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Abstract –In this paper, a novel adaptive fuzzy controller (AFC) is proposed to deal with 
the control problem of a parallel robot consisting of a Stewart platform and hydraulic 
actuators. Specifically, only two signals are measured from the robot system, namely, the 
leg displacements through Linear Variable Differential Transformer (LVDT) and the 
current change with Hall sensor. To cope with the difficulty of obtaining the full 
parametric model of the Stewart platform and that of the complete actuator dynamics, an 
adaptive fuzzy control method is then adopted. Simulations are done to compare the 
performance of the presented AFC and that of an appropriately designed adaptive 
controller. Apparently, the proposed control shows that the tracking errors of the present 
design are almost an order less than that of the otherwise designed adaptive controller. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Hydraulic systems have been used in industry in a 
variety of applications due to their low size-to-power 
ratio and the ability to apply very large force and 
torque. As illustrated in Fig.1, the Stewart platform is 
equipped with a payload and six hydraulic actuators 
whereby the six legs can change their lengths 
independently. For the structure of parallel actuators, 
the platform has rapid response and high power-to-
weight ratio suitable for many applications. 
Normally, this platform is widely used in industry 
and/or in the fields of motion simulator and tele-
surgery system.  
 
The kinematics model for the platform was 
successfully developed (Tian Huang et. al., 1999) to 
calculate the lengths of the six legs (actuators) given 
the basic position and attitude information of the 
platform, i.e., x, y, z, row, yow and pitch. 
Conceptually, since some of the applications which 

require more accurate location of the platform system, 
the nonlinear dynamic model becomes imperative 
and has been derived by (D. Li et. al., 1997). Besides 
nonlinear nature of the hydraulic dynamics, hydraulic 
systems also suffer from considerable model 
uncertainty (Bio Yao et. al., 2000). The uncertainties 
can be classified into two categories: parametric 
uncertainties and uncertain nonlinearities.  
 
This paper aims to develop an adaptive fuzzy 
controller to successfully handle the situation with  
unknown actuator parameters and system 
configurations. Through Lyapunov analysis, the 
proposed closed-loop system is proved to be 
asymptotically stable. The paper is organized as 
follows. Brief description of Stewart platform are 
presented in Section 2 and 3, respectively. An 
adaptive controller taking Stewart platform dynamics 
into consideration is shown in Section 4. On the other 
hand, a fuzzy controller with actuator dynamics is 
introduced in Section 5. Finally, a novel AFC for the 
entire hydraulic robot system is designed in section 6. 



The setup of the overall system and extensive 
simulation results are provided in Section 7, and 
conclusions are drawn in Section 8. 

 
2. BRIEF DISCRIPTION OF PLATFORM 

 
For the requirements on achieving precision motion 
control of the Stewart platform, the closed-form 
dynamics has to consider model uncertainties, 
actuator dynamics and uncertain nonlinearities. The 
configuration of the actual physical platform is 
shown in Figure 1. 
 

 
Fig. 1. Stewart platform with six hydraulic actuators 

 
However, by taking into account both the platform 
dynamics and actuator dynamics, the controller 
design becomes much more complex. What is even 
worse is that some signals are hardly available or 
measurable, which causes a challenge to the design 
task. Nevertheless, the conceptual diagram of the 
high performance controller is shown as below : 
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Fig. 2. Electrical structures of the conceptual diagram 
of the Stewart platform 
 
The control command here is the DC voltage of the 
D/A output, which is proportional to the valve spool 
position of each hydraulic actuator. The relationship 
between valve and output voltage is provided in 
Appendix A. For sensing, the LVDT supplies the 
positional information of the platform legs, and 
hence the platform itself. 
 

3. PLATFORM AND ACTUATOR DYNAMICS 
 
The actuator is designed with servo valves instead of 
proportional ones for higher frequency response. To 
derive the kinematics model, we define a base 

coordinate frame { }B  affixed to the  base platform, 
whereas the platform coordinate frame { }p affixed to 

the top surface of the platform as shown below : 
 

 
Fig. 3. Simplify structure of Stewart platform 

 
2.1 Kinematics 
 
The kinematics equation is expressed as  
                                

i i il Rp d b= + −                            (1) 
where 3

il R∈  denotes the length with each thi  
hydraulic actuators, 6b R∈  denotes the distance from 
the center of a base to the joint, 3 1

ip R ×∈  denotes the 
distance from the center of platform to thi  joint, 

3 3R R ×∈  denotes the rotation matrix associated with 
the platform subjected to the rotation angles of row, 
yaw and pitch, and d

T

p p px y z⎡ ⎤= ⎣ ⎦  represents the 

translation vector associated with the platform. The 
length of the thi  actuator is given by { }1~ 6il i = .  

 
The control goal is to solve the inverse kinematics of 
the platform with control variable 

il . The following 
Jacobian transformation gives the velocity 
kinematics of the platform: 
                                

i i

v
l J

ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                 (2) 

where v d=  and ω  are the translational and 
rotational velocities of the platform, respectively, and 
each row of J , Jacobian has the form 
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                      (3) 

 
 2.2 Dynamic equation 
 
Now, the system dynamics equation can be derived 
as follows, where the readers are referred to the paper 
by (D. Li  et al., 1999) for detail. In the task-space 
coordinate, the dynamics of a platform is governed 
by 

( ) ( ) ( )T,D q q C q q q G JL τ+ + =             (4) 

where [ ]Tq x y z ψ θ φ= , τ  the torque and 

φ , θ , and ψ  are Euler angles, respectively. 
Furthermore, the Jacobain [ ] 2

1 6 , iJ J J J R= ∈  and 

L is defined as 
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where 6 6L R ×∈  
 

 2.3 Actuator dynamics 
 
Actuator dynamics can be expressed as the following 
general form. 

( ) ( )1 0 2 0, , ,f g uτ γ ζ ζ γ ζ τ= +                  (5) 

where both 1 Rγ ∈  and 2 Rγ ∈  are the constant gain. 
and ζ  denotes the load flow pumped by flow 
compressor, u  actual control input of the actuator. 
 
From equation (5), the first term is affected by 
dynamic flow rate whereas the second term is 
controlled by load flow, output torque and input 
control. Consequently, the gain could be got from the 
actual experiment. 
 

4. NONLINEAR ADAPTIVE CONTROLLER 
 
A nonlinear adaptive control law applied to the 
Stewart platform has been proposed by (Mohammad 
Reza Sirouspour et. al., 2001). The indirect adaptive 
controller is derived based on Lyapunov theory. This 
controller can deal with the practical problems such 
as disturbance and model uncertainty. However, to 
realize such a controller suffers from several 
difficulties. First, the third order differentiation of 
position information read from LVDT should be 
derived. Second, the load flow of actuator is hard to 
measure from the electric-flow meter with high 
sampling rate. Third, the valve position is inherently 
difficult to measure essentially due to the limitations 
of the physical structure. 
 
As explained above, the present adaptive fuzzy 
controller is designed to overcome the mentioned 
problems. The main strategy is that the direct 
adaptive controller is dedicated to control the 
platform dynamics whereas the fuzzy controller is 
concentrated to compensate the actuator control 
signal generated from the adaptive controller. 
 
The dynamic equation of the platform with unknown 
parameters is expressed as 
        ( ) ( ) ( ) ( ), , ,D q q C q q q G q Y q q q θ+ + =         (6) 

whereas the hydraulic actuator dynamics form eq. (5) 
is rewritten as 
                 ( )( )q da q qu F e ,e ,τ = + τ γ                          (7) 

where nq R∈  is a vector of generalized joint 
positions, τ  is the effect of both platform and 
actuator dynamics defined as 

dτ τ τ= −  with nRτ ∈  
being a vector of generalized joint torques, au  is the 
control signal of the actuator which is compensated 
by fuzzy control output written as ˆau aτ= −  with a  
being a positive scalar factor and ( ) ˆˆ , ,r rY q q qτ θ=  

being an estimated torque with θ̂  representing on-
line estimates of θ , ( )d dq qF e ,e ,τ  is a properly 

defined fuzzy approximation function, 

and [ ] 2
1 2 T Rγ γ γ= ∈  stands for unknown parameter 

vector of the hydraulic dynamics. 
By selecting a certain sampling number n , the 

inputs of the fuzzy tuner are given as follows: 
1. Position error: ( )( )

1

1
d

n

q d d
k

ˆe q ( k ) q k
n =

≅ −∑        (8) 

2. Velocity error: ( )( )
1

1
d

n

q d d
k

ˆe q ( k ) q k
n =

≅ −∑       (9) 

3. Torque error:  ( )
1

1 n

d
k

( k ) ( k )
n =

τ = τ − τ∑           (10) 

Note that 
1. ( ) ( ) nD q ,C q,q ,G( q ) R∈  are fully unknown. 

2. Parameters of actuator dynamics are fully 
unknown. 

Let the position error be defined as 
dˆe q q= −                                                (11)                            

( )r d d dˆq q q q q e= − Λ − = − Λ                 (12)  

rs q q e e= − = + Λ                                   (13) 
where ˆ nq R∈  is the estimated value of q , e  is the 
positional tracking errors, and 0Λ >  is diagonal 
matrix.  
 
The system dynamics expressed in (6)-(7) satisfy the 
following properties: 
(i) ( )( )( ) 2 , 0  T nx D q C q q x x R− = ∀ ∈  

(ii) ( ), ,
q dq qF e e τ γ  is bounded. 

 
Theorem 1: Consider the system (6), and let Γ  be a 
positive definite matrix. The control command 

dτ  is 
chosen as 

( ) ( ) ( )
( )

1
d r r

1
r r

ˆ ˆD̂ q q C q,q G q s
ˆ   Y q,q ,q s

τ Γ

θ Γ

−

−

= + + −

= −
       (14) 

and define the parameter adaptation laws as 
                         ( )T

r r
ˆ Y q,q ,q sθ = −Γ                     (15) 

which leads to 
( ) ( ) ( ) ( )r r r r r

ˆ ˆ ˆˆY q,q ,q D q q C q,q q G qθ = + +     (16) 

Due to the fact that 
                  ( ) ( ) 1, rD q s C q q s s τ−+ + Γ =                (17) 

the closed-loop system is asymptotically stable.  
Proof: Select a Lyapunov function candidate 1ν as 

( )T T 1
1

1 1 ˆ ˆs D q s
2 2

ν θ Γ θ−= +                    (18) 

Take the time derivative of 
1ν  to yield 

( )1 1
1

ˆ ˆT Ts sν τ θ θ− −= − Γ + Γ                 (19) 

By selecting the control input 
( ) ˆ, ,r rY q q qτ θ=                        (20) 

Take into the Lyapunov candidate function to eq.(19). 
Updating law is obtained. 

( )ˆ , ,T T
r rY q q q sθ = −Γ                    (21) 

The Lyapunov function can be derived  
1

1
Ts sν −= − Γ                             (22) 

where 1ν  is negative positive definite. The system is 
asymptotically stable in the Lyapunov sense. 



Definition 1: Consider the system (7). For a real-
valued input vector ( )q d

T

q qe ,e ,τ , the output 

( )d dq qF e ,e ,τ  of  Takagi and Sugeno’s fuzzy system 

is a weighted average of the ly ’s: 

                         ( )d d

M
l l

l 1
q q M

l

l 1

w y
F e ,e ,

y
τ =

=

=
∑

∑
                   (23) 

where ly  is the system output due to rule ( l )L , the 
weight lw  implies the overall truth value of the 
premise of rule ( l )L  for the input and is calculated as 

( )l
i i

n
l

F x
i 1

w µ
=

= ∏                          (24) 

 
Theorem 2: Consider the system (6)-(7) together 
with the fact that equation ( ), ,

q dq qF e e τ γ  is finite 

and the initial estimation error is small enough 
relative to the initial desired point. For the fuzzy 
output function F  limited by defuzzification factor 
and γ  being a constant vector, the following 
equation will be promised 

( ), ,
q dq qF e e τ γ δ=                   (25) 

where the vector δ  is always bounded, i.e., δ ε≤  
with ε  being a small enough constant. Also, the 
adaptive control satisfies the requirements of 
Theorem 1. Moreover, 

au  is chosen as ( )daτ γ τ+− +  

with ( ) 1T Tγ γ γ γ
−+ =  being the pseudo inverse matrix. 

Thus, the system with the adaptive fuzzy control is 
exponentially stable. 
Proof:  

From Definition 1, the output of the fuzzy 
system, let ( )d df q qu F e ,e ,τ=  be bounded. The 

actuator control command u , excited persistently, is 
written as   

a fu u u= +                          (26) 
with u  being the actuator control command and 

fu  

being a fuzzy control output value. Moreover, for 
dτ τ→ , the estimation torque is represented as 

1
dˆ sτ τ Γ −= +  by equation (14). We chose 

a du aτ γ τ+= − +  carefully. When δ ε≤ , the equation 

(7) can be obtained 
aτ γτ δ= − +                        (27) 

where t  is time. 
0τ  is an initial value, such that the 

AFS is exponentially stable. 
 
Corollary 1: Consider the system (6)-(7) with the 
large initial estimating error and the initial estimation 
error is large which means the point is far away from 
the desired point. Also, we do not consider the 
physical limitation of the output of system bandwidth. 
After selecting the proper fuzzy member functions, 
rules and defuzzy output factors , the design will be 
one of the design case of theorem 2. 
Proof: 

By equation (21), θ̂  becomes negative large with 
large initial estimation error. For transient response 
of the system, adaptive control will win the chance to 
lose control which means τ̂  is far away from 

dτ . 
After the fuzzy tuner is added, the fuzzy output F  
generates the maximum proper control values to 
modify the adaptive control problem by fuzzy 
inference mechanism for error e  becoming large. 
Observing equation (26), the δ  becomes one of the 
major auxiliary input to balance the transient 
response until the error pull back to small. 

On the next section, the fuzzy tuning 
mechanism is proposed. 

 
5. FUZZY CONTROLER CONTROLLER DESIGN 

WITH ACTUATOR DYNAMICS 
 

The proposed fuzzy tuner is employed to monitor the 
actuator dynamic parameters. There are three inputs 
and one output for the fuzzy tuner. The position error, 
the velocity error, and torque error are considered as 
the inputs to monitor the degree of controller 
divergence.Figure 4. describes a conceptual diagram 
of the fuzzy controller : 
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Fig. 4 Traditional fuzzy control scheme 
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Figs. 5,6. The membership functions for position and 

velocity error 
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Figs. 7,8. The membership functions for torque error and 

the weighting factor 
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Table 1,2. The fuzzy rule table for positive position error 
and zero position error 
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Table 3: The fuzzy rule table for negative position error. 

 



The membership functions for input variables are 
trapezoidal functions since they are suitable for 
statistical data and are easy to implement. They are 
displayed in Figs. 5, 6 and 7, respectively. 
 
The output of the fuzzy tuner is the predicted 
modified control signal of hydraulic, as can be seen 
in Fig. 3, lying within the neighborhood of 1. Let X 
be the input signal and Y be the output signal. By 
intuition and experience, the presented fuzzy tuner 
adopts 45 rules. A rule is listed below, for example: 
 

 IF the position error is Medium AND the 
velocity error is Medium AND the torque 
error is Small, THEN 

fu  is Small 

 
Table 1-3 summarizes those 45 fuzzy rules, in which 
NEGATIVE LARGE, NEGATIVE MEDIUM, 
SMALL, MEDIUM, LARGE, POSITIVE, ZERO 
and NEGATIVE stand for the corresponding fuzzy 
sets. 
 
The basic tuning idea is as follows. When the 
position error 

dqe  is near zero, 
fu  is selected 

according to velocity error and its output error to 
tune control value to eliminate the transient response. 
When the position error departs from zero and the 
velocity error becomes large, the control input will 
not respond to the transient response and a large 
value of 

fu  is then applied to modify the control 

torque and to avoid instability.  
 
Note that actuator dynamics have a more direct effect 
on the control torque, thereby resulting in more 
confidence in the measured current. This ensures that 
the system can avoid divergence due to modeling 
errors or system uncertainties.  
 
When the velocity and torque error are extremely 
large, the readings may have some problems such 
that the controller cannot trust the measurements any 
more, and a small value of 

fu  is preferred. By 
selecting appropriate 

fu , the fuzzy tuner tunes the 

control input to actuator dynamics so as to keep the 
innovation sequence act as a zero-mean white noise 
with a suitable covariance. 
 

6. NONLINEAR ADAPTIVE FUZZY 
ALGORITHM 

 
In order to implement the above adaptive fuzzy 
control, we have to design the implementation 
algorithm. Actually, the information of the position 
of hydraulics is read from LVDT under the sampling 
rate 0.01s. Also, the hydraulic flow meter is not 
installed but the current of drivers is measured on our 
handmade driver board. 
 
In what follows, we presents a real-time adaptive 
fuzzy controller algorithm. Fig. 9 depicts a block 
diagram of the algorithm. 
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Fig. 9. A novel adaptive fuzzy control diagram 

 
Step 1:Select initial value of q(0) , q(0) , (0)τ  and (0)s  
at time 0=k . 

Step 2:Read real position of each legs from LVDT. 

Step 3:Calculate the updating law for θ̂  as shown in 
equation (15). 

Step 4:Give a desired position q  and velocity q  and 
taken them into the adaptive control law to 
get the 

dτ  according to (14). 
Step 5:Compute the actuator control signal 

au  from 
τ̂ . 

Step 6:Generate the real torque τ  which is measured 
from handmade driver and the torque error is 
expressed as 

dτ τ τ= − . 
Step 7: Monitor the position, velocity and torque 

errors to produce the control output u  by 
fuzzy control. 

Step 8: Update the control command 
a fu u u= + . 

Step 9:Repeat Step 2 to Step 9 
Note that if the Stewart platform is powered on, 

calibration has to be done automatically. The initial 
value will be assigned after the self-calibration. 
 

7. SIMULATION AND DISCUSSTION 
 

 
A sinusoidal motion signal is inputted to leg 
parameters of hydraulics. Two kinds of the 
controllers, adaptive, and adaptive fuzzy controller, 
are adpoted conducted for simulations. All of them 
have the same system parameters and tracking path. 
Tracking signal du  is commanded through digital to 
analog interface. The output from A/D channel lies 
between -10 to 10V. Hydraulics are held on if the 
output voltage is 0V after calibration.  
 

The Stewart platform is characterized by:
{ }
{ }

min 100.0 cm

max 160.0 cm,  1 ~ 6
i

i

a

a i

=

= =
 

200 kgpM = , 

sampling time =0.01 s 
        The actuator’s parameters are 

0.7 Gpaβ =   
3800 /kg mρ =   

0.61dc =  



Calibration process is needed because of the high 
nonlinear characteristic of hydraulics. The working 
space on the Stewart platform on vertical direction is 
60 cm. The linear calibration function y ax b= +  is 
used for compensating position bias and mechanical 
errors. The vector of calibration parameters ,a b  are 
recorded into file after this step is adopted. The step 
is repeated till the 6 legs is well calibrated. 

 
The tracking response of Stewart platform, under 
proposed adaptive fuzzy controller(AFC), are shown 
in Fig.10. The unit step response from 0 cm to 50 cm 
takes about 0.5 s. This response is obtained in the 
case where the nominal load torque and parameter 
variations are applied. 
 
We conclude that the AFC gives smaller tracking 
error than traditional adaptive controller subjected to 
modeling error. Meanwhile, the tracking error is 
caused by 20% model. For qualifying the accuracy of 
the controllers, the tracking result with sinusoidal 
wave is shown in Fig.11. 

 

 
Fig. 10. Step response tracking result 

 

 
Fig. 11. Sinusoidal wave tracking result 

 
8. CONCLUSIONS 

 
In this paper, a novel adaptive fuzzy controller (AFC) 
has been proposed to deal with the control problem 
subjected to fully unknown parameters of both 
Stewart platform and actuator dynamics. To allow 
simple and  low-cost implementation, minimal 
number of sensors are mounted on the hydraulic 
robot system. From above, AFC is free of taking the 

third-order time derivative of the position variable 
and second-order time derivative of the torque 
variable, which thus saves complicated computations, 
replacing the indirect adaptive control law with 
backstepping adaptive method. 
 
From another point of view, AFC provided another 
way to solve the control problem of the Stewart 
platform with hydraulic actuators. The dynamic on-
line tuning mechanism for both platform and actuator 
controller gave higher robustness than adaptive 
controller, despite not the  solution with optimal 
parameters is provided. On the other hand, in 
comparison with traditional adaptive controller, the 
simulation data demonstrated significant 
improvement of tracking behavior over a well-tuned 
adaptive controller with this novel method. 
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