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Abstract:
Active vibration damping of flexible structures requires the positioning of actuators
and sensors along the structure. When the actuators become particularly small in
comparison to the structure a large number of modes is necessary to accurately
represent the response of the structure. Neglecting these higher modes may result
in a spillover phenomenon which is capable of destabilizing the closed loop system.
Therefore proper correction methods to account for the dynamics of higher modes
in the structural model have to be found. One such possibility is the utilization of
Frequency Response Modes (FRM), a special form of the particular solution of the
equations of motion of a flexible structure. In this paper the FRM is defined and
used for model correction of a simply supported beam. Finally, correction terms
are used to quantize local actuator action. Copyright c©2005 IFAC
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1. INTRODUCTION

Structural control is a well established control ap-
plication. Damping vibrations of machinery parts,
vehicle- or space structures is necessary for their
functionality as well as for the reduction of noise
radiation.
For these applications the controller is designed
using a low order model of the flexible structure.
Such a model is usually obtained by finite element
(FE) methods and thus has to be reduced for the
purpose of controller design.
Since usually only the first few modes of the flexi-
ble structure are to be controlled, the FE model is
often reduced by direct truncation, i.e. neglecting
the higher modes of the system leading to a linear
modal model. This may lead to problems - and in
the worst case - to instabilities of the closed loop
system because neglected dynamics are excited.

This phenomenon is called spillover and is well
documented in the literature (Balas, 1978) and
(Balas, 1982).

This work points out, that especially when the
the actuator is small in comparison to the flexible
structure, the model of the system has to be cor-
rected to reduce spillover effects. For example, this
is important for the active vibration damping of
a railcar-body (Horwatitsch, 2004). The proposed
tool for this correction is called the ’Frequency
Response Mode - FRM’ which is a particular
solution of the flexible system under considera-
tion. In difference to the literature, where many
investigations concerning beams and plates, e.g.
(Halim and Moheimani, 2001), can be found, the
local actuator action has not been examined yet.
This is necessary because these local actions re-



quire higher modes for the accurate composition
of the system response. Utilizing the FRM a sim-
ple yet efficient method for model correction is
proposed. The performance of the new method to
suppress spillover is demonstrated, and the con-
sequences for actuator and sensor placement are
stated. Furthermore, the principles of an extended
positioning criterion are outlined.

This work summarizes the theory of FRM in
section 2 to compare the results with the control
engineering notation in section 3. In section 4
these results are verified using a very simple
example of a beam with pinned-pinned boundary
conditions. Finally, the basic idea concerning a
criterion for the optimal placement of actuators
and sensors is proposed to give some outlook on
future work.

2. MODEL REDUCTION AND FREQUENCY
RESPONSE MODE (FRM)

2.1 Modal model

The static and dynamic properties of large flexible
structures with N degrees of freedom are gener-
ally described by the following system of linear
differential equations

Mẍ + Cẋ + Kx = f(t), (1)

where M is the (N × N) mass matrix, C the
(N × N) damping matrix, K the (N × N) stiff-
ness matrix, x the (N × 1) vector of generalized
coordinates and f(t) the (N × 1) vector of the
generalized excitation forces. These matrices are
normally computed by finite element methods.
With the help of an appropriate transformation
matrix Φ a transformation of (1) to diagonal form
is accomplished. If one substitutes

x(t) = Φz(t) =
N

∑

j=1

φjzj(t), (2)

where Φ contains the eigenvectors of (1) as col-
umn vectors, into (1) and multiplies (1) with ΦT

from the left, one yields

µz̈ + 2µζΩż + µΩ2z = ΦT f(t) (3)

with

ΦT MΦ = diag(µi) = µ

ΦT KΦ = diag(µiω
2
i ) = µΩ2 (4)

ΦT CΦ = 2diag(µiζiωi) = 2µζΩ.

Here µ is the matrix of modal masses, ζ the
matrix of modal damping and Ω the matrix of

eigenfrequencies of (1).
Representation (3) of (1) in modal coordinates
is also called modal decomposition. By (3) the
system is completely decoupled and represented
by N single degree of freedom oscillators.
The number N is often very large and has to be
reduced to n < N modes for control purposes.
When n eigenmodes are used to represent the sys-
tem dynamics, additional functions become nec-
essary for the accurate description of the elastic
deformations. For that purpose the usage of par-
ticular solutions of (1) is advantageous as stated
in (Dietz, 1999).

2.2 Particular solution of (1) and frequency response
mode

For a harmonic excitation f(t)

f(t) = F ejΩ0t (5)

the particular solution xp(t) can be written as

xp(t) = Xpe
jΩ0t. (6)

If (5) and (6) are substituted into (1) and (2) is
applied to (1),

Xp =

N
∑

i=1

φiφ
T
i

µi(ω2
i − Ω2

0 + 2jζiΩ0ωi)
F (7)

follows. From (7) one observes that the particular
solution is composed by the eigenvectors φi which
is determined by simulation and used additionally
to a set of n eigenvectors. Since this method
is applicable to free floating bodies, as opposed
to static modes, no problems finding appropriate
boundary conditions arise. For each excitation or
control force a particular solution Xp as response
for unitary amplitude is computed.
Eliminating the effect of the first n eigenmodes
from Xp according to (7), leads to

X⊥

p =
N

∑

i=n+1

φiφ
T
i

µi(ω2
i − Ω2

0 + 2jΩ0ζiωi)
F . (8)

The part of the particular solution X⊥

p which
is orthogonal to the first n eigenmodes of (1)
is called Frequency Response Mode (FRM). For
k excitation and control forces the solution x(t)
of (1) for arbitrary excitation frequency ω is
approximated by

x(t) ≃

n
∑

i=1

φizi(t) +

k
∑

j=1

X⊥

p,jαp,j(t), (9)

where αp,j(t) is an appropriate scaling function.
The quality of the approximation (9) strongly
depends on the frequency content of the excitation
and the control forces.



3. THE ASSOCIATED CONTROL PROBLEM

To solve the standard control problem the neces-
sary transfer functions are defined next. Laplace
transformation of (7) yields X(s) = G(s)F (s)
with

G(s) =
N

∑

i=1

φiφ
T
i

µi(s2 + 2ζiωis + ω2
i )

. (10)

G(s) is called transfer function matrix.

The element Gij describes the influence on the
deflection xi(t) of the i-th node of the excitation
force fj(t) acting on the j-th node . If the band-
width of the excitation force is smaller than the
bandwidth of the reduced system (order n) G(s)
is approximately described by

G ≃ Gcorr =
n

∑

i=1

φiφ
T
i

µi(s2 + 2ζiωis + ω2
i )

+ K (11)

with the constant part

K =
N

∑

i=n+1

φiφ
T
i

µiω
2
i

. (12)

One has to observe, that the correction of the
reduced system given by (12) only affects the zeros
of the transfer function Gij .

4. EXAMPLE: SIMPLE BEAM WITH
PINNED-PINNED BOUNDARY CONDITIONS

In this chapter a transfer function from the ac-
tuator voltage to the sensor voltage is corrected
with the help of a feedthrough term K. Thus,
one takes into account the contribution of the
higher system modes to the measurement signal
to avoid spillover effects which have been treated
extensively in (Balas, 1978) and (Balas, 1982).

For this purpose a beam with a pair of mo-
ments respectively force excitation and piezoelec-
tric patches is considered. The determination of
a FRM is demonstrated first, which takes into
account local actuator action.

4.1 Basic equations for simple beams

The derivation of the differential equations as well
as other formulas can be found in (Timoshenko
et al., 1974). The equation of motion for a beam
excited by a pair of moments (Figure 1) is

EJ
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
=

∂2M(x, t)

∂x2
(13)

x

x1

x2

z, w(x, t)

M(t)M(t)

l

Fig. 1. beam with pair of moments

with E the modulus of elasticity, J the moment
of inertia about the beam’s neutral axis, ρ the
density, A the cross sectional area of the beam and
w(x, t) the deflection of the beam. The separation
of variables

w(x, t) =

∞
∑

i=1

Wi(x)zi(t) (14)

(in analogy to the transformation matrix Φ in
section 2) satisfies (13). Again, the zi(t) are the
modal coordinates, and Wi(x) are the (continu-
ous) eigenfunctions. The eigenfunctions become

Wi(x) =

√

2

l
sin iπ

x

l
(with i = 1, 2, 3, . . .). (15)

The particular solution of (13) for harmonic exci-
tation M(t) = M̂ sin ωt is given by

w(x, t) =

∞
∑

i=1

Wi(x)M̂ sin ωt

ρAω2
i

(

1 −
(

ω
ωi

)2
)

(

W
′

i,1 − W
′

i,2

)

.(16)

In (16) W
′

i,j denotes the value of the derivative of
Wi at the position xj .

4.2 FRM for the simple beam

The simulation results correspond to the data
given in Table 1.

Table 1. material and geometry data

parameter numerical value unit

E 2 · 1011 N/m2

b 0.02 m
h 0.005 m

A (= bh) 1 · 10−4 m2

J (= bh3

12
) 2.0833 · 10−10 m4

ρ 7850 kg

m3

M̂ 10 Nm

x1 0.48 m
x2 0.52 m

As excitation frequency Ω0 for the calculation
of the FRM the first eigenfrequency divided by
two is used (Ω0 = 35.95s−1). This approach
is proposed in the manual of the multi body
simulation program SIMPACK, when the higher
modes only contribute ’statically’ to the particular
solution.
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Fig. 2. particular solution; Ω0 = 35.95s−1
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Fig. 3. FRM

In Figure 2 the particular solution is printed for
the ’full’ (20 modes) and for the ’reduced’ system
(only 3 modes).

One can observe the contribution of the higher
modes, which comes from the local impact of the
moment pair. In the extreme case of vanishing
actuator length the exact solution is of triangular
shape and the number of necessary eigenfunctions
for a given accuracy becomes very large.
The difference between full and reduced solution
according to (16) is the FRM which is depicted in
Figure 3.

Figure 4 shows the comparison between full (’20’),
reduced (’3’) and corrected system (’FRM’) for
ω = ω2+ω3

2
= 467.38s−1.
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Fig. 4. particular solutions; ω = ω2+ω3

2

There is hardly any difference between the full
(’20’) and the corrected (’FRM’) solution observ-

able. Note that excitation frequencies larger than
ω3 would result in deviations.

4.3 Actuator-sensor pair on the simple beam

In this section the transfer function from the ac-
tuator voltage to the sensor output will be stated
which follows (Halim and Moheimani, 2001).
The pair of moments from Figure 1 e.g. is gener-
ated by a piezoelectric actuator depicted in Figure
5.
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Fig. 5. sensor and actuator placement

The solution of (13) extended by modal damping
for a single pizoelectric actuator in modal coordi-
nates is

z̈i + 2ζiωiżi + ω2
i zi =

K̄

ρA
Ψa,iVa(t) (17)

where

Ψa,i = [W
′

i (xa2) − W
′

i (xa1)] (18)

and K̄ depends on the properties of the piezoelec-
tric material. In (17) Va(t) is the actuator voltage.
All other variables are defined in Table 2.

Table 2. data of the piezo patches

parameter variable num. value

act.start.pos. xa,1 0.40 m

act.end.pos. xa,2 0.44 m
sens.start.pos. xs,1 0.40 m

sens.end.pos. xs,2 0.44 m
act.height ha 0.001 m
sens.height hs 0.0001 m

act.length la 0.040 m
sens.length ls 0.040 m

act.width ba 0.020 m
sens.width bs 0.020 m
constant K̄ −4.794 · 10−4 C

constant Γ −1.096 · 10−4 Nm/As

If (17) is Laplace transformed and inserted into
the Laplace transformed version of (14) one ob-
tains

G(s, x) =
w(s, x)

Va(s)
=

K̄

ρA

∞
∑

i=1

Wi(x)Ψa,i

s2 + 2ζiωis + ω2
i

(19)

the transfer function from the actuator voltage
Va(t) to the beam deflection w(x, t).



If a piezoelectric patch is used as sensor, the sensor
output voltage Vs(t) becomes with (14)

Vs,l(t) = Γ

∞
∑

i=1

Ψs,i zi(t) (20)

where Ψs,i = [W
′

i (xs2) − W
′

i (xs1)] and Γ again
depends on the properties of the piezoelectric
material.
Laplace transforming (20) and using (19) yields
the transfer function from the actuator voltage
Va(t) to the sensor voltage Vs(t)

GV s(s) = Γ
K̄

ρA

∞
∑

i=1

Ψs,iΨa,i

s2 + 2ζiωis + ω2
i

. (21)

With the help of (21) the necessity of model
correction using a feedthrough term K shall be
demonstrated next.

4.4 Local actuator action

Using an actuator, which in comparison to the
structure to be controlled is relatively small,
makes the correction factor K defined by (11)
more important. This will be demonstrated in the
following assuming that

la ≪ l. (22)

We define

Fi =
Ψa,i(la)

Ψa,i(la,ref )
(23)

with Ψa,i as in (18) and beginning and the end
positions of the actuator at

xa1 = xm −
la

2
, xa2 = xm +

la

2

where xm is the actuator middle position. In (23)
la,ref stands some reference value of the actuator
length. Utilizing the eigenfunctions of the simply
supported beam (15) one obtains

Fi =
sin

(

iπ
l

la
2

)

sin
(

iπ
l

la,ref

2

) (24)

which is completely independent of the actuator
middle position xm. The derivative of (23) with
respect to la is

dFi

dla
=

1

Ψa,i(la,ref )

dΨa,i(la)

dla
(25)

which, using (15), yields

dFi

dla
=

iπ

2l

cos
(

iπla
2l

)

sin
(

iπla,ref

2l

) . (26)

Using (22), (26) can be linearized for both small
la and la,ref yielding

dFi

dla
=

1

la,ref

. (27)

From (27) one concludes, that for small actuator
length in comparison to the wave length of the
highest mode for increasing la the contribution of
each mode to the total response remains constant.
This can also be seen from the plot of Fi in Figure
6 for small values of la

l
.
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Fig. 6. Fi as function of mode number i and
actuator length la (l=1m, la,ref=0.01m)

When the order of the length of the actuator
becomes equal to or greater than the order of the
wave length of a certain mode the contribution of
this mode to the overall beam deflection decreases
in comparison to the first mode.

Therefore, Figure 6 suggests that a model correc-
tion utilizing (11) is more important when the ac-
tuator becomes small compared to the size of the
structure to be controlled. This fact is illustrated
in Table 3. There

K1,3

K4,10

is the proportion of the static contribution from
the first three modes to the last six ones, which
clearly states that a correction according to (11)
is more important when the actuator length de-
creases.

Table 3. comparison for different actua-
tor lengths

la/l 0.1 0.5

F1/F9 ∼ 1.4 ∼ 9.0
K1,3/K3,10 ∼ 0.67 ∼ 6.04

5. CONSEQUENCES FOR ACTUATOR AND
SENSOR PLACEMENT

For an effective control system the optimal place-
ment of actuators and sensors along the structure
to be controlled is crucial:



Observability and controllability:

From an engineering point of view, optimality
with respect to controllability and observability
could be defined as the highest possible efficiency
of the actuators and sensors, respectively.
For piezoelectric elements positions with maxi-
mum curvature of the mode shapes are optimal
with respect to observability and controllability.
An approach which is based on the controllability
(Wc) and the observability gramians (Wo) is given
in (Leleu et al., 2001).

Collocated vs. non-collocated control:

Placing actuators and sensors at the same location
in form of pairs has several advantages according
to (Preumont, 1999): a minimum phase system is
obtained, and some control concepts (e.g. Direct
Velocity Feedback) lead to an unconditionally sta-
ble closed loop behaviour if the actuator dynamics
are neglected.
As mentioned in the beginning, a separation of
the actuator and sensor location is advantageous
when the actuator is very small in comparison
with the flexible structure.

In this case the measured signal amplitude due
to the local actuator action can be reduced and
thus the sensor signal is mainly comprised by the
eigenmodes to be controlled (compare the heights
of the peaks in Figure 3). This fact becomes even
more important in the presence of measurement
noise where a high signal to noise ratio is desir-
able.

Criterion for actuator and sensor place-

ment:

The demands concerning a suitable criterion for
actuator/sensor placement have to combine the
following points:

(1) Preferably high values for the controllability
of the modes to be controlled. This leads
to small control signals. At the same time
preferably low values for the controllability
of the residual modes.

(2) Preferably high values for the observability of
the modes to be controlled. At the same time
preferably low values for the observability of
the residual modes to obtain a high noise
rejection.

6. SUMMARY AND OUTLOOK

If in comparison to the structure to be controlled
the actuators are relatively small, the local action
of the actuator requires many modes for the repre-
sentation of the system response. With decreasing
actuator length the amount of the higher modes

in the measurement signal of the sensor increases.
To detect local actuator actions and avoid spillover
an additional correction becomes unavoidable for
control purposes. This correction can be generated
by the collective acquisition of the influence of the
higher modes in the form of the FRM. In section
3 the analogy between FRM and model correction
in form of feedthrough terms has been shown.
Then the accuracy of the solution of the corrected
model depends on the bandwidth of the excita-
tion. The basics of a criterion proposed in section
5 provides the possibility of finding an optimal set
of actuator/sensor locations for arbitrary flexible
structures and real-world demands.
Future work comprises the development of the
numerical optimization procedure and the appli-
cation of the proposed methods to a practical
problem. The structure to be controlled is the
body of a railcar vehicle.
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