OBSERVER-BASED CONTROLLER FOR DELAYED
STATE LINEAR SINGULAR SYSTEMS

S. M. Saadni *! M. Chaabane** D. Mehdi * O. Bachelier *

*L.A.LI, ESIP, 40 Avenue du Recteur Pineau, Poitiers
** Automatic Control Unit,Preparatory Institute of Enginegr
IPEIS, BP 805, 3018 Sfax

Abstract: Based on Lyapunov-Krasovskii functional, thegppr concerns an observer
based stabilization problem for delayed state linear sargrystems. The linear quadratic
control is used and the state variables are provided by aeredrs An observer based
controller, in which the influence of the time-delays is ddesed, the design of the
controller and observer are separated. LMIs Delay-depersidficient conditions for
stabilizability is established. Some numerical examptespaovided to show the useful-
ness of the proposed resul@opyrigh@ZOOS IFAC
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1. INTRODUCTION (S. Xu and Lam, 2002)).

However, it is not easy to measure the state, so it is dif-
The problem of stabilization of state-space systemsficult to realize state feedback. Therefore, the problem
is of both practical and theoretical importance and of designing an observer based feedback controller for
has attracted the attention of many researchers in they linear plant to make the closed-loop system stable
past years, a number of significant result on this issuehas been discussed in many papers during the two
have been reported and different approaches have beegecades (zhang M. and Y., 1998) , (Zidong W. and
proposed in the literature (see, (Soh, 1985), (Trofino- Unbehauen, 2001) and (Su H. and J., 1998). At present
Neto, 1993)). However, as for singular systems (also the observer design of linear time delay systems have
known as descriptor systems, implicit systems, gener-mainly two methods. One does include no delay infor-
alized state-space systems, differential- algebraic sysmation in the observer (see, (Zhang M. and Y., 1998)
tems, semi-state systems), there are only a few pa- (zidong W. and Unbehauen, 2001) and (Su H. and
pers dealing with the stabilization problem and results J., 1998)) The design of this observer is quite Simp|e,
on this topic are far fewer than those on state-spaceput this observer can't reflect the message of the sys-
systems((Dai, 1989),(Pandolfi, 1980) and (A, 1995)). tem itself completely and the design of the controller
On the other hand, control of singular systems hasand observer are not separated. The second method
been extensively studied in the past years due to thetakes account of delay information in the observer
fact that singular system better describe physical sys-(see, (Su H. and J., 1998), (C. and C., 96)). This
tems than regular ones. Very recently, much atten-opserver can reflects completely the message of the
tion has been paid to singular systems with time de- system itself and the design of the controller and that
lay. For the continuous case, numerical methods for of the observer are separated.
such systems were discussed in (see, (Ascher and

Petzold, 1995), (Campbell, 1980), (S. Xu, 2000) and In this paper, we address the problem of stabiliza-
tion by state feedback control laws provided by an

observer. The sufficient conditions are developed for

1 Special thanks to "La Région Poitou Charentes” for theiarfin checked by an iterative algorithm if this class of sin-
cial supports




gular time-delay system is regular, impulse free and 22Ty <z X 2497 Xy

stable. The paper is organized as follows. In section

2, the problem is stated and the required assumption§ emma 2.3.Consider the functiop : Rt — R. if
are formulated. Section 3 presents the main results; is pounded orj0, cc), that is, there exists a scalar
obtained for the class of systems under study. Section,, < ( sych that (t) |< aforall t € [0, 00), theny

4 presents some numerical examples to show the use;g uniformly continuous o), cc)
fulness of the proposed results.

Lemma 2.4.Barbalat’'s Lemma: Consider the function
@ : Rt — R if ¢ is uniformly continuous and

2. PROBLEM STATEMENT AND Jo~ ¢(s)ds < oo, then

PRELIMINARIES
lim ¢(t) =0
Consider the following uncertain singular systems o o
with multiple delays : In the rest of this paper the notation is standard unless
it is specified otherwisel. > 0 (L < 0) means that
Ei(t) = Aw(t) + Age(t — h) + Bu(t) O the matrixL is symmetric and positive-definite matrix
(symmetric and negative-definite).
wherex(t) is the state vector, ilR", h is the delay _
of the system and the matrice$ and A, are of ~ Remark 2.1.: Notation

appropriate dimension. e Inthe sequebym {.} is defined as
Definition 2.1. (Dai, 1989) Sym{X} =X+ X"
(1) The pair(E, A) is said to be regular ifet(sE — for any matrixX _ _
A) is not identically zero. o for example, The matrid/, , < 0 is equivalent
(2) The pair(E, A) is said to be impulse free if o
deg(det(sE — A)) = rankFE. M, <0 and M.<0

The singular delay system (1) may have an impulsive
solution, however the regularity and the absence of 3. OBSERVER BASED CONTROLLER

impulses of the paifE, A) ensure the existence and SYNTHESIS
unigueness of an impulse free solution to this system, ) ) _ o
which is shown in following lemma. The goal of this section consists of establishing what

will be the sufficient conditions that can be used to
. . check whether or not the class of systems under study
Lemma 2.1.Suppose the paif£, A) is regular and g stable with an observer based controller. Consider
impulse free, then the solution to (1) exists and is the system given by the following dynamics:
impulse free and unique df, co)

Eix(t) = Az(t) + Aqz(t — h) + Bu(t)
y(t) = Cx (1) %)

The observer based controller is given as

In view of this, we introduce the following definition
for singular delay system (1).

Definition 2.2. (S. Xu and Lam, 2002)
e The singular delay system (1) is said to be regular u(t) = Kz(t) ®)

and impulse free if the palt, A) is regular and with K is the gain of the controller and the vector
impulse free. z(t) is the state of the observer whose dynamics are
e The singular delay system (1) is said to be stable given by

if for any e > 0 there exists a scaldi(c) > 0

such that, for any compatible initial conditions

¢(t) satisfyingsup__,<q || (t) [|< d(¢), the

solutionz(t) of system (1) satisfie$ x(t) ||< ¢ where L is the gain of the observer. Theorem 3.1

for¢ > 0. Furthermore states the stability conditions of the system feedback
by an observer based controller.

Ei(t) = Az(t) + Agz(t — h) + Bu(t) + L (y(t) — Cz(1){4)

2(t) =0t — o0 Theorem 3.1If there exist the matriced®, > 0,

The following lemma is very useful for our develop- g* ; OS?/;>OOar%SQZ£>% S>U(?h ?ﬁa’?tr?é%ellgw?ﬁg

ment in this paper. hold

Lemma 2.2.For anyz,y € R" and for any symmetric { E'TP.=PJE>0

positive-definite matrixX € R**" ; ETP,=P/E>0 ®)



with

(Me)y; =Sym{PeA — ReC} + Ve,

(Me )15 = PeAg — Vay

(Mz)y; =Sym {P; ' AT + RIBT } + 57" + Wy,
(Mg )g3 = —h ™" (Wy + Wy SaW,) ™"

(M )g; = (AP, + BR;)

(My) g = AgPyt — Tay

Ve, =Qe+hZe + Y, +Ye
+K BT (S1+hW, +hS; ") BK

\PEQ = Qm \Ileg = YeTv
Uy, =Qu +hZy +Y, +Y,
Uy = Qc, Uy =Y,

Then system (2-3-4) is asymptotically stable.

To check the result stated by Theorem 3.1 we use the

following iterative algorithm

Algorithm
1. Solve the LMI

M, <0

for the decision variable®, !, R, = KP; !, Q.,
Zy, Yy, STt and Wt = (W, + WoSaW,) ™Y,
2. ChoosdV, > 0 in such a way that

T, >0
Sy =W, 1 (W, — W)W, >0
hold
3. Solve the LMI problem
M, <0
T.>0

for the decision variable®,, R, = P.L, Q., Z.,
Y,.

Proof of Theorem 3.1
First, let the observer error be given as

e(t) = z(t) — 2(t)

which leads the observer error dynamics as

Eé(t) = Age(t) + Age(t — h) %)
with

Ao = (A— LC)

Note that the system dynamics can be rewritten as

Ex(t) = Az(t) + Aqgz(t — h) + BKz(t) — BKe(t)

The system and the observer are given by

Ex(t) = Acx(t) + Aqz(t — h) — BKe(t)
Eé(t) = Age(t) + Age(t — h) ®)

with A. = A+ BK

We recall that regularity and absence of impulses of

the pair(E, A) implies that there exist two invertible

matricesG and H € R™**" such that (Dai, 1989)
B=GEH = [

I 0
0 0

Avo = GAuoH = [A” 0 } ©)

0 In_r
Ay =GA4H = {jd“ jdl? }
da1 dag

B=GB C=CH

wherel,. € R™*" andl,,_, € R*"*""" are identity

matrices.

This transformation is applied to equations of theorem
3.1 with

Pre=G TPy .H

Qac,e - HTQac,eH

Wie=G" Wy Gt
Zoe=H' Zy H (10)

Ry =RsG™'  Yoe=H"Yy H
Noting the expression oF in (9) and using (5),
we can deduce thak,,, ., = P, ., > 0 and
Py1y.e1, = 0, thereforeP, . reduces to
~ P 0
Pre= ~T11,€11 _ 11
’ Pryyeo szz,ezz} D
Now, let
Cao(t) = H 'a(t)  Ce(t) = H 'e(t) (12)

where(,, ., € R, (3, € R*". Using (9), the
singular delay system (8) can be written as

Cor () = Aoy (1) + Adyy Goy (= B) + Ay Coo (= h)
—B1K1(e, (t) — BiK2Ce, (1)
0= Cag (t) + Adyy Cay (t = h) + Aayy Cao (t — D)
—B2K1(e, (t) — B2aK2Ce, (1) (13)
Ceq (1) = AcCey (8) + Aayy Cey (t = B) + Ady, Ce (¢ — h)
0= Cep (t) + Adyy Cey (t — h) + Adyy Ceo (t — h)

In order to investigate the stability of the closed loop
system (8), let us consider the Lyapunov functional
candidate :

V(Cxty Cet) =W (Cxtv Cet) + V2(<xzy Cez) + V3(Cxt7 Cet)



+Va (CXta Cet)

with
Vi(GxprCor) = Ce(t) T P ECe(t) + Ca(t) T P ECa(t)
t
V2(<xufet)://ée(T)TETWeEC.e(T)deS
h

tot
+ / /ém(T)TETWxEQ (T)drds
h s

t—

VS(CXtvCez):/Ce(S)TQECE(S)dS

t—h
t

+ / CI(S)TQGECI(S)dS

Vi (G Cer) // ()T Ce(9)" ]

e Ye Ge(T)
[yg ETWEE] [ Cels) } dsdr

t T

+// [Cac(T)T Cac(S)T}

0 7—h

Za Y Cx(T)
[yg ETWxE] { éuls) ] dsdr

therefore, the first derivative of the Lyapunov func-

tional candidate is :

V(CeprCer) S Ce()T (PS Ao+ AJ Pe+ KT BTS1BK) Ce(t)
+2Ce(t) T P AgCe(t — 1)
+Ce(t) T QeCe(t) = Cet —h) T QeCe(t — h)
+h (AoCe(t) + AgCe(t — b)) T We
x (AoCe(t) + Aae(t = h))
+hCe(t) T Zee(t) 4+ 2¢e(t) T Ve (Ce(t) — Ce(t — h))
() (P Ac+ Al Py + P ST Py) 2(t)
+20a () P Agla(t — h)
o (t) " Qula(t) — Calt — h) T QuCalt — h)
+h(AcCa(t) + AaCa(t — h) — BRCe(t)) | Wi
(AcCa(t) + AgCa(t — h) — BRC(t))

+hle(t) T Zoa(t) + 2Ca () T Yo (Ca(t) — Ca(t — R))

Note that the underlined expression above can be

bounded as follows

R¢e(t)) | Wa x
BRC.(t))

Ca(t) + AgCa(t — h) —

Co(t) + AgCa(t —h) —

Calt) +AdCz(t7h)) Wa x
Colt) + AgCa(t — h))

2 (AcCa(t) + AaCa(t — 1)) Wa (BEC(1))

(Ac
(A
= (4
(Ac

+ (BRC(1)) Sy

+ (BEC(t) " W (BRC(1))
and using lemma 2.1, we deduce easily what follows

: 35, > 0suchas:

< (AeGa(t) + AaCalt — 1)) Wi (AcCa(t) + Aala(t — h))
+ (A t) + Aaa(t — 1)) | WaS2We

x (AcCa(t) + AaGa(t — 1))
Y(BRG(D) + (BRCG(t)) | Wa (BRC(1))

Finally, the first derivative of the Lyapunov functional
candidate is

V(GeprGer) 2e(®) (P Ag = Ty +hAG WeAy) Celt — h)
+Ce(®)T (P Ao + AJ Pe + e, + hAJ WeAg
+KTBT (S1+hW, +hS; 1) BR) Ce(t)
HCe(t =) T (=Wey + hAJWeAy) Ce(t — h)
+2¢ (1) T (P Ag — Wu
+hAL (We + WeSaWa) Ag) Calt — h)
()T (P Ac+ Al Py + g,

+ hAL (We + WaS2 W) Ae

+P, S Py Ca(t)

+a(t—h) T (=T,

+ hA] (We + WaS2We) Ag) Calt — h)
and using the lemma 2.2, and assuming that

hA) (Wz + WISQVT/Z) Ag =Ty, <0 (14)
hRAWeAy — T, <0

we deduce the following expression

V(GerrGe) < Ge®T { (T Au = ey + hATWedls)
(Vey — hATWeAq) " x
(PT Ay = Wey + hAJ WeAy)
+ (P Ao + Aj Pe + We, + hA] WeAg
HRTBT (14107, + 05;") BE) 60
@7 { [P A~y
+hAT (Wa + WaS2Ws ) Ag] x
(Vay — WAL (W + WaSaWe) Ag) ' x

X [P Aq = By + AT (Wo + WoSo W) Aa] T
+ (P Ac+ Al Py + 0y,
+hAL (Wa + WaSaWe ) Ac

+P] S P;) } Ca(t)

The expression above can be written in a compact
form as follows

= Moy, Mt M )G (2)

12

— My, Mo,) M ))Ce (1) (15)

V(Ct) < C;:r(t)(Mxll
+¢ () (Mey,



with

Mgy, = Al Py + P Ac+ hA] (Wx + WxSQWﬁ) Ae
+P) ST P, 4+ Uy,

My, = prAd — Uy + hACT (Wz + WISQWQ;) Ay

Moz, = hA] (Wa + WeSsWa) Ag = Uay

M, = Al P. + PJ Ay + hA] We Ao + T,

Me,, = PeTAd — U, + hAgWe[ld

Mey, =hA]WeAy — Ve,

It comes then thal/(¢;) is definite negative if

—1 T H
(MCF11,€11 _ Mx121612M5L‘22,622M$121612) < OWhICh as-
sociated with (14) can be expressed as
Mz, Mz Me,, Me
M — _I_ll 12 , M — 11 12
: |:Mz12 Mz, ‘ M€12 Me,

Notice that matrix)M, and M, can be expressed as
follows:

AJPe+ PJAg+ e, PTAG— Ve }
(PTAd — W) —T.,

IP + PTA + P ST Py + Wy,
PTAd - \pxd)
PTA; - \1113}
_\pm

ve= |
+[ A } (WWe) ! [AWeAy AWeAy] <0
[A

¥ [ﬁ:ﬂ (h (Wz +WZSQV’VZ)) [Ac Aq] <0

We taking into account dfi’, = o P, for have a LMI
on the matrixVL, .
Using the Schur complemenit/, and)/, are negative
definite if and only if we have

Al P.+PTAg+ \pel PTA;— T,
M, = (PTAd — )T ~Te,
haP.Ag haP:.Agq

—haP,
lAIP,c + Pl A+ Pl ST Py + Ty,

hAgOépe
hozA;lr P.| <0

M, = (PFAG—Tyy)T

Ac
PlAy— Vg, {1;
—Va, Aq L <0
Aqg = (hWa + AW S2 W, )

Pre- and post-multiplyL, by

It follows from inequality (15) tha¥/ (¢;) < 0 and

Ml Coyen (8) 7 =V () (16)
< Ca,e(t) " diag( Py, Pe)diag(E, E)Ca,e(t)

t ot
+ / /(.zye(T)Tdiag(Ei',E) X
t—h s

diag (Wz, We) Cz e(T)drds

/Cq)e s) dmg

+hCo,e(t) | diag(Zs, Ze) Coe(t)

) Ca,e(s)ds

t

+2Ca,e(t) T diag (YJ, YeT) / Core(s)ds

t—h

t
+/é$,e(T)Tdiag(E,E) X
t—h

(Wx, We)éac,e(T)dT - V(Cac,e(o))

t
= V(Cxe(t)) < */\2/ Il Co.e(s) II% ds
0

t
_>‘2/ | Coyeq () ”2 ds (17)
0

with CI,E(t) = [C;r C;r ]T AL = )‘min{PInvpeu} >0

M, O
)\2—*)\maz<|:© Me:|)>0

Taking (16) into account, we deduce that
t

A Cayer () 12 +/\2/ | Cor.ea (8) 117 ds < V(Go)

such that

t
| Coyper () HQS c1 and / | Coyeq (5) ”2§ cz  (18)
0

where

e1 = —V(G)

1
™ c2 = )\_QV(CO) (19)

Thus,|| ., (t) || and|| ¢, (¢) || are bounded and from
(13) it comes out that

|| Coyen (t) || is bounded

too. By Lemma 2.3, we have thdt ¢,, ., (t) ||* is
uniformly continuous. Therefore, taking account of

J. = diag[P;' P;' I] it comes thatV, is ( :
(18) and using Lemma 2.3 we obtain that

negative definite if and only if we have
PrTAT + APyt 457 4+ 0,

Jim [ Gy () =0 lim |G 1=0  (20)

M, = (AdP_l—\I/xd)
oL AcPyt . Now we have to state the same behaviourdfor(t)
AgPy — Vay ‘TAI and (., (t) respectively. To do so, note that for any
Ve 40 | <0 t > 0, there exists a positive integersuch that:h —
APyt =R (W Wxsmc) h <t < kh, we have
k
with

) o Coa (1) = BaK1Gery () = 3 (= Aazy)' ™" [y, Goy (t = D)
\1111,2,3 =P, \Ijzl,z,zp

x i=1



+(B2K1Agy, +iB2K2Aay, e, (t — ih)]
_(_AdZQ)k [B2K1<€1 (t - kh)

—kB2K2(e, (t — kh) + (ay (t — kR)]
k

Cea) == (

=1

(21)

Ai—l

T, Ad21 Cex (t - Zh))
Jr(7Adzz)k<62 (t - kh)

Since|| ¢, (¢) || and|| ¢, (¢) || are bounded and if

p(Ag,,) <1 (22)
then it comes out that
tlirgo I ¢zo(8) I=0 tliII;o [l eo () I=0 (23)

Thus, the closed-loop system (1) is stable.

Remark 3.1.The results of Theorem (3.1) are only
sufficient and therefore if these conditions are not
verified we can't claim that the system under study is
not stable.

Example 3.1.In this example, we consider that the

singular system under study has one time-delay. Let
us assume that the dynamics are described by the

following matrices:

-1 0.0

AOZLO.Ol 1} Al:{fl 71} o= 0.001
E:“ 8} B:m c=[0 1] (24

Applying Theorem 3.1 for the overall system leads us

to state that this system remains stable for any delay

h < h = 1.15s with

K =[37.0734 28.0279] L= {_0'2206

6.7031

)
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In this paper, we have discussed the design of observer-
based feedback controller for singular time-delay sys-
tems. Delay-dependent sufficient conditions have been
developed to check whether a system of this class of
is stable or unstable, a state feedback controller with
consequent parameters has been used to stabilize the
system. The LMI technique is used in all the develop-
ment. We provided an iterative algorithm to solve the
feasibility of the obtained LMI’s. Finally, a numerical
example is given to illustrate the validity of the design
method.
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