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Abstract: This paper deals with the state estimation problem for linear systems
with state equality constraints. Using noisy measurements which are available
from the observable system, we construct the optimal estimate which also satisfies
linear equality constraints. For this purpose, after reviewing modeling problems
in linear stochastic systems with state equality constraints, we formulate a
projected system representation. By using the constrained Kalman predictor for
the projected system and comparing its predictor Ricccati Equation with those of
the unconstrained and the projected Kalman predictors, we reach the conclusion
that the current constrained estimator outperforms other filters for estimating the
constrained system. Copyright (©2005 IFAC
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1. INTRODUCTION

Control with constraints is increasingly applied in
industry (Maciejowski, 2002) and the practicality
of incorporating both state and input constraints
into control problems via MPC (Model Predictive
Control) methods is in large part responsible
for the recent upsurge in interest in these latter
methods. Using explicit constraints, in place of
their implicit inclusion using penalty and barrier
methods, simplifies the design specification to
focus on the performance objective. Constraints
in control, particularly optimal control, have a
long history (Bryson and Ho, 1975) and have
focused on full state feedback systems. The
constraints can be of two basic types: physical
constraints reflecting known limits to physical
state variables, such as positivity of mass or
pressure; and design constraints which represent
desired operating limits which might otherwise
be violated by the controlled system. Forbidden,
as opposed to undesirable, state motions may
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be incorporated into system descriptions through
descriptor system representations.

Estimation of systems having constraints has
drawn many practitioners’ attention in diverse
engineering disciplines: radio surgery (Altman
and Tombropoulos, 1994), attitude determination
of spacecraft (Lefferts et al., 1982; Peng et
al., 2000; Chiang et al., 2002), robotic systems
for multi-sensor data fusion (Wen and Durrant-
Whyte, 1992) and locating objects (Geeter et
al., 1997), target tacking of air vehicles (Tahk
and Speyer, 1990; Alouani and Blair, 1993)
and land-vehicles (Simon and Chia, 2002), and
adaptive beamforming (Chen and Chiang, 1993).
Each of these works is an example of dealing
with physical constraints in the form of equality
state constraints in a probabilistic framework.
In the mainstream MPC literature, Rao et al.
(2003) has developed a deterministic constrained
state estimate which is based on a finite-horizon
optimization. This deterministic approach does
not yield an estimate quality measure of closeness
to the actual state.



The problem which we consider here is the con-
comitant state estimation problem in constrained
systems. Noisy measurements are available from
the observable system and we desire to use these
optimally to reconstruct a state estimate, which
also is known to satisfy linear equality constraints.
For this purpose, we formulate linear stochastic
systems with linear equality constraints firstly
in a stochastic descriptor system representation
from which the projected system representation
will be derived. Then, we construct the Kalman
filter for the projected system and show that
the current constrained estimator outperforms
the other estimators available for constrained
systems.

When some relations between state variables
are known exactly, this type of constraint is
called a hard or strong constraint and can be
incorporated into the conventional Kalman filter
through perfect pseudo-measurements. But this
case results in a singular measurement noise
covariance increasing the possibility of numerical
problems (Stengel, 1994). For linear equality
state constraints, it is always possible to reduce
the system model parametrization and use the
reduced state equation and the conventional
Kalman filter. On the other hand, there are several
good reasons for not using a reduced state space
for treating the constrained system. Firstly, the
dimension of the reduced state space may vary
between systems of different dimensionality, such
as is the case for locomotion systems (Hemami
and Wyman, 1979). Secondly, the reduction of
the state equations makes their interpretation
less natural and more difficult (Simon and Chia,
2002). The most recent hard constraints method
with non-reduced form of state equation is based
on the projection method in which the constrained
estimate is obtained from the unconstrained
estimate of the conventional Kalman filter by
projecting onto the subspace or the surface
described by the hard constraint. Recently, Ma-
hata and Soéderstom (2004) used a similar ap-
proach in estimating deterministic parameters
of viscoelastic materials. Here the additional
linear constraints are imposed in the form of
a partially known boundary condition to obtain
better estimates.

Chia (1985) and Simon and Chia (2002) used this
projection method with Kalman prediction and
filtering, and proved that the state estimation
error covariance of the projected estimate is
smaller than that of the unconstrained estimate.
Wen and Durrant-Whyte (1992) independently
developed a similar method by firstly including
the constraint as a perfect observation and then
showing that their method is theoretically exactly
the same as projecting the filtered estimate of
the unconstrained Kalman filter onto the surface
of the hard constraint. In conventional linear
stochastic models with additive white process
noise, for a state vector to be constrained strongly
in a proper subspace of the whole state space,
the process noise must have a singular covariance
consistent with a linear constraint on the state.
However, because these two authors first used a
positive definite or bigger process noise covariance

for estimating the constrained system and then
projected onto the constraint surface, their method
is not optimal, which we show in later sections.

In the next section we consider possible models
for linear stochastic systems with equality state
constraints and then represent the system in a
descriptor form and also in a projected form. In
Section 3 we deal with the unconstrained Kalman
filter and in Section 4 we consider two constrained
estimators and compare these in terms of error
covariance.

In this paper, matrices will be denoted by upper
case boldface (e.g., A), linear spaces are denoted
by calligraphic uppercase (e.g., A), column ma-
trices (vectors) will be denoted by lower case
boldface (e.g., x), and scalars will be denoted by
lower case (e.g., y) or upper case (e.g., Y). For
a matrix A, AT denotes its transpose and Af
represents the Moore-Penrose inverse of A. For a
symmetric matrices P > 0 or P > 0 denotes the
fact that P is positive definite or positive semi-
definite, respectively. For a random vector x, £{x}
represents the mathematical expectation of x.

2. LINEAR STOCHASTIC SYSTEMS WITH
EQUALITY CONSTRAINTS

We investigate a method of estimating the state of
systems modeled by a linear stochastic difference
equation of the form

Xp41 = Ax; + Buy + wy,
Vi = Cxp +vi

(1)

where the state xp € R” is known to be
constrained in the null space of D

ND)2 {x:Dx=d=0}2 (2)

and yr € RP represents the measurement. Here
wr € R™ and v € RP are of zero-mean white
gaussian distribution with

T
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where 05; represents the Kronecker delta (dx; = 1
if k = j, 0 otherwise). The matrix D € R™*" ig
assumed to have a full row rank. If D does not
have a full row rank, there exist redundant state
constraints. In that case we can simply remove
linearly dependent rows from D.

Since the allowable space of x; with constraint
is N(D), xx+1 given by (1) also must satisfy
Xip+1 € N(D), for which we identify the following
possible cases:

Case 1: (Axy, Buy, wy) ¢ N(D)
Since the sum of the three elements must satisfy

2 For d # O case, translation of the state space such that
X, = %), + D1d yields the state equation form (1) with an
additional term in the state equation which can be treated
as a deterministic constant noise. Hence, without loss of
generality, it suffices to consider d = 0 case for the analysis
of current state estimation problem.



Ax+Buptwy € N (D) for any x;, € N(D), this
case causes a correlated noise wj with current
input u; and state x; and causes theoretical
as well as practical problems. Hence it is not a
proper Markovian system model.

Case 2: (Axy, Buy) ¢ N(D) but wy € V(D)
Similarly, the sum of the first two elements
must satisfy Axy, + Bug € N(D). This case
allows uncorrelated noise sequences wj with
the input u; or the state xj, but the system
cannot maintain the state constraint without
corrective action of the input ug. Hence, this
model is suitable for modeling systems having
design constraints.

Case 3: (Axy,Bug, wy) € N(D)

This case also allows uncorrelated noise se-
quences wi with the input u or the state xj
and has a proper form for modeling systems
with physical constraints since regardless of the
corrective input u, the state stays within the
constraint subspace N(D). Since, for all x; €
N (D), it is required that Ax; € N (D), N (D)
is A-invariant (Wonham, 1979).

As in the Cases 2 and 3, the process noise sequence
wy being constrained in the null space of D is
a reasonable choice from the viewpoint of usual
system modeling practice: we model a system
without considering noise or model uncertainty
and then add a noise sequence to compensate
for uncertainty of the system. Since the noise
is in a lower dimensional space than the whole
state space R"™, support of the probability density
function must have a lower dimension than the
state space, which means the covariance matrix
of the noise must be singular.

2.1 Descriptor System Representation of Constrained

Systems

The linear system (1) with the constraint (2) can
be represented in the form of a descriptor system.
To do this, first we define the following:

Definition 1. [Skelton et al. (1998)] For a given
matrix N € R"*™ with rank r, N+ e R(»=m)xn
is defined as any matrix such that N*IN = 0 and
NINL' > 0.

Remark 1. Note that the matrix N+ defined in
Definition 1 exists if and only if N has linearly
dependent rows (n > r), and the set of all such
matrices can be captured by N+ = TUZ | where
T is an arbitrary nonsingular matrix and Us; is
from the singular value decomposition (SVD)

cmnfF. o

In this paper, we consider only T = I case and
hence N+ = UT.

Since D is of full row rank, D7 has dependent

rows and therefore DT" can be defined. Then,
by multiplying both sides of the state equation

(1) by DT and using the constrained equation

(2) we obtain the following descriptor system
representation

Exy1 = AXk + Buk + Ewy, (5&)
Ye = Cxp + v (5b)
where
_[p™] ;s _[p"A] 5_[DTB
£ [P A= [PA]n 7]

(6)

2.2 Projected system representation of constrained
systems

In a descriptor system representation such as (5a),
X}, is termed descriptor vector. Luenberger (1977)
defined a state as a vector zp = I'xy, whose
dimension is smaller than the descriptor vector
X with a matrix I' having a specific property,
for a set of dynamic equations if knowledge of
its value and the value of input and the noise
sequence are sufficient to uniquely determine the
descriptor vector x;. Furthermore, an equivalent
condition was obtained for both a time-invariant
descriptor system to be regular 2 and for a vector
zr, = I'xy, to be a state for the descriptor system.

The following Lemma 1 can be easily verified.

DT .. . pr 17!
Lemma 1. D is invertible and =

D
o o]

By Lemma 1 above and Theorems 6 and 7
in Luenberger (1977), the following theorem is
obtained.

Theorem 1. The following statements (i) and (ii)
are equivalent:
(i) The descriptor system (5a) is regular and the
vector z; = DTka is a state.

TL
(ii) The matrix [DD is square and nonsingular.

By Lemma 1 and Theorem 1, the descriptor
system (5a) describing the constrained system (1)

and (2) is regular and z; = D7 x,, is a state, from
which the descriptor system (5a) can be further
simplified through combining the state expression

Zp = DTlxk with the state constraint Dx; = 0,

leading to
DT zy,
D X = B (7)

Applying Lemma 1 to (7) yields

1T

Tt7 T
xp =D Zp Or Xgpy1 =D Zjt1. (8)

3 A set of dynamic equation is said to be regular if there is
an initial condition vector which when propagated forward
serves as a state vector for every time period.



From the definition of z; and (1),

Zit1 = DTLXk+1 = DTL (Axk +Buy, +Wk). (9)
Substituting (9) into (8), we have

Xk4+1 = DTLTDTL (AXk + Bu + Wk) (10)
= Pyn (Axk—l—Buk —‘er) (11)

where Py 2 DT''DT" = U,UT is the
orthogonal projector onto the null space of D since
U, spans N (D). Therefore, owing to Ppr, the
system representation (11) is termed a projected
system. Furthermore, for Case 3-constrained sys-
tems, one important consequence can be drawn.
From the fact that, for any x; € AN(D), also
Ax;, € N(D) holds, we have

Axk = P.AX]€ = APXk (12)

where P is any projection matrix onto the null
space of D. By taking a conditional expectation
for given any measurements ) on both sides of
(12), we obtain also

PA £{x;|V} = AP &{x|V}. (13)
Using (12) and (13) yields
APY =PAY =AY and
APYXPTAT = PASATPT = AXAT

where ¥ = & {[xk — V) [xn — € (xk\y)]T}.

The equations in (14) are crucial relations in
subsequent analysis for comparing performance
between different estimators which can be used
for estimating the constrained system.

(14)

3. UNCONSTRAINED KALMAN FILTER

As discussed in Section 2, for the constrained
system given by (1)-(2) to have an uncorrelated
process noise sequence wj with both current
state x; and input ug, it is required that the
process noise be constrained in the null space
N (D) of the constraint matrix D, which means
the covariance matrix of wj, must be singular.
Hence, in order to design the “correct” Kalman
filter for such a constrained system, the exact
(singular) covariance matrix of the constrained
noise must be used. When one does not know
accurately the noise covariance, it is common
practice (Anderson and Moore, 1979) to use the
upper bound of the noise covariance or simply
any bigger noise covariance than the (expected)
correct value, causing, in some sense, a worst
case design. Instead of the true singular (positive
semi-definite) covariance matrix Q¢, if a positive
definite process noise covariance Q (> Q°¢) is used
for the constrained system (1), then bigger or
unconstrained estimation error covariances will be
resulted. The corresponding Kalman predictor is
given by the following equations:

X = (A = MEC)XE ), + Buy + Miyy
My = Az}, ,CT(C2y, ,CT+R)™!
Eie = Az}i\kqAT +Q
—AZ}; C(CZy, CT+R)CZ, AT
(15)

4. CONSTRAINED KALMAN FILTER

In this section, we consider the two different
constrained predictors for the Case 3 constrained
system described in Section 2. For a simple
notation, the subscripts (-); will be used for
denoting the Kalman predictor instead of (-)gx—1-

4.1 Projected Kalman Filter

Chia (1985) and Simon and Chia (2002) derived
a constrained Kalman predictor by directly pro-
jecting the unconstrained state estimate X}’ onto
the constrained subspace N'(D). Let us name it
projected estimator which will be denoted by the
superscript (+)P. They solved the problem, for any
symmetric positive definite weighting matrix W,

min (%] — %)W - %{)

<7 (16)

subject to DX} =0

and obtained
% = Plip)%i (17)
where PAV}/(D) £ 71— WleT(DW*DT)*lD

which is a projector to the constraint subspace
N (D) with a weighting matrix W.

The property of the projected Kalman predictor
is summarized in the following theorem.

Theorem 2. [ Chia (1985);Simon and Chia (2002),
Projected Kalman predictor]

(i) The projected state estimate x}, given by (17)
with W = (2})~! has a smaller state error
covariance than that of the unconstrained
state estimate Xj!. That is

P £ Cov(x, — %)) < Cov(x, —X}) =X}

(18)
and the covariance of the projected estimator
is given by

3P =P, EiPr =P.X}, (19)

where P, = I — 2¢DT(DX¢D")"'D is a
projection matrix onto the null space of D.
(ii) Among all the projected Kalman predictors
of (17), the predictor that uses W = (X})~!
has the smallest estimation error covariance.

Therefore, at (k + 1)th-stage the state estimation
error covariance of the projected Kalman predictor
is, from (15) and (19), given by

2§+1 = Pk+1E%+1Pf+1
= Pk‘,-‘,—lAEzATPf—kl + Pk—i—lQPg-‘rl

-PaAzCT(czict + R)TICEEATPL, .
(20)

4.2 Constrained Kalman Filter for Projected System

In Section 2.2, we have proved that the original
state equation (1) with the constraint (2) can be



reduced to the projected system (11). Therefore,
for the Case 3 projected system, the Kalman
predictor is given by
)A(Z,_,'_l = (P/\/A — :[\/IZ(]))A(]C + Buy + szk
¢ =PyAZCT(CZ(CT +R)!

21 = PVAS{ATPy + PyQPy

~PyAXCT(CZ{CT + R)TICE{ATPy

(21)

where it is assumed that Q¢ = PAr QP .

Remark 2. In Section 2.2, a reduced state z; =

DTLX;.C was used in the middle of deriving the
projected system (11). We can also construct the
Kalman predictor z; for estimating this reduced

state z; and use the relation X = DTLTik from
(8) which will yield the Kalman predictor given in
(21).

4.8 Comparison of Constrained Kalman Filters

From optimality of the Kalman predictor, we
expect that the Kalman predictor derived from
the projected state equation (11) is the optimal
filter for the original constrained system modeled
by (1) and (2). But, we need to know whether the
projected estimator of Section 4.1 is also optimal
or not. To compare the error covariances given by
(20) and (21), let us express (20) as

3 =P Pl
:PkH{AEZAT +Q
~AS!CT(CEICT4R) ‘102;;AT}P{. »
:Pk{AngT +Q
~AS[CT(CR[CT+R)CZpAT}P]
+ AQg

(22)
where

AQ2 P {ATIAT +Q
—AEZCT(CEZCT+R)_1CEzAT}P{+1
~P{aATAT +Q

~AS[CT(CR[CT+R)'CEATIP].
(23)
Since 37 is constrained and using (14), we have

P ASIATP] =P, PLASVATPIPL |

=P, 1 AP SIPTATPL
= Pk+1AEZATP£+1
(24)

and also
P,ASICT (CZ2C” +R) ' CSATPY

—P, AX2C” (CZ2CT +R) ™ cngTP(fﬂ).
25

Therefore, we have

AQy =P 1 AP, + P QPL, — PLQPT
(26)
where

A=ASPAT A CT(CEECT+R) T CEYAT

—ASPATLASICT (CSICT4R) T CRPAT.
(27)
To prove that Ap > 0, we need the following
lemma about a monotonicity property of the
Riccati Difference Equation.

Lemma 2. [De Souza (1989);Bitmead and Gevers
(1991)] Consider two RDEs with the same A, B
and R matrices but possibly different Q' and
Q2. Denote their solution matrices X} and X7
respectively. Suppose that Q! > Q2, and, for
some k, we have ; > 37 then for all i > 0

S > i (28)

Theorem 2 tells us that 3} > X7 and then for
(27) we can deduce that Ay > 0 from Lemma 2.

Hence, (22) can be written as
SRS RIS N
-1
~AS[CT(CE[CT+R) CZ[AT}P]
+ Pk+1AkP£+1 + Pk+1QPg+1
=ASPAT + Py AP + P QPT

— AXICT (CXPCT +R) T CxPAT

(29)

Recall that from Section 4.2 and using (14) we

have, with Q¢ = Py QP s,

f=ASAT +Q°
—AZCT(CcE(CT + R)TICZEAT.

(30)

The following Theorem 3 summarizes what we

have shown regarding performance of three Kalman

predictors that can be used for estimating the
constrained state.

Theorem 3. For Case 3 constrained systems with

the assumptions that the pair [A, Qcm] is stabi-
lizable and [A, C] is detectable, the following hold:

(i) If Q > Q°, with the initial conditions such
that 3¢,_; < X{_, < X _;, we have

Sk < X, (31a)

u
k+1|k = EkJrllk

kh_,lgozz“'kSklggozzﬂ‘kgkh_{gozzﬂw
(31b)
(ii) If Q = Q°, with the initial conditions such

that 36_; = 28\4 = POZS‘_ng, we have

Z32+1|k < EQHW < 211:+1|k (32a)
kh_{gozi“‘k - klingozz“‘k - Jgi_{gozzﬂ‘k'
(32b)



PROOF.

(i) Using Pk_HQPngl > PAyQPAy = Q° from
the fact that P s is the orthogonal projector,
and Pk+1AkP£H > 0, it can be shown that,
again through Lemma 2 and Theorem 2, we
obtain (31a) and also (31b). The existence
of limit matrices is guaranteed from the
assumptions of stabilizability of [A, ch/z]
(which implies also stabilizable [A,Q'Y?],
since Q > 0) and detectability of [A, CJ.

(ii) We observe that the RDEs (15) and (30)
are the same except the different initial
conditions such that 3g_, > 3G _; =

P3P, from which, in combination
with Lemma 2, we have £} = P, 2P >
P.X{PT = 3¢. Therefore, we obtain (32a).

With the assumptions of stabilizable [A, ch/z]
and detectable [A, C], the initial condition
effects fade away as k — oo and thus we
obtain (32b). O

Remark 8. It can be shown that for Case 3
constrained systems, the filter version of Theorem
3 also holds.

5. CONCLUDING REMARKS

In this paper, we have analyzed the three estima-
tors that can be used for estimating linear systems
with known state equality constraints. Among
them, it was proved that the current constrained
estimator is optimal and thus outperforms the
unconstrained and the projected estimators. The
procedures used for discrete-time system can be
similarly extended to the continuous-time case,
which can be found in Ko (2005).
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