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Abstract: The use of model-based controller or fault diagnosis systems in automo-
tive control requires reliable dynamics models. The reliability consists in accurate
prediction of the vehicle’s behavior, in order to evaluate current driving situations.
Model parameters have to be precisely identified. This depends on the model’s
capability to reproduce the complex dynamics of the real system, by remaining as
simple as possible, for online computation. In this article, a practical approach of
modelling vehicle dynamics is presented. Conventional simplifications are removed
by coupling lateral and roll motion. Besides, nonlinear tire characteristic is pre-
sented. The accuracy and performance of the identified model is demonstrated by
tests on real automotive systems. Copyright c©2005 IFAC
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1. INTRODUCTION

In the sector of automotive and transportation
systems, the research is focused on improving
passenger’s safety and increasing driving comfort.
Systems like the ESP (Electronic Stability Pro-
gram) or ACC (Active Cruise Control) became
standard equipment in modern vehicles. Such Fea-
tures are generally real-time and embedded con-
troller, which are based on mathematical dynam-
ics models. It’s obvious that the performance and
therefore the commercial success of such systems
depend on the accuracy of the implemented mod-
els and the correctness of their parameter settings.
The parity of the last two mentioned factors is the
subject of this paper. Modelling and identification
of lateral dynamics models were treated in inter-
esting publications, such as (Alloum et al., 1997;
Boerner and Isermann, 2002) and (Boros, 2002).
Unfortunately the interaction with other DOF’s
(in particular with the roll motion) is neglected.
This assumption leads mostly to the identification

of nonconstant and velocity dependent parame-
ters, especially for vehicles with high center of
gravity (Boros, 2002; Abdellatif et al., 2003). In
(Wuertenberger et al., 1994) an approach for the
identification of roll dynamics was presented, but
its influence on the lateral motion was not taken in
account. The importance of coupling the roll and
lateral dynamics for the purpose of motion con-
troller’s design were demonstrated in (Abdellatif
et al., 2003; Feng et al., 1998). An other important
factor for model accuracy is the description of
tire lateral forces. Simple widespread linear ap-
proaches are also restricted to limited application.
Since the monitoring of tire dynamics plays a de-
cisive role in evaluating the current drive situation
(Boerner and Isermann, 2002; Sienel, 1997), it is
important to focus on appropriate methods for its
description. In section 2 an accurate approach for
modelling vehicle’s lateral dynamics is presented.
All important factors are taken into account, such
the influence of the roll motion and the nonsta-



tionary and nonlinear tire dynamics. The nonlin-
ear identification method of the model parameters
follows in section 3. Its successful application to
measurements of many car types is illustrated in
section 4. The accuracy of the proposed model
is demonstrated by comparison with classical ap-
proaches.

2. VEHICLE DYNAMIC MODEL

2.1 Linear Lateral Dynamics

For modeling the lateral dynamics, the well re-
puted bicycle model is introduced (Fig. 1). The
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Fig. 1. Bicycle model.

equations of motion in terms of lateral accelera-
tion ay and yaw velocity ψ̇ can be written as:

may = Fyf + Fyr (1)

Jzψ̈ = −lfFy,f + lrFy,r (2)

In the stationary and linear case (small steering
angles), the lateral forces are expressed as a linear
relationship in respect to the related skew angle α:
Fy = cαα, where cα is the tire cornering stiffness.
The skew angle is the argument of the respective
tire velocity vector:

αf = δf −
lf

v
ψ̇ − β

αr =
lr

v
ψ̇ − β

(3)

2.2 Linear Roll Dynamics

Vehicle’s roll dynamics has been studied in many
literature with varying complexity (Wuertenberger
et al., 1994; Feng et al., 1998). Since our prelim-
inary goal is the determination of the influence
of the roll motions on the lateral dynamics, only
a simple modeling is necessary. The schematic
model is shown in Fig. 2. One distinguishes the
mass of chassis ma from the masses of front and
rear axle mf and mr. ma is suspended on four
damper, four spring and two stabilisator devices.
The differential equation of the roll motion κ is
then :

(Jx +mah
2

r)κ̈+ dκκ̇+ cκκ−maghrκ =

mahr[

∑

Fy

m
−
mf +mr

m
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(4)
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Fig. 2. Scheme of the roll dynamics model.

This equation can be simplified to:

Jκκ̈+ dκκ̇+ cκκ−maghrκ = mahray, (5)

where

Jκ = Jx +mah
2

r +
mf +mr

m
h2

r

cκ = cSTf + cSTr + cs2

dκ = ds2

(6)

The interaction of the roll motion with the lateral
dynamics can be deduced by computing the skew
angles at the front and rear axles:

αf = δf −
lf

v
ψ̇ − β −

hr

v
κ̇

αr =
lr

v
ψ̇ − β −

hr

v
κ̇

(7)

One notices the difference to eq. 3 with the ap-
pearance of the roll rate κ̇ in the new formula.
In fact the roll motion contributes to the scaling
down of the tire skew angles.

2.3 Tire Model

The tire model is the most significant part of
the lateral dynamics, which makes an accurate
modelling of its physical behavior very necessary.
One distinguishes between stationary and nonsta-
tionary tire behavior. Stationary properties de-
scribe nominal values for tire forces by constant or
static physical variables (skew angle, tire slippage,
vertical forces). Non stationary behavior considers
the dynamics of the build up of tire forces.

2.3.1. Nonlinear Stationary Tire Properties It
is known from practice, that the lateral dynamics
are greatly affected by the tire’s nonlinear prop-
erties. Many theoretic and empirical models have
been proposed for the description of the tire non-
linear performance. The most popular approach is
the magic formula (Pacejka and Besselink, 1997).



Other models express the relationship between
cornering force and skew angle in polynomial form
(Qu and Liu, 2000). A more interesting approach
is the use of intelligent learning systems, such neu-
ral networks for the description and online adap-
tation of the complex tire behaviour (Holzmann
et al., 1999). In the following only analytical ex-
pressions of tire characteristics are discussed.

a[°]

Fig. 3. Nonlinear tire characteristics for lateral
forces.

The magic formula or the polynomial models are
convenient for the simulation of vehicle’s dynam-
ics. The huge amount of the related parameters
yields however bad conditioned identification. We
propose the following simplification of the magic
formula for the lateral forces:

Fy = fT (α) = cα sin(C arctan(Bα)) (8)

The degressive characteristics is depicted in Fig. 3
and corresponds to the known tire nonlinearity.
Two quantitative properties of fT are its limes in
infinity:

lim
α→∞

fT = cα sin(
π

2
C), (9)

and the value of its derivative at α = 0, which cor-
responds to the linearization of the characteristics
for small angles:

∂fT

∂α |α=0

= cαCB, (10)

which is useful for the verification of the compat-
ibility with the linear case (CB

.
= 1).

2.3.2. Tire Dynamics The consideration of tire
dynamics is necessary to increase model accuracy
for driving maneuver with high steering frequen-
cies (usually≥1Hz). It’s obvious that the station-
ary approach is only restricted for constant or very
slow varying skew angles (Abdellatif et al., 2003).
The tire dynamics are modeled as a delay unit of
the 1st order:

lT

v
Ḟy + Fy = fT (α), (11)

where lT is a tire delay constant and is the dis-
tance needed by the tire to build up the cornering
force after a steering intervention from the driver.

2.4 Vehicle’s Nonlinear Dynamics

The complete model of the vehicle’s nonlinear
dynamics results by combining all the above pre-
sented equations (eq. 1 to eq. 11). The block
diagram in Fig. 4 displays in a clear way the
building of the lateral dynamics. We summarize
by the definition of the dynamics state vector:

x =
[

ay ψ̇ κ
]T

, (12)

and the unknown model parameter vector

p =
[

pT

lin | pT

nonlin

]T

, (13)

which is subdivided in a parameter vector for the
linear model part:

plin =
[

Jz lTf lTr cαf cαr Jκ dκ cκ
]T
,(14)

and a parameter vector for the nonlinear tire
characteristics:

pnonlin =
[

Cf Bf Cr Br

]T
. (15)

The rest of the model parameter (such as lf ,lr,hr,
etc..) are supposed to be known, since they can
be directly and accurately measured.

3. NONLINEAR IDENTIFICATION METHOD

Since the model approach is high nonlinear in
its states and in its parameters, it is reasonable
to use nonlinear methods for its identification. A
loss function is defined as a nonlinear least square
formulation:

I(p) = fTQf . (16)

f(p) is a vector function of model observation
errors in respect to the lateral accleration ay,

the yaw rate ψ̇ and the roll angle κ. Q is a
diagonal weight matrix, which is used to equalize
the different order of magnitude of the three
dynamics states. Minimizing the loss function I by
implementing a nonlinear optimization technique
yields an estimation for the model parameter p̂.
Iteratively a new estimate is computed with the
Newton’s method:

p̂k = p̂k−1 −H−1

k−1
gk−1, (17)

where H and g are respectively the Hessian and
the gradient of the loss function. The gradient can
be formulated as:

gk = 2JT

k fk. (18)
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Fig. 4. Block diagram for nonlinear and coupled lateral and roll motion

J denotes the Jacobian of the loss function in
respect to the parameter vector. The Hessian is
obtained by:

H = 2JTJ + 2S2nd, (19)

where S2nd is a second order sensitivity matrix
(Nelles, 2001), which is estimated with an aux-
iliary algorithm. Considering eq. 18 and 19, the
estimate update of eq.17 becomes:

p̂k = p̂k−1−

(JT

k−1
Jk−1 + S2nd

k−1
)−1JT

k−1
fk−1

(20)

It is recommended to use the Cholesky factoriza-
tion to inverse the Hessian Matrix.

4. EXPERIMENTAL RESULTS

The presented approach of modelling the lateral
dynamics as well as the related identification
method were successfully accomplished for 7 dif-
ferent test vehicles. Mid-size vehicles, limousines,
transporter as well as compact cars were in-
cluded (Abdellatif et al., 2003). The efficiency and
accuracy of our model approach is demonstrated
by comparing the results to alternative classic
approaches. For clarity reason the results are pre-
sented separately for the parameter of the linear
submodel and for the nonlinear tire characteris-
tics, although the identification was accomplished
for the integral model.

4.1 Parameter Identification for Linear Submodel

The presented approach in this paper distin-
guishes itself by the systematic and correct con-
sideration of the roll motion’s influence on the
vehicle’s lateral dynamics. In our research, we

found, that this influence is important for two
major cases:

• for vehicles with high center of gravity or
high chassis mass at every speed

• for all vehicles at small speed (≤ 60km/h)

Neglecting the interaction of the lateral with the
roll motion yields non reasonable velocity de-
pendent parameter. The role of correct modeling
should not be neglected to achieve good and ac-
curate results. Fig. 5 shows the yaw velocity’s fre-

f [Hz]

Fig. 5. Yaw velocity in frequency domain for a
vehicle with high centre of gravity , (...) real
vehicle, (- -) classic noncoupled model, (—)
coupled model.

quency response for a vehicle with a high center of
gravity. In contrast to the classical non-coupled bi-
cycle model, the presented approach yields the im-
provement of the reproduction of the real vehicle’s
behavior. For mid-size cars or compact-vehicles,
the influence of roll motion can be neglected only
for velocities, which are higher than ≈60 km/h,
without affecting greatly the model’s accuracy.
Fig. 6 shows the lateral acceleration’s frequency
response for a mid-size vehicle at a low velocity
(40 km/h). It proves the importance of consid-
ering the roll motion, which affects also the ac-



curacy of the identified parameters.Its Neglecting
yields automatically velocity-dependent parame-
ters, which make no physical sense (e.g. velocity-
dependent yaw inertia). This effect is shown in
Fig. 7. The car speed’s dependency of the yaw

f [Hz]

Fig. 6. Lateral acceleration in frequency domain
for a mid-size car at low speed, (...) real
vehicle, (- -) classic non coupled model, (—)
coupled model.

inertia, which was also observed in (Boros, 2002)
for commercial and heavy vehicles is eliminated by
implementing our model approach. For such vehi-
cles all parameters are affected. For mid-size cars
however, parameter deviations were observed only
at small vehicle’s speed (Abdellatif et al., 2003).
The augmentation of the number of parameters

v [km/h]

Fig. 7. Identified yaw Inertia for a heavy trans-
porter.

in the presented approach does not decline their
precise identification. All the additional parame-
ter (in comparison to the classical approach) were
identified accurately. Fig. 8 shows exemplarily the
results for the roll damping constant dκ.

4.2 Identification of Tire Characteristics

Vehicle’s lateral dynamics can be considered as
linear for lateral acceleration up to 4 m/s2. Above
this value, the dynamics are greatly affected by

v [km/h]

Fig. 8. identified roll damping ratio for a heavy
transporter

the nonlinear tire behavior. For sufficient excita-
tion of the parameter vector pnonlin, it is neces-
sary to consider drive maneuver with high steering
angles, such steer ramps or steer steps. Table 1
presents exemplarily the identification’s results of
the nonlinear submodel for 3 different vehicles.
The characteristics of vehicle nr. 3 was identified
for two different tire types (3-1 and 3-2).

Table 1. Identified parameter of the non-
linear tire characteristics for 3 different

vehicles

veh. nr. Cf Bf CfBf Cr Br CrBr

1 0.06 17.34 1.04 0.04 24.45 0.98

2 0.09 11.38 1.02 0.05 22.67 1.13
3-1 0.08 13.04 1.04 0.04 25.90 1.04
3-2 0.09 11.02 0.99 0.04 24.48 0.98

It was mentioned in section 2.3, that the product
CB is useful to verify the compatibility of the
nonlinear model with the linear subpart. Table 1
shows, that the identified nonlinear model can be
applied to all driving situations, since this product
is always ≈ 1. Fig. 9 depicts the output of the
linear and nonlinear models in comparison with
real vehicle’s data measured while a steer ramp
maneuver (maximal steering angle of 75◦). In
the area of low lateral acceleration the nonlinear
as well as the linear approach display accurate
prediction. At high lateral acceleration, only the
nonlinear approach is able to reconstruct the real
vehicle behavior. Certainly it is possible to adjust
the parameter of the linear model to reduce the
model error during critical situations. This yields
though non realistic parameter values and can
besides never display the degressive character of
the real dynamics. Finally, to demonstrate the
accuracy of the modelling approach on practi-
cal driving situation, model errors of the lateral
acceleration and yaw rate are recorded while a
lane change maneuver. A comparison between the
errors of the linear model and those of the non-
linear model is depicted by Fig. 10. The nonlinear
approach yields as excepted high improvement of
the model’s accuracy.
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Fig. 9. Comparison of the lateral acceleration with
linear and nonlinear model approach
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Fig. 10. Comparison of model error between lin-
ear and nonlinear approach. (Top: for lateral
acceleration, down: for yaw rate)

5. CONCLUSIONS

The aim of this article was to present a practical
and accurate approach for modeling vehicle’s lat-
eral dynamics for the application in vehicle’s dy-
namic control. Many conventional simplifications
were removed. Additionally to the consideration
of tire dynamics, the influence of roll motion on
the lateral dynamics was integrated. A simple
and effective approach for the description of tire
nonlinear characteristics was presented. The sub-
sequent identification of the model proved the
efficiency and high accuracy of the integral model.
Successful experiments on wide range of vehicles
was presented to demonstrate the practicability
and general validity of the proposed model.
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NOMENCLATURA

ay lateral acceleration [ms−2]

ψ̇ yaw rate [rad/s]

κ roll angle [rad]

β vehicle slip angle [rad]

v vehicle velocity [m/s]
vf front tire’s velocity [m/s]
vr rear tire’s velocity [m/s]

α tire’s skew angle [rad]
δf steering angle of front wheel [rad]

Fy tire lateral forces [N]

s track-width [m]


