WAVELET APPROXIMATION FOR
IMPLEMENTATION IN DYNAMIC
TRANSLINEAR CIRCUITS

J.M.H. Karel* R.L.M. Peeters* R.L. Westra*
S.A.P. Haddad ** W.A. Serdijn **

* Universiteit Maastricht, Department of Mathematics,
P.O.Box 616, 6200 MD Maastricht, The Netherlands
** Technische Universiteit Delft, Faculty of Information
Technology and Systems, Electronics Research Laboratory,
Mekelweg 4, 2628 CD Delft, The Netherlands

Abstract: For applications requiring low power consumption, signal processing
in the analog domain is preferable. Approximate implementations of wavelet
transforms in analog hardware can be achieved with dynamic translinear circuits.
The quality of such implementations depends on the accuracy of the corresponding
wavelet approximations. A design trade-off involves the approximation accuracy
versus the complexity (model order) of the implemented filter. First we discuss
the technique of Padé approximation for obtaining wavelet approximations.
Then we present the technique of Lo-approximation, which is conceptually more
attractive but computationally more demanding. These techniques are compared
by means of a worked example, involving Gaussian wavelet approximation and
real measurements of an ECG signal. The Lo-approximation approach is shown to

exhibit superior performance. Copyright (©2005 IFAC
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1. LOW-POWER IMPLEMENTATION OF
WAVELET TRANSFORMS

In implantable medical devices such as pacemak-
ers power consumption, especially for for sensing
circuits, is a critical issue because battery life is
limited. In order to perform digital signal process-
ing, an A/D (analog to digital) converter is re-
quired to transfer analog sensor information to the
digital domain. Depending on the number of bits
used, this is a heavy power consuming operation.
For power consumption considerations it therefore

1 This paper is part of the BioSens project that is being
funded by STW (Project no. DTC 6418).

is preferable to perform as many computations as
possible in the analog domain.

In previous work dynamic translinear (DTL) cir-
cuits have been used to implement low power sig-
nal processing operations. In (Haddad et al., 2004)
a DTL approach is described which aims to im-
plement the Gaussian wavelet transform in the
analog domain for the purpose of cardiac signal
analysis. The performance of such an implemen-
tation depends largely on the accuracy of the
approximations involved in this approach. From
a technological point of view, the quality of the
hardware components used in the manufacturing
process may have a considerable impact on the
performance of the IC, but we will not go into



such issues here. From a conceptual point of view,
one of the critical steps concerns the approxi-
mation of the Laplace transform of the (time-
reversed and shifted) Gaussian wavelet function
by means of a strictly proper rational function of
low order. For this purpose the classical technique
of Padé approximation has been proposed. See
(Baker Jr., 1975; Bultheel and Van Barel, 1986)
for more details and a survey.

In the present paper we first discuss the advan-
tages and disadvantages offered by the Padé ap-
proximation technique and some of its general-
izations. We then present a second method for
obtaining DTL-implementable approximations of
wavelet transforms, based on Ls-approximation.
While the two approaches discussed in this paper
can be used to approximate a variety of functions
and transforms, the focus in this paper will be
entirely on wavelet transforms.

Wavelet transforms usually cannot be imple-
mented exactly in analog electronic hardware.
The IC design of linear filters of finite order
is quite well understood though. If a time sig-
nal f(t) is passed through a linear system, then
f(t) is convolved with the impulse response
h(t) of that linear system, producing the out-
put signal [~ f(T)h(t — T)dr. On the other
hand, the continuous wavelet transform W (¢, o)
of f(t) associated with a given mother wavelet
¥(t) on a scale o, is obtained as the integral
% ffooo fr)y (TT_t) dr. Therefore, the analog
computation of W (t,o) can be achieved through
the implementation of a linear filter of which the
impulse response satisfies h(t) = %w(ft/o). For
obvious physical reasons only the hardware im-
plementation of (strictly) causal stable filters is
feasible. In other words, an implementable linear
filter will have a (strictly) proper rational transfer
function H (s) that has all its poles in the complex
left half plane.

Note that h(t) will then be zero for negative ¢, so
that any mother wavelet ¢(¢) which does not have
this property must be time-shifted to facilitate
an accurate approximation of its (correspondingly
time-shifted) wavelet transform W (¢, o). This may
result in a truncation error for a wavelet that does
not have compact support, such as the Gaussian
wavelet. Note that an approximation error will
also be due to the fact that a wavelet does not
usually possess a rational Laplace transform.

Padé approximation provides a method to ob-
tain a rational approximation, which for the in-
tended application requires one to work in the
frequency domain. Instead, the technique of Lo-
approximation can be formulated equally well in
the time-domain and in the frequency domain,
which offers some useful advantages as will be

demonstrated. The quality of the approximations
resulting from these two approaches is evaluated
on a practical level by comparing the resulting
wavelet transformations on a data set of a heart
signal. This shows that the DTL-implementable
wavelet transform approximations obtained with
the Lo-approximation approach exhibit improved
performance.

2. PADE APPROXIMATION OF WAVELET
FUNCTIONS

In (Haddad et al., 2004) Padé approximation is
employed to approximate a given mother wavelet
¥ (t) in the Laplace domain by a suitable rational
function H (s). More precisely, H(s) constitutes an
approximation of the Laplace transform W(s) of
the time-reversed and time-shifted mother wavelet
Y(t) = (to — t), where to denotes the time-shift
involved.

Any Padé approximation H(s) of W(s) is charac-
terized by the property that the coefficients of the
Taylor series expansion of H(s) around a selected
point s = so coincide with the corresponding
Taylor series coefficients of W(s) up to the highest
possible order, given the pre-specified degrees of
the numerator and denominator polynomials of
H(s). If we denote the Padé approximation H(s)
at s = sg and of order (m,n) with m <n by

H(s) = P8 = 50)" £ pis - R M R oF
(s—s0)"+qi(s —s0)" ' +...+qn

(1)
then there are n+m+1 degrees of freedom, which
generically makes it possible to match exactly the
first m + m + 1 coefficients of the Taylor series
expansion of ¥(s) around s = so. In fact, this
matching problem can easily be rewritten as a
system of n + m + 1 linear equations in the n +
m+ 1 variables po, p1, .-, Pm>q1, - - - > Gn- See, e.g.,
(Baker Jr., 1975).

This brings us to one of the main advantages of
Padé approximation: the linear system of equa-
tions will generically yield a unique solution which
is easy to compute. Moreover, a good match is
guaranteed between the given function ¥(s) and
its approximation H(s) in a neighborhood of the
selected point sg. However, there are also some
disadvantages which limit the practical applicabil-
ity of this technique in the setting of this paper.

Omne important issue concerns the selection of the
point sg. Note that a good approximation of ¥(s)
over the entire (complex) Laplace domain is not
a requirement per se. Instead, an approximation
is needed which performs well when used for con-
volution in the time domain. Since the function
Y(t) is a wavelet, it effectively will have compact
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Fig. 1. Padé approximations of Gaussian wavelet

support and in particular it should be approxi-
mated well in the region of the time domain where
it ‘lives’: which is somewhere near t = 0. Now,
the initial value theorem for the Laplace transfor-
mation states that limg o h(t) = lims_.oc SH(S),
which motivates the choice sp = co. This choice
will lead to a good approximation of (t) near
t = 0, as is demonstrated in Figure 1 for a 7th
order approximation of the Gaussian wavelet.

A second important issue concerns stability. The
approximation h(t) of (t) is required to tend
to zero for large values of ¢, since zZ(t) will have
this property too. However, stability does not au-
tomatically result from the Padé approximation
technique. Indeed, if emphasis is put on obtaining
a good fit near ¢t = 0 by choosing sy = oo, it
may easily happen that the resulting approxima-
tion becomes unstable: see again the 7th order
approximation in Figure 1. The selection of a
suitable point sg involves a trade-off between a
good fit near ¢ = 0 and stability, yielding a non-
trivial problem which may be difficult to handle,
depending on the wavelet at hand. In this respect
it may be of interest to note that the 5th order
approximation described in (Haddad et al., 2004)
was obtained with the choice sg = 0 which actu-
ally corresponds to a good fit in the time domain
for large values of t (see Figure 1).

A third issue concerns the choice of the degrees
m and n of the numerator and denominator poly-
nomials of the rational approximation H(s). An
unlucky choice may yield an inconsistent system of
equations or an unstable approximation. Chang-
ing m or n may solve this problem, but the con-
verse may also happen: one may run into stability
problems even if sq is left unchanged.

In (Bultheel and Van Barel, 1986) an overview is
given of various generalizations and extensions of
Padé approximation which aim to deal with some
of the problems just mentioned. For instance, it
is possible to choose some or all of the poles of
the rational approximation H(s) in advance. This
offers a possibility to deal with the stability issue,
but no clear theory exists on the optimal choices
for these poles. Another generalization involves
the possibility to use more than one interpolation
point, which for instance offers a method to deal

with the trade-off between sg = oo and s = 0in a
more systematic way. Yet another possibility is to
deal with many interpolation points sg, s1, ..., Sk
and to require only a match between the values
of H(s;) and ¥(s;) for ¢ = 0,1,...,k, no longer
taking any derivatives at these points into ac-
count. One may even specify more interpolation
points than the number of unknowns and use a
linear least squares estimation technique to arrive
at a unique solution. The advantage of such an
approach is that one can optimize the function
over a better distributed and controlled set of
points than with classical Padé approximation.
One may choose complex values here. A 9th order
approximation of the Gaussian wavelet function
obtained with this method is illustrated in Figure
1. This shows the feasibility of the approach, but
for low order approximations the choice of interpo-
lation points becomes more critical and the results
are markedly less well.

However, all of these techniques remain to have
one important drawback in common: the qual-
ity of the approximation of the wavelet is not
measured directly in the time domain but in the
Laplace domain, and the criterion used does not
allow for a direct interpretation in system theo-
retic terms.

3. Ly-APPROXIMATION OF WAVELET
FUNCTIONS

The theory of Lo-approximation provides an al-
ternative framework for studying the problem of
wavelet approximation which offers a number of
advantages. On the conceptual level it is quite
appropriate to use the Ls-norm to measure the
quality of an approximation h(t) of the function
1;(75) Indeed, the very definition of the wavelet
transform itself involves the Lo-inner product be-
tween the signal f(¢) and the mother wavelet ().
It is also desirable that the approximation h(t) of
¥(t) behaves equally well for all time instances t
since h(t) is used as a convolution kernel with any
arbitrary shift. This property holds naturally for
Lo-approximation, but it is not supported by the
Padé approximation approach.

Another advantage of Ls-approximation is that
it allows for a description in the time domain as
well as in the Laplace domain, so that both frame-
works can be exploited to develop further insight.
According to Parseval’s equality the squared Lo-
norm of the difference between (¢) and h(t) can
be expressed as:

16— A2 = / " () — h(e)? dt (@)

_ L jo [ (i) — H (i) C . (3)



Minimization of HJ — hl| is therefore equivalent
to minimization of the Lp-norm of the difference
between the Laplace transforms U(s) and H(s)
over the imaginary axis s = iw. Note that this
observation provides a rationale for the choice of
interpolation points in a generalized Padé approx-
imation approach.

One of the disadvantages of an Lo-approximation
approach is that there is a risk that the numerical
optimization of ||¢) —hl| ends in a local, non-global
optimum. Several global optimization techniques
and software packages exist but in general they
provide no global optimality guarantee. Different
starting points can give different local optima and
thus can be used to find better solutions. Also, the
outcomes of other approximation techniques can
be used as starting points for Ls-approximation.

Particularly in the case of low order approxima-
tion, the Lo-approximation problem can be ap-
proached in a simple and straightforward way in
the time domain. As is well known from linear
systems theory (see, e.g., (Kailath, 1980)) any
strictly causal linear filter of finite order n can be
represented in the time domain as a state-space
system (A, B, C') described by a set of associated
differential equations of the form:

=
—~

~+~
~—

I

Ax(t) + Bu(t), (4)
y(t) = Cx(t), ()

where u(t) denotes the scalar input to the filter,
y(t) the scalar filter output and z(¢) € R™ the
state vector at time ¢. (Here, the direct feed-
through is set to zero to achieve strict causality.)
Then the impulse response function A(t) and its
Laplace transform H(s) (i.e., the transfer function
of the system) are given by:

h(t) = Ce'B, (6)
H(s)=C(sI — A)"'B. (7)

For the generic situation of stable systems with
distinct poles, the impulse response function h(t)
is a linear combination of damped exponentials
and exponentially damped harmonics. For low
order systems, this makes it possible to propose an
explicitly parameterized class of impulse response
functions among which to search for a good ap-
proximation of ¢(¢). For instance, if a 5th order
approximation is attempted, this parameterized
class of functions h(t) may typically have the
following form:

h(t) = p1eP®" + paeP™ sin(pgt) + pae?™ cos(pst)
+paeP?t sin(piot) + psef?t cos(piot), (8)

where the parameters pg, pr and pg must be
strictly negative for reasons of stability. Note that

wavelets typically are oscillatory functions so that
a good fit requires the contribution of sufficiently
many damped harmonics, which further explains
the structure of this class.

For the purpose of IC design it is useful to have
an associated state-space representation (A7 B, C')
available. Such a representation is for instance
provided by:

s 0 0 0 0 1
0 pr ps 0 0 0
A= 0 —ps P7 0 0 ) B = 1 i
0 0 0 py pio 0
0 0 0 —pio po 1
C=(pLp2p3spaps). (9)

Given the explicit form of the wavelet ¢ (¢) and
the parameterized class of functions h(t), the Lo-
norm of the difference 15 —h can now be minimized
in a straightforward way using standard numerical
optimization techniques and software. The nega-
tivity constraints on pg, p7 and pg which enforce
stability are not difficult to handle.

4. FURTHER WAVELET RELATED ISSUES

One common property of a wavelet function 15 (t)
that was undiscussed so far is that its integral is
usually equal to zero: fooo Y (t)dt = 0. If this prop-
erty is not shared by the approximation h(t), this
will cause an unwanted bias in the approximation
of the wavelet transform. This is likely to happen
in a situation where a truncation error occurs.

In terms of linear filters, the property that the
integral of the impulse response function h(t) is
zero is equivalent to the property that the step
response of the filter tends to zero for large t.
Indeed, if the wavelet transform is computed for
a step input signal, then a bias will be manifest if
such a property is not satisfied.

From the properties of the Laplace transform
it holds that lim, .o [} h(r)dr = limgo H(s).
Therefore, the desired property comes down to
H(0) = 0. In terms of a state-space representation
(A, B,C) we have that

H(0)=-CA™'B. (10)

As an example, for the representation (9) it is not
difficult to compute A~ since it is block diagonal.
This yields the explicit condition:

P1 | —P2pP8 +P3pr | —P4P1o + P5Pg
Do P2 + p? ps +pio
If such an extra nonlinear condition is not con-
veniently handled by the optimization software,

then it can easily be used to eliminate one of the
variables from the problem.

=0. (11)



5. EXAMPLE: L,-APPROXIMATION OF THE
GAUSSIAN WAVELET

To demonstrate the Li-approximation technique
we consider approximation of the Gaussian wavelet,
which is a favorite choice in many biomedical
wavelet applications; see, e.g., (Sahambi et al.,
1997). The outcomes are compared to the approx-
imation obtained in (Haddad et al., 2004) using
Padé approximation. The Gaussian wavelet 1)(t)
is defined to be proportional to the first derivative
of a Gaussian probability density function ¢(t):

o(t) = (2)7e" and p(t) = —2(2)F et If
one chooses the time-shift ¢ty = 2, this gives rise
to the following time-reversed and time-shifted
wavelet function:

D(t) = —2 (%) 2—te @D (12)

This function is truncated at t = 0, since only
causal filters can be implemented. Note that the
truncated wavelet 1(t) no longer has a zero inte-
gral.

The choice of the time shift ¢t = 2 involves an
important trade-off that should be made with
care. If ¢ is chosen too small, the truncation error
will become too large. On the other hand, if ¢ is
chosen too large, the function to be approximated
will become very flat near ¢ = 0. This effectively
introduces a time-delay, which implies that a good
fit can only be achieved with a filter of high
order. However, the energy consumption of the IC
increases with the order of the filter, so one of the
prime design goals is to keep this order as small
as possible.

To obtain a stable 5th order approximation of {/; (t)
the Lo-approximation technique was applied using
the parameterized class of functions given by Eqn.
(8), where the stability constraints on pg, pr and
py and the additional constraint of Eqn. (11) were
taken into account. The outcomes of the numerical
optimization procedure depend on the choice of
the starting point, for which several values were
tried. The following filter was obtained:

0.0125* — 1.567s% + 3.5645% — 30.1s
s% + 4.069s% + 16.4253 + 30.052 + 38.07s + 18.89
(13

H(s) =

The corresponding wavelet approximation h(t) is
shown in Figure 2, yielding an Ls-approximation
error equal to 0.0472.

By fitting the function ¢ (¢) with a 7th order model
with three damped harmonics, using the same Lo-
approximation technique, an Ls-approximation
error equal to 0.00697 was obtained. This 7th
order approximation is given by H(s) =

—0.061s% — 1.06s° — 3.93s — 58.25% — 14.45? — 859s

ST +9.256 4 5755 + 22454 + 59953 4 106552 + 11325 + 566
(14)

Its wavelet approximation is shown in Figure 2.
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Fig. 2. Approximations of the Gaussian wavelet.

6. PERFORMANCE EVALUATION

To determine the quality of the wavelet approx-
imations obtained with the various techniques,
one may resort to the computation of their Lo-
approximation errors. However, this will favor
the Lo-approximation approach, and more impor-
tantly it does not provide direct insight in the
quality of the wavelet transforms that are ob-
tained with the approximations h(t) when applied
to an actual data set.

Recall that h(t) is used to approximate the
wavelet function 1(t) = 1 (to—t). For a given time
signal f(t), the approximate wavelet transform
Wh(t,o) obtained with h(t) at a certain scale o
is therefore given by:

1 [ L t—r J
Wi(t, o) = %/_O@f@') (toJr T) T.

(15)
To evaluate the similarity between the intended
wavelet transforms W (¢, o) and their approxima-
tions Wy, (t,0), we may discretize the time axis
and consider a number of different scales ¢. In this
way, W (t,o) and Wy (t,0) are stored as matrices
of wavelet coefficients, which can conveniently be
compared using matrix norms.

Four different matrix norms are considered in this
paper: (i) the matrix 1-norm or column sum norm,
defined as the maximum of the 1-norms of the
columns of a matrix; (ii) the matrix oco-norm or
row sum norm, defined as the maximum of the
1-norms of the rows of a matrix; (iii) the matrix
2-norm or spectral norm, defined as the largest
singular value of a matrix; (iv) the Frobenius norm
or Euclidean norm, defined as the square root of
the sum of squares of all the matrix entries.

Another important issue for the evaluation of
a wavelet transform approximation concerns the
location of the modulus maxima. This aspect is
tested by comparing the modulus maxima ridges
in the original Gaussian wavelet transform with
the ridges in the approximation, using a triangu-
lar weight function which discounts the distance
between a reference ridge and its approximation.

The evaluation criteria discussed in this section
have been calculated for three different wavelet



transform approximations: (a) the approximation
(PadeO5), obtained in (Haddad et al., 2004) using
a bth order Padé approximation. The approxima-
tion in that paper is performed on a non-time-
reversed Gaussian wavelet, ignoring the constant
(%)% and setting the constant term in the Laplace
transform of the wavelet function to zero. This
gives the following transfer function:

—(2)7(5.755° — 18.35% + 92.4s)

H(s) = ;
(s) 55 4 8.335% 4 33.0s3 + 74.852 + 94.55 + 52.3(.
1

6)
(b) the approximation (L205) obtained with the
5th order Lo-approximation of Eqn. (13); (c)
the approximation (L207) obtained with the 7th
order Lo-approximation of Eqn. (14).

As an actual data set to compute the wavelet
transform we have used a 30 minutes, 360Hz
sampled episode of a heart signal from Phys-
ioNet’s nstdb database; see (Goldberger et al.,
2000). The systems were simulated for scales o =
1,2,4,8,16,32. The results are listed below.

Table 1. Evaluation of approximations.

Criterion PadeO5 L205 L207
L2 norm 0.166 0.0472 0.00697
Col. sum 636.9 409.5 398.7

Row sum  2.24-107 851-10 6.15-106
Spectral 4.49-10*  220-10* 2.10-10*
Frobenius  5.25-10% 2.78.10% 2.51-10%
Mod. max. 1.24-10° 1.27-10 1.31-106

For all but the modulus maxima measure a lower
value indicates a better performance. This shows
that Ls-approximation gives superior results over
Padé approximation for this application.

7. CONCLUSIONS

As we have seen, the Padé approximation ap-
proach has the advantages that it is a fast algo-
rithm and that it yields a unique solution. How-
ever the selection of the orders m and n is not
a straightforward task. Furthermore the selection
of the expansion point sg is a trade-off between
stability and a good fit around zero in the time
domain. Extensions and generalizations of this
technique can partially overcome these problems,
but they all have the drawback that the quality
of the approximation of the wavelet is measured
in the Laplace domain instead of in the time
domain and it has no direct physical interpreta-
tion. Increasing the order of the approximation
will make it easier to find a good approximation;
however this will result in an increase in power
consumption that may not be acceptable for the
intended application.

The proposed Ls-approximation technique is ap-
propriate since wavelet transforms are Lo-inner

products, all time instances are treated equally
well and it has a convenient reformulation in the
Laplace domain. The fit is performed directly
in the time domain yielding good control and
easy interpretation of the optimization criteria.
With this approach it is possible to approximate
wavelets that can not be approximated sufficiently
well with an acceptable order in a straightforward
way with the Padé approach. The drawbacks of
this technique are that it is computationally more
demanding than the Padé approach and that no
guarantees for global optimization exist.

A possible approach to select a starting point is
to first compute a high-order close approximation
(which should be easy to obtain) and then to
perform model reduction, for instance with the
popular balance and truncate procedure. This
approach is currently under investigation.
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