a1p
n−1 + a2p

n−2 + · · ·+ an

B(p) = pm + b1p
m−1 + · · ·+ bm

θ = [a1 a2 . . . an b1 b2 . . . bm λ]T

(4)

In practice we have only sampled data y(tk) at
our disposal to estimate θ. Although the case
with irregularly sampled data is a prime target
for our studies, we shall in this paper assume
equidistantly sampled data:

y(tk), tk = kTs, k = 1, . . . , N (5)

3. THE ESTIMATION PROBLEM

The common way of modeling a general time
series of the unstructured form (4) is to estimate a
discrete-time model in the time domain and then

transform it to continuous time. If the parame-
terization (3) is tailor-made it would have to be
transformed to discrete time

Gd(q, θ) (6)

by the well known sampling formulas, (Söderström,
1991), retaining the original parameters. Then the
discrete time grey box model yt = Gd(q, θ)ed

t

can be estimated by a straightforward prediction
error method. See, e.g (Ljung, 1999), and imple-
mentations of this approach in (Ljung, 2003b).
These methods work well and for Gaussian dis-
tributed signals they constitute the Maximum
likelihood approach. Thus, in theory and asymp-
totically as the number of data tends to infinity,
no method can perform better. However, for fast
sampled data, they could be subject to numeri-
cally ill-conditioned calculations. Also, for irreg-
ularly sampled data, the computational burden
could be substantial.

In this paper we shall consider frequency domain
approaches as an alternative.

The spectrum of the sampled output according to
(6) will be

Φd(eiωTs , θ) = λd|Gd(eiωTs , θ|2 (7)

where λd is the model’s variance of the sampled
driving noise ed

t .

There is another way of writing the spectrum
of the sampled output, which is obtained from
Poisson’s summation formula, see, e.g. (Papoulis,
1977)

Φd(eiωTs , θ) =
∞∑

k=−∞
Φc(iω + i

2π

Ts
k, θ) (8)

4. THE WHITTLE LIKELIHOOD
ESTIMATOR

4.1 Sampled data

From the sampled output (5) the periodogram of
the signal can be computed:

ˆ̂Φd(eiωTs) =
∣∣∣Ŷd(eiωTs)

∣∣∣
2

. (9)

where

Ŷd

(
eiωkTs

)
=

√
Ts

N

N∑

k=1

y(kTs)e−iωkTs (10)

and

ωk =
2π

Ts
k. (11)

If y has a Gaussian distribution, so will Ŷd have.
It has zero mean and variance

E|Ŷd(eiωkTs)|2 = Φd(eiωkTs , θ)



under the model assumption (7). The pdf of
Ŷd(eiωkTs) is thus

1√
2πΦd(eiωkTs , θ)

e
− |Ŷd(eiωkTs )|2

2Φd(eiωkTs ,θ)

At the DFT grid (11) the variables are also
asymptotically independent. This means that a
frequency domain procedure for estimating the
parameter θ is

θ̂N , arg min
θ

V d
N (θ) (12a)

where

V D
N (θ) ,

Nω∑

k=1

ˆ̂Φd(eiωkTs)
Φd(eiωkTs , θ)

+ log Φd(eiωkTs , θ)

(12b)

This method is known as the Whittle likelihood es-

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

Fig. 1. Bode diagram comparing the Whittle like-
lihood estimator without (dashdot) and with
(dashed) folding of the continuous-time spec-
trum to the true system (solid). The dashed
line is almost identical to the solid.

timator (Whittle, 1961) and is an approximation
of the corresponding time-domain ML-method.
It has long been used to estimate parameters of
discrete-time ARMA models.

4.2 Continuous time signals

Let us for a moment assume that we have available
the whole, continuous time signal y over the time
interval [0 T ] (T = NTs). Then the periodogram
estimate of the continuous time spectrum could
be computed as

ˆ̂ΦT
c (iω) =

∣∣Y T
c (iω)

∣∣2 .

where the truncated continuous-time Fourier trans-
form is

Y T
c (iω) =

1√
T

∫ T

0

y(t)e−iωtdt.

Just as in the sampled case Y T
c will have a Gaus-

sian distribution with zero mean and variance
equal to the continuous time spectrum (once T is

large enough so that transients and non-periodic
effects can be neglected). Moreover the Fourier
transforms will be asymptotically independent for
frequencies that are further apart than the fre-
quency resolution 2π/T . See e.g. (Brillinger, 1981)
and (Gillberg, 2004), Section 3. Just as for (12)
we thus have the continuous-time Whittle-type
estimator

θ̂ , arg min
θ

V T
N (θ, ˆ̂ΦT

c ) (13a)

where

V T
N (θ, ˆ̂ΦT

c ) ,
Nω∑

k=1

ˆ̂ΦT
c (iωk)

Φc(iωk, θ)
+ log Φc(iωk, θ).

(13b)

See also (Gillberg, 2004), Chapter 3 for a more
detailed description.

In practice it gives better robustness to truncate
the summation over frequencies in (12b) and (13b)
at a lower frequency N̄ω, since the Fourier trans-
forms of the signals typicallay are less reliable at
higher frequencies.

5. INDIRECT FREQUENCY-DOMAIN
ESTIMATION

By an indirect estimation method we mean using
the discrete time spectrum to estimate the contin-
uous time parameters. In the frequency domain it
means that the criterion (12) is used. The question
is how to calculate the discrete time spectrum
Φd. A possibility that apparently has not been so
much discussed is to use the Poisson summation
type formula (8). A practical benefit is that only
a limited number of terms in this sum may be
needed to produce a good approximation of its
discrete-time counterpart in the frequency range
of interest.

5.1 Numerical Illustration

In Figure 1 we have estimated the second-order
continuous-time AR-model

yt =
σ

p2 + a1p + a2
et (14)

with σ = 1, a1 = 3 and a2 = 2. The duration
of the data set was T = 1000s with the sampling
time Ts = 1s. The figure illustrates the frequency-
domain bias which could occur if only the term
k = 0 in (8) is used in the expression for Φd, that is
if the folding is not taken into account. In Table 1
the mean parameter values for NMC = 250 Monte
Carlo simulations are illustrated. Here Nf = 0 and
Nf = 5 terms around k = 0 have been included
in the sum (8). From the figure and the table we
see that ignoring the effects of folding can produce
very biased estimates.



Table 1. Mean Values of Parameters
Estimates

System/Method a1 a2 σ

True System 3 2 1
Folded (Nf = 5) 3.090567 2.037784 1.023398

Unfolded (Nf = 0) 4.978773 3.141028 1.639744

6. DIRECT CONTINUOUS-TIME
ESTIMATION

By a direct method we mean one that only works
directly with continuous time signals and spectra.
In this case it will be the method (13).

The problem is that the sampled data peri-
odogram ˆ̂Φd(eiωTs) can be readily found from the
sampled data in (9) and (10), while we need the

continuous-time periodogram ˆ̂Φc(iω) in the crite-
rion (13b). How can the latter be estimated or

computed from ˆ̂Φd(eiωTs) ? We will be looking for
relationships like

ˆ̂Φc(iω) = H(iω) ˆ̂Φd(eiωTs) (15)

for a suitable function H. We could for instance
assume that the signal is ZOH or FOH between
the samples, but to do better than that, we argue
as follows: If the true signal parameters θ0 were
known, we would have

ˆ̂Φd(eiωTs) ≈ Φd(eiωTs , θ0)

and
ˆ̂Φc(iω) ≈ Φc(eiωTs , θ0).

This means that the ideal transformation filter H
in (15) would be

H(eiωTs) =
Φc(iω, θ0)

Φd(eiωTs , θ0)
. (16)

Since θ0 is unknown, we cannot construct H in
this way, but the point is that when Ts → 0,
H(eiωTs) in (16) will approach something that
does not depend on the signal parameters θ0, but
only on the relative degree (pole excess) l = n −
m of the signal model in (1). This is related to
the theory of sampling zeros, see e.g. (Åström
and Sternby, 1984), (Wahlberg, 1988), (Weller et
al., 2001). This is what we will show now.

6.1 Estimation Method

Let the system in (1) be strictly proper, stable and
l = n − m be its relative degree (or pole excess),
i.e. the difference between the number of poles
and zeros of the system. Further assume that ω is
below the Nyquist frequency. Define

Φ(`)
f (eiωTs) ,

∣∣∣ eiωTs−1
iωTs

∣∣∣
2`

∣∣∣B2`−1(eiωTs )
(2`−1)!

∣∣∣
(17)

where B2`−1(z) are the so called Euler-Frobenius
polynomials (Weller et al., 2001). The polynomials
are

B`(z) = b`
1z

`−1 + b`
2z

`−2 + · · ·+ b`
` (18)

where

b`
k =

k∑
m=1

(−1)k−mm`

(
n + 1
k −m

)
, k = 1, . . . , l.

Below is a list of polynomials for different values
of `

B1(z) = 1
B2(z) = z + 1

B3(z) = z2 + 4z + 1

B4(z) = z3 + 11z2 + 11z + 1.

In Figure 2 we see that there is a very good cor-
respondence between Φc(iω, θ0)/Φd(iω, θ0) and
Φ(`)

f (iω) for the system in (14). This observation
is verified by the following theoretical result.

Theorem 1. Consider the continuous time model
(1) and assume that its pole excess is `. Its
spectrum is Φc(iω) given in (2). Let the spectrum
of the sampled process (with sampling period Ts)
be Φd(eiωTs). Assume Φ(`)

f is defined as in (17),
that ω is less than the Nyquist frequency and that
` ≥ 1. Then

| Φc(iω)
Φd(eiωTs)

− Φ(`)
f (eiωTs)| < CT 2l

s

PROOF. Since ω is less than the Nyquist fre-
quency

Φc(iω + i2π
Ts

k)
σ2

|iω+i 2π
Ts

k|2`

→ 1

as Ts → 0 if k 6= 0. This has the consequence that
Φc(iω)

Φd(eiωTs)
→ Φc(iω)

Φc(iω) +
∑

k 6=0
σ2

|iω+i 2π
Ts

k|2`

as Ts → 0.From Lemma 3.2 in (Wahlberg, 1988)

Φ(`)
f (eiωTs) =

1
|iω|2l

1
|iω|2l +

∑
k 6=0

1
|iω+i 2π

Ts
k|2`

.

By putting the two previous expressions on a
common denominator, we get the the following
relation

Φc(iω)
Φd(eiωTs)

− Φ(`)
f (eiωTs) → Φ(`)

f (eiωTs)Φr(iω)Φs(iω)

where

Φr(iω) =
1− Φc(iω) |iω|

2`

σ2

Φc(iω) +
∑

k 6=0
σ2

|iω+i 2π
Ts

k|2`

and

Φs(iω) =
∑

k 6=0

σ2

|iω + i 2π
Ts

k|2`
.
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Fig. 2. Comparison of Φc/Φd (solid) to Φ(`)
f (dash-

dot) for the system in (14). In the inner plot
Ts = 2 and in the outer plot Ts = 0.5.

Since Φ(`)
f and Φr are bounded and

1
|iω + i2π

Ts
k|2`

≤ C

(
Ts

k

)2`

if k 6= 0, the result
∣∣∣∣

Φc(iω)
Φd(eiωTs)

− Φ(`)
f (eiωTs)

∣∣∣∣ ≤ CT 2`
s

will follow.

Therefore a reasonable estimate of the continuous-
time spectrum would be

ˆ̂Φc(iω) =

∣∣∣ eiωTs−1
iωTs

∣∣∣
2`

∣∣∣B2`−1(eiωTs )
(2`−1)!

∣∣∣
ˆ̂Φd(iω).

6.2 Numerical Illustration

In Table 6.2 we have compared the performance
of the estimator in the section above, Method
2, compared to the one described in Section 5.1,
Method 1, for different sampling intervals. The
means for each different sampling interval have
been estimated by NMC = 250 Monte Carlo
simulations. The system is given by (14) and
the correspondence between the mean parameter
estimates in the table seems to be good.

7. CONCLUSIONS

Two parametric frequency-domain identification
algorithms for continuous-time ARMA noise mod-
els have been presented. For low sampling rates,
the Poisson summation formula is used to es-
tablish the exact distribution of the discrete-
time Fourier transform of the output of the
CARMA model. In the case of rapid sampling

Ts Method a1(= 3) a2(= 2) σ(= 1)

0.6 1 3.0355 2.0189 1.0071
0.6 2 2.9935 2.0166 1.0007
0.5 1 3.0186 2.0206 1.0054
0.5 2 3.0476 2.0376 1.0150
0.4 1 3.0266 2.0150 1.0055
0.4 2 3.0449 2.0240 1.0110
0.3 1 3.0276 2.0143 1.0071
0.3 2 3.0327 2.0168 1.0086
0.2 1 3.0009 2.0118 1.0009
0.2 2 3.0017 2.0122 1.0011
0.1 1 3.0245 2.0210 1.0071
0.1 2 3.0246 2.0211 1.0072

Table 2. Comparison of mean values
of parameter estimates from the indi-
rect (Method 1) and direct(Method 2)
estimators versus the sample time Ts.
The system and circumstances are the
same as in (14). The statistics for each
sampling time has been estimated by
NMC = 250 Monte-Carlo Simulations.

the continuous-time spectrum is estimated from
the discrete-time spectrum by means of a certain
compensator. Further, numerical examples illus-
trate the efficiency of the different approaches. An
interesting generalization study is the case of non-
uniformly sampled data.
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