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Abstract: Today’s electric power systems are often subject to stress by heavy
loading conditions, resulting in operation with a small margin of stability. This
has led to research on estimating the distance to instability. Most of these
research efforts are solely model-based. In this work, a signal-based approach
for real-time detection of impending instability is considered. The main idea
pursued here involves using a small additive white Gaussian noise as a probe
signal and monitoring the spectral density of one or more measured states for
certain signatures of impending instability. Input-to-state participation factors
are introduced as a tool to aid in selection of locations for probe inputs and
outputs to be monitored. Since these participation factors are model-based, the
paper combines signal-based and model-based ideas toward achieving a robust
methodology for instability monitoring. Copyright c©2005 IFAC.
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1. INTRODUCTION

Today’s electric power systems are often subject
to stress due to heavy loading conditions. Under
such conditions, a power system that appears to
be functioning well could actually be very vulner-
able to loss of stability. Stability loss can, in turn,
trigger a chain of events leading to failure of the
system. Stability loss can occur in several forms,
but the most common one resulting from heavy
load conditions is voltage instability, which leads
to voltage collapse through cascading of system
events (van Cutsem, 2000). This differs markedly
from transient instability following a system con-
tingency, since this type of instability usually re-
sults from slow changes in system parameters,
such as loading or generation. There is an inherent
difficulty in predicting voltage instability, since
the parameter values at which it occurs depend on

component dynamics in an uncertain and complex
interconnected system. Inaccurate system models
can easily yield incorrect results for the stability
envelope of the system. When a system must
be operated near its stability limits, any model
uncertainty can result in the system exiting its
stable operating regime without warning. Even
the most detailed calculations are insufficient in
these circumstances.

In this paper, instability monitoring using (noisy)
probe signals is considered. The use of probe
signals is shown to help reveal an impending
loss of stability. This is because probe signals
propagate in the power system and give certain
signatures near an instability that can be used as
a warning signal for possible impending voltage
collapse. Such warning signals are needed to alert
system operators of a situation that may require



preventive control, and to provide the operators
with valuable additional time to take necessary
preventive (rather than corrective) measures.

The paper proceeds as follows. In Section 2, par-
ticipation factors for linear systems are discussed.
This includes both the modal participation fac-
tors, and newly introduced input-to-state partic-
ipation factors. In Section 3, a signal-based ap-
proach to instability monitoring is presented. In
Section 4, a stability index based on power spec-
tral density measurements is given. In Section 5,
two case studies are given that demonstrate the
proposed approach to instability monitoring.

2. PARTICIPATION FACTORS

Participation factors are nondimensional scalars
that measure the interaction between the modes
and the state variables of a linear system (Perez-
Arriaga et al., 1982; Verghese et al., 1982; Abed
et al., 2000). Since their introduction in (Perez-
Arriaga et al., 1982; Verghese et al., 1982), partic-
ipation factors have been used for analysis, order
reduction and controller design in a variety of
fields, especially electric power systems. 1

Next, a brief summary of modal participation
factors is given, along with a derivation of input-
to-state modal participation factors.

2.1 Modal participation factors

Consider a general continuous-time linear time-
invariant system

ẋ = Ax(t) (1)

where x ∈ <n, and A is a real n × n matrix.
Suppose that A has a set of n distinct eigenvalues
(λ1, λ2, . . . , λn). Let (r1, r2, . . . , rn) denote the
right eigenvectors and (l1, l2, . . . , ln) denote left
(row) eigenvectors of the matrix A associated with
the eigenvalues (λ1, λ2, . . . , λn), respectively.

The right and left eigenvectors are taken to satisfy
the normalization

lirj = δij

where δij is the Kronecker delta:

δij =
{

1 i = j
0 i 6= j

The participation factor of the i-th mode in the
k-th state is defined to be the complex number

1 In (Abed et al., 2000), a new approach to defining modal
participation factors was presented. The new approach
involved taking an average or a probabilistic expectation of
a quantitative measure of relative modal participation over
an uncertain initial state vector. The new definitions were
shown to reduce to the original definition of participation
factors if the initial state obeys a symmetry condition.

pki := likri
k.

This formula also gives the participation of the
k-th state in the i-th mode.

2.2 Input-to-state participation factors

The concept of participation factors of modes in
states and vice versa has been extended to linear
time invariant systems with inputs (Yaghoobi and
Abed, 1999)

ẋ = Ax + Bu (2)

y = Cx. (3)

We consider the case where the input is applied
to one component, say the q-th component, of the
right side of (2) and only one state, say the k-th
state, is measured. That is, in Eqs. (2)-(3), B and
C take the form

B = eq = [0 . . . 0 1︸︷︷︸
q−th

0 . . . 0]T ,

C = (ek)T = [0 . . . 0 1︸︷︷︸
k−th

0 . . . 0].
(4)

With this choice of C and B, in steady state the
output in (3) (in the frequency domain) is given
by

y(s) = xk(s) = C(sI −A)−1Bu

=
n∑

i=1

CriliB

s− λi
u(s) =

n∑

i=1

ri
kliq

s− λi
u(s) (5)

We take
pi

qk := |CriliB| = |ri
kliq| (6)

as the participation factor of mode i in state k
when the input is applied to state q. We call this
quantity the input-to-state participation factor
(ISPF) for mode i, with measurement at state k
and input applied to state q. Note that the ISPF
is dimensionless given that the input and output
vectors B and C take the special form in (4).

3. PRECURSOR-BASED MONITORING

The approach to instability monitoring presented
here involves injecting probe signals at certain
locations in a power network and monitoring the
effects on measured output variables. Input-to-
state participation factors introduced in this pa-
per, play an important role in selection of sites for
probe signal injection and output measurement.

As noted in (Hauer and Beshir, 2000), the recur-
ring problems of system oscillations and voltage
collapse are due in part to system behavior not
well captured by the models used in planning
and operation studies. In the face of component
failures, system models become mismatched to the
physical network, and are only accurate if they
are updated using a powerful and accurate failure
detection system. Therefore, it is important to



employ nonparametric techniques for instability
monitoring. In this work, noisy probe signals are
used to help detect impending loss of stability.

Recently, monitoring systems for detecting im-
pending instability in nonlinear systems were de-
veloped in (Kim and Abed, 2000). The work
builds on Wiesenfeld’s research on “noisy precur-
sors of bifurcations,” which were originally in-
troduced to characterize and employ the noise
amplification properties of nonlinear systems near
various types of bifurcations (Wiesenfeld, 1985a;
Wiesenfeld, 1985b). Noisy precursors are features
of the power spectral density (PSD) of a mea-
sured output of a system excited by additive
white Gaussian noise (AWGN). It was shown in
(Kim and Abed, 2000) that systems driven by
white noise and operating near an equilibrium
point exhibit sharply growing peaks near certain
frequencies as the system nears a bifurcation. In
particular, it was shown that for the case of Hopf
bifurcation (complex conjugate pair of eigenval-
ues crossing the imaginary axis transversely), the
peak in the PSD occurs near ωc, the critical fre-
quency of the Hopf bifurcation.

In this work, we show that noisy precursors can
be used as a warning signal indicating that the
power system is operating dangerously close to
instability. We also show that the spectrum of
a measured state of the system is proportional
to the square of the ISPFs. Thus, ISPFs can be
used to determine the best location for applying
the probe signal and for choosing which state to
measure where the noisy precursor would be most
apparent. Fig. 1 shows a schematic diagram of our
instability monitoring technique.
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Fig. 1. Precursor-based instability monitor with
external probe signal.

Consider a nonlinear dynamic system (“the plant”)

ẋ = f(x, µ) + ξ(t) (7)

where x ∈ Rn, µ is a bifurcation parameter, and
ξ(t) ∈ Rn is a zero-mean vector white Gaussian
noise process. Let the system possess an equilib-
rium point x0. For small perturbations and noise,
the dynamical behavior of the system can be de-
scribed by the linearized system in the vicinity of

the equilibrium point x0. The linearized system
corresponding to (7) with a small noise forcing
ξ(t) is given by

ẋ = Df(x0, µ)x + ξ(t) (8)

where x now denotes x − x0 (the state vector
referred to x0). For the results of the linearized
analysis to have any bearing on the original non-
linear model, we must assume that the noise is of
small amplitude.

We consider the case where the noise is applied
to one state and the PSD of another state is
calculated. That is, we consider the case where
ξ(t) = Bη(t) with B = eq, η(t) is a scalar white
Gaussian noise with zero mean and power σ2, and
the output is given by y = Cx with C = (ep)T .

In steady state, the output of system (8) forced
by a small AWGN is given by

y(s) = xp(s) =
n∑

i=1

CriliB

s− λi
η(s)

=
n∑

i=1

ri
pl

i
q

s− λi
η(s). (9)

The PSD of the output of a linear system with
transfer function H(jω) is related to the PSD of
the input by (Helstrom, 1991)

Sy(ω) = H(jω)H(−jω)Sη(ω) (10)

Thus, the power spectrum of the p-th state is given
by

Sxp =

(
n∑

i=1

ri
pliq

jω − λi

)(
n∑

k=1

rk
p lkq

−jω − λk

)
σ2

= σ2

n∑
i=1

n∑
k=1

ri
pliq

jω − λi

rk
p lkq

−jω − λk
(11)

Suppose that the system is nearing a Hopf bifur-
cation. Specifically, assume that a complex conju-
gate pair of eigenvalues is close to the imaginary
axis, and has relatively small negative real part in
absolute value compared to other system eigen-
values. Denote this pair as λ1,2 = −ε± jωc, with
ε > 0 small and ωc > 0:

|Re(λi)| À ε, i = 3, . . . , n. (12)

Under this assumption, Sxp(ω) can be approxi-
mated as

Sxp (ω) ≈ σ2

2∑
i=1

2∑
k=1

ri
pliq

jω − λi

rk
p lkq

−jω − λk

= σ2

(
|r1

pl1q |2
ε2 + (ω − ωc)2

+
|r1

pl1q |2
ε2 + (ω + ωc)2

+ 2Re

{
1

ε + j(ω − ωc)

(r1
pl1q)2

ε− j(ω + ωc)

})
.

Here, ri
p denotes the p-th component of the i-th

right eigenvector ri (the eigenvector correspond-
ing to λi), and liq denotes the q-th component of



the i-th left eigenvector li. Note that all terms
containing λi, i = 3, . . . , n have been neglected
and only terms containing the critical eigenvalues
λ1 and λ2 have been retained. After algebraic ma-
nipulation and substituting (r1

pl1q)
2 = α+jβ where

α = |r1
pl1q |2 cos (2θpq) and β = |r1

pl1q |2 sin (2θpq),

with θpq = tan−1
(

Im{r1
pl1q}

Re{r1
pl1q}

)
, the PSD of xp can

be rewritten as

Sxp
(ω) = σ2|r1

pl1q |2
(

1
ε2 + (ω − ωc)2

+
1

ε2 + (ω + ωc)2

)

+ σ2 (βε + αωc)(ω − ωc) + ε(εα− ωcβ)
(ε2 + ω2

c )(ε2 + (ω − ωc)2)

− σ2 (βε + αωc)(ω + ωc)− ε(εα− ωcβ)
(ε2 + ω2

c )(ε2 + (ω + ωc)2)

= σ2|r1
pl1q |2

[
(1 + G1(ω))

1
ε2 + (ω − ωc)2

+ (1−G2(ω))
1

ε2 + (ω + ωc)2

]
(13)

where

G1(ω) =
1

ε2 + ω2
c

[(ε sin(2θpq) + ωc cos(2θpq))(ω − ωc)

+ ε(ε cos(2θpq)− ωc sin(2θpq))] ,

G2(ω) =
1

ε2 + ω2
c

[(ε sin(2θpq) + ωc cos(2θpq))(ω + ωc)

− ε(ε cos(2θpq)− ωc sin(2θpq))].

For ω = ωc and sufficiently small ε (ε ¿ ωc), the
power spectral density of xp is given by

Sxp(ω) = σ2|r1
pl1q |2

(
1
ε2

+ O

(
1
ε

)
+ O(1)

)
. (14)

Note that the ISPFs are related to the PSD of
the states of a system driven by small AWGN
as in Eq. (13). The amplitude of the spectrum
is proportional to the square of the ISPFs. The
ISPFs can be used to determine the best location
for applying the probe signal and also the state
that will have the highest spectral peak.

4. INSTABILITY PROXIMITY INDEX

In this section, an instability proximity index that
helps predict closeness to instability based on PSD
measurements is given. Performance indices have
been used to predict proximity to voltage collapse
in power systems (PES, 2002). For example, sta-
bility indices based on sensitivity factors, singular
values and eigenvalues have been used in the lit-
erature (PES, 2002).

In this paper, a sensitivity-based index is pro-
posed. This index is based on online measure-
ments of PSD peaks at certain critical frequencies.
The proposed index is given by

PSDI =
dPSDx

dµ
. (15)

Here, PSDI is the power spectral density index,
PSDx is the power spectral density peak value
at the critical frequency of the state x and µ is
a bifurcation parameter of the system of interest.
The instability index is calculated for the state
x which has the highest ISPFs. This index grows
significantly as the system approaches criticality,
where it is theoretically infinity at criticality. The
reciprocal of the index in more informative than
the index itself as the reciprocal value approaches
zero as the system approaches criticality. This
index can be used to assist a system operator
in taking a preventive action. For example, a
threshold can be used such that if the index
drops below that threshold, a preventive action
is triggered.

5. CASE STUDIES

Below, the instability monitoring technique pre-
sented above is demonstrated on sample power
system models. First, a single generator with an
infinite bus together with excitation control is con-
sidered. Then, a three-generator nine-bus power
system model is considered.

5.1 Single generator connected to an infinite bus

Consider a synchronous machine with excitation
control connected to an infinite bus (Abed and
Varaiya, 1984):

δ̇ = ω

2Hω̇ =−Dω + ω0(Pm − Pe)

τ ′d0Ė
′
q = EFD − E′

q − (Xd −X ′
d)id

τEĖFD=−KEEFD + VR − EFDSE(EFD)

τF V̇3=−V3+
KF

τE
(−KEEFD+VR−EFDSE(EFD))

τAV̇R=−VR + KA(VREF − Vt − V3).

It was shown that this system undergoes a Hopf
bifurcation as the control gain in the excitation
system KA is increased beyond a critical value of
193.74. Details on the model and the parameters
can be found in (Abed and Varaiya, 1984).

Next, we consider the system operating before
the Hopf bifurcation, say at KA = 185. The
corresponding operating point is given by x0 =
[1.3515, 0, 1.1039, 2.3150, 0, 0.5472]. The eigen-
values of the Jacobian of the system evalu-
ated at x0 are {−0.0139 ± j7.7707, − 4.5832 ±
j12.6178,−2.1029± j0.9417}.
Note that for this model, there are two physically
feasible locations for applying the probe signal.
The probe signal can be either applied to Vref

or to Pm. The ISPFs are used to determine the
best location for applying the probe signal and
which state to monitor. From the values of the



ISPFs (see Table 5.1), it is clear that mode 1
has higher participation in other states when the
probe signal is applied to Pm than when applied to
Vref . This can also be seen from the PSDs shown
in Figs. 2 and 3. Fig. 4 shows the PSDI based on
measurements from the state VR versus the exciter
gain KA.

5.2 Three-generator nine-bus power system

Below, we consider the Western System Coordi-
nating Council (WSCC) 3-machine, 9-bus power
system model, which is widely used in the litera-
ture (Sauer and Pai, 1998, pp. 170–177), (Milano,
2004). The dynamics of this model includes three

Table 1. ISPFs for the single generator power
system model (partial listing).

States Noise added to
measured Pm Vref

δ p1
21 = 0.0648 p1

61 = 0.0024
ω p1

22 = 0.4923 p1
62 = 0.0185

E
′
q p1

23 = 0.0038 p1
63 = 0.0001

EFD p1
24 = 0.2084 p1

64 = 0.0078
V3 p1

25 = 0.0068 p1
65 = 0.0003

VR p1
26 = 0.8006 p1

66 = 0.0301
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Fig. 2. PSDs of the states of the single generator power
system model. The bifurcation parameter was set
to KA = 185. A zero mean and (0.000032)2 power
AWGN was added to Pm.
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Fig. 3. PSDs of the states of the single generator power
system model. The bifurcation parameter was set
to KA = 185. A zero mean and (0.000032)2 power
AWGN was added to Vref .
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Fig. 4. Plot of the inverse of the PSDI of ω versus the
bifurcation parameter KA.

Table 2. Input-to-state participation factors
for the 3-machine nine-bus system (partial list-

ing). The load at bus 5 is 4.4 pu.

States measured
Noise Efd1 Efd2 Efd3

added to

Pm1 3.0017 2.6973 2.1357
Pm2 2.6113 2.3465 1.858
Pm3 4.7816 4.2967 3.4022
Vref1 0.0155 0.014 0.0111
Vref2 0.0233 0.021 0.0166
Vref3 0.0475 0.0427 0.0338

identical IEEE-Type I exciters for the three ma-
chines. The machine data and the exciter data are
given in (Sauer and Pai, 1998; Milano, 2004).

In this model, a subcritical Hopf bifurcation oc-
curs as the load on bus 5 is increased beyond 4.5
pu (Sauer and Pai, 1998). Our goal in this case
study is to detect this impending loss of stability
by using an AWGN probe signal and continu-
ously monitoring the PSDs of certain states. This
would give the system operator (or an automatic
controller) valuable time to take appropriate pre-
ventive measures (e.g., shedding loads at certain
buses). The simulations of this model were con-
ducted using PSAT (Milano, 2004). For values of
the load on bus 5 close to 4.0 pu, the linearization
of the system at the operating point has two
complex conjugate pair of eigenvalues close to the
imaginary axis, λ1,2 = −0.17665 ± j8.184 and
λ3,4 = −0.3134 ± j1.7197. As the load on bus 5
is increased further, the pair λ3,4 approaches the
imaginary axis, while the other pair λ1,2 changes
only slightly. For example, when the load at bus
5 is 4.4 pu, λ1,2 = −0.18231± j8.0978 and λ3,4 =
−0.04602± j2.1151. Increasing the load on bus 5
beyond 4.5 pu causes the pair λ3,4 to cross the
imaginary axis from left to right.

From the values of the ISPFs calculated for this
system, we found that both of the critical modes
have higher participation when the probe signal
is applied to Pm3 , the mechanical power of gener-
ator number 3. Also, we found that these modes
have high participation in the field voltage of the
exciters. Therefore, in the following simulations,
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Fig. 5. PSDs of the states Efd1 , Efd2 and Efd3 . The
load on bus 5 was set to 4.0 pu. A zero mean and
0.05 power AWGN was added to Pm3 .
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Fig. 6. PSDs of the states Efd1 , Efd2 and Efd3 . The
load on bus 5 was set to 4.4 pu. A zero mean and
0.05 power AWGN was added to Pm3 .

the probe signal is added to Pm3 and the power
spectral densities of the field voltages of the three
exciters (i.e., Efdi , i = 1, 2, 3) are monitored.
Figs. 5 and 6 show the PSDs of Efdi , i = 1, 2, 3
when the load on bus 5 (PL5) is 4.0 pu and 4.4
pu, respectively. It is clear from Fig. 5 that when
the load on bus 5 is 4.0 pu, the spectrum has
two peaks at 0.28 Hz and 1.3 Hz. These two
frequencies correspond to the complex eigenvalues
λ3,4 and λ1,2, respectively. Note that the peak at
1.3 Hz that corresponds to the pair of complex
eigenvalues λ1,2 is higher than the peak at 0.28 Hz.
However, when the load at bus 5 is increased to
4.4 pu, the peak at 0.28 Hz becomes much larger
than the one at 1.3 Hz (see Fig. 6), which is an
indicator that an instability is being approached.
Fig. 7 shows the PSD of Efd1 for three values of
PL5 : 4.0 pu, 4.25 pu and 4.4 pu.
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