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Abstract: This paper deals with the problem of robust sitgbdnd stabilization for
uncertain continuous singular systems with multiple tivaeying delays. The parametric
uncertainty is assumed to be norm bounded. The purpose obitoist stability problem
is to give conditions such that the uncertain singular systeregular, impulse free, and
stable for all admissible uncertainties. The purpose ofthest stabilization problem is
to design a feedback control law such that the resultingeddsop system is robustly
stable. This problem is solved via generalized quadradigikty approach. A strict linear
matrix inequality (LMI) design approach is developed.
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1. INTRODUCTION systems than regular ones. Recently, robust stability
and robust stabilization for uncertain singular sys-
In recent years, considerable efforts have been detems have been considered. The notions of quadratic
voted to the analysis and synthesis of singular systemsstability and quadratic stabilization of regular sys-
(known also as descriptor systems, semi—state systems have been extended (S. Xu, 2000), (S. Xu and
tems, differential algebraic systems, generalized state4.am, 2001). It should be pointed out that the robust
space systems, (Dai, 1989), (Lewis, 2002)). Thesestability problem for singular systems is much more
systems arise naturally in various fields including complicated than that for regular systems because it
electrical networks, robotics, social, biological, and requires to consider not only stability robustness, but
automatic control. Alike the case of uncertain sys- also regularity and absence of impulses (for continu-
tems without delay, methods based on the conceptsous singular systems) or causality (for discrete singu-
of quadratic stability and quadratic stabilizability have lar systems) at the same time (Fang and Chang, 1993),
been shown to be effective in dealing with these (C. H. Fang and Chang, 1994), and the latter two
problems in both continuous and discrete contexts properties need not be considered in regular systems.
(Mahmoud and Al-Muthairi, 1994), (S. Xu and Yang, Very recently, much attention has been paid to singu-
2001). lar systems with time delay. For the continuous case,
On the other hand, control of singular systems has numerical methods for such systems were discussed in
been extensively studied in the past years due to(Campbell, 1980) and (S. Xu and Yang, 1994). To the
the fact that singular system better describe physicalpest of our knowledge, there is not much results on the
problems of robust stability or robust stabilization for
singular systems with multiple time-varying delays in
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the literature. The singular system (2) may have an impulsive so-
In this note, we address the problems of stabil- lution, however the regularity and the absence of im-
ity/stabilization and robust stability/stabilizationrfo  pulses of the paifE, Ay) ensure the existence and
uncertain singular systems with multiple time-varying uniqueness of an impulse free solution to this system,
delays. The parameter uncertainties are time invariantwhich is stated by Lemma 2.1.

and unknown, but norm bounded.

Lemma 2.1.(S. Xu and Lam, 2002) Suppose the pair
(E, Ap) is regular and impulse free, then the solution
%o (2) exists and is impulse free and unique/@no)

The paper is organized as follows. In section 2, the
problem is stated and the required assumptions ar
formulated. Section 3 deals with the stability problem.
In section 4 we address the robust stability problem
and in section 5 we address the stabilization problem.In view of this, we introduce the following definition
Section 6 deals with the robust stabilization. In section for singular delay system (2).

7 we present a numerical example to show the useful-

ness of the proposed results. Definition 2.2.

e The singular delay system (2) is said to be regular
Notation _ _ and impulse free if the paiiz, 4¢) is regular and
In the sequebym {.} is defined as impulse free.
Sym{X} =X + X' e The singular delay system (2) is said to be stable
if for any e > 0 there exists a scaldi(c) > 0
for any matrix X such that, for any compatible initial conditions
o(1) satisfyingsup_,<,<, || #(t) ||< 6(c), the
solutionz(t) of system (2) satisfielp z(t) ||< ¢
2. PROBLEM STATEMENT AND fort > 0. Furthermore
PRELIMINARIES lim o(t) =0

t— o0

Consider the following uncertain singular systems .
with multiple delays : The following three lemmas are very useful for our

» development in this paper.
Ei(t) = Ao(t)x(t) + Z Azt — hy (1)) + B(t)u(t)

=1 Lemma 2.2.(Xie, 1996) LetZ, E, F', R and A be
y(t) = Ca(t) matrices of appropriate dimensions. Assume g
) symmetric,R is symmetric and positive definite and
z(t)=¢(t), —h <t <0 ATRASR, then

wherex(t) is the state vector, ilR” , u(t) € R™
is the controly(t) € R is the output vectorh;(t);
j = 1,2,...,p, are the time-varying delays of the
system and the matrices;(¢); j = 0,1,2,...,p and
B(t) are given by :

Z+EAF+F ' ATET <0

if and only if there exists a scalar> 0 satisfying

-1
Z+E(AR)ET +FT (AR) F<0
A;(t) = A; + D;F5()N;  B(t) = B+ Dy Fy()N, (3)

Lemma 2.3.(M.S. Saadni, 2003) Leb, a andb, then

with Aj,j = 0,1,2,...,p, B, Dj, NJ,j = X
the two statement are equivalent

0,1,2,...,p, D, and N, are given matrices with

appropriate dimensions an#,(¢) and F;(t); j = a) the LMI
0,1,2,...,prepresent the system uncertainties satis-
fying the following assumption. [f’r 3} + Sym { [ﬂ [67 71}} <0

Assumption 2.1Assume that the uncertainty terms is feasible in the variabl¢ andg.
satisfy what follows b) @, a andb satisfy :® + ab” +baT <0
Fy ()RoFo(t) < Ry F; (t)RaFa(t) < Ra,

) ) _ given matrices of appropriate dimension, then the two
wherefz; and Fy(t) are diagonal matrices given by statements are equivalent

Fy(t) =diag (Fy(t) ... Fp(t)) Rg=diag(R1 ... Rp) a) the following LMI
a T ) a
Definition 2.1. (Dai, 1989) o7 o a2 ] =k 6]
(1) The pair(E, A) is said to be regular ifet(sE — +Sym { {ﬂ G [b7 _I}} <0
A) is not identically zero.
(2) The pair(E, A) is said to be impulse free if is feasible in the variablé'.

deg(det(sE — A)) = rankFE. b) @, a andb satisfiesP < 0and ® +ab" +ba’ < 0



ing lemma : sy 9 19\)] +sym{FT Ry <0 (9)
PT o w o

Lemma2.5(S. Xu and Lam, 2002) Consider the .o faasible with

functionp : R™ — R. if ¢ is bounded on0, ), that
is, there exists a scalar > 0 such thaf ¢(¢) |< «

forall t € [0,00), theny is uniformly continuous on

In our subsequent developments we need the follow- l\lflT -v3 0 P
0

Fi=[F FOES F4]T

[0, 0). Fa=[Ao Aq 0 —I]
Lemma 2.6.Barbalat’s Lemma: Consider the function Ag=[A1 Ay -+ Ap] W= Z h;W;
¢ : RT — Rif ¢ is uniformly continuous and =1
15" @(s)ds < oo, then P
Uy = Z (Qj +(1 - [j)(ﬁjzj +Y;+ YJT>)
lim p(t) =0 J=1
t—oo
Wy = diag((l - [1)Q17 s (1= ZP)QP)
In the rest of the paper the notation is standard unless Vo= [(1—T)Ys (1-D)Ys - (1—0,)Y]

it is specified otherwiseL > 0 (L < 0) means
that the matrixL is symmetric and positive-definite  then, system (6) is asymptotically stable.
(symmetric and negative-definite).

, ) Proof of Theorem 3.1 Note that the regularity and the
Assumption 2.2The delays;(¢),j = 1,2,...,pare  absence of impulses of the pdiE, Ay) implies that

assumed to satisfy the following constraint: there exist two invertible matrices and H € R**"
such that (Dai, 1989)

0< hj(t) <hjand0 < hy(t) <l; <1, _ 5. o] 10
J J J J E=GEH = [ 0 0} Ay = GAgH = { o LH}
whereh ;, are given positive constants. _ ) v
j g p A, = GAH = {2‘21 i;ﬂ (10)
J J

Let us definer ash = max (ha,..., hy).
wherel, € R™*" andl,,_,, € R*~"*"~" are identity
matrices. Using the same transformation as in (10), let

3. STABILITY ANALYSIS PoHTPG, W, = G-TW,G" (11)

The goal of this section consists of establishing what Q;=H"Q;H, Z;=H'Z;H, Y;=H'Y;H

will be the sufficient conditions that can be used . .
to check whether or not the class of systems under Taking account of (10) and using (7), we deduce that

study is stable. We consider the system given by the P;; = P} > 0 and P, = 0. Now, let
following dynamics:

Biv = Ao(Da() + Y A;@att—hy(@)  (5) «o=[cdm go] =nt0 (12)
=t where(; € R” and(, € R*~". Using the expression
in (6), the singular delay system (2) can be decom-

or in a compact form as
posed as

Eiy = Ao(t)z(t) + Aa(t)zn (1) 6 : . -
e © GO = MG + Y (A1t~ hy(0) + Arz;Calt — hy (1)

with j=1

Ag(t) = [AL(t) Az(t) -+ Ap(D)] L
¢ 0=Cat) + > [Aa1;r(t = hy(6)) + Az Calt — by (H)(L3)

j=1

#(C)=C¢(t+pB) B E[-h0

xh(t):[a;(t—hl)-r z(t —ha) T - x(t—}zp)T]T

The goal of this subsection consists of developing
some conditions that can be used to check whether |t is easy to see that the stability of the singular delay
the class of systems under study is stable or not. Thesystem (2) is equivalent to that of the system (13). In
conditions we are looking for should depend on the view of this, we shall prove next that the system (13)
upper bound of the delay as given in Assumption 2.2. js stable.

The following theorem states such a result.

Theorem 3.1 Assume that the assumption 2.2 is sat- e consider the Lyapunov function candidate :

isfied. If there existF;,i = 1,...,4, P > 0,Q; > 0, V(£) = Vi) + Va(t) + Va(t) + Va(t 14
Wj>0,Y]-andeforj:1,2,...,psucht]hatthe with (0= VA0 + 120+ V(0 + Va0 =
following hold:

Vi) =¢/ PTG
E'P=P E>0 ) » Lot

V2(Ct):Z / /(’ZETWJ’c'Zdzds

Zj Y;
{Y; ETWJE} 20 (8) T=hh ) s



P

ASESY

=1
T t—nj(t)

t
we=3 [ (-0)
J=17

z, Y ¢,
[ 57| [ o]

¢ QjCsds

z

2—hj(2)

Recall that for any matriced’, F» and F3 of

appropriate dimensions with, > 0

F Fs+ F P < F Byl + Fy Fy 'R

/ (] i ]

2.5, we have that ¢;(t) ||? is uniformly continuous.
Therefore, with (20) in mind and using Lemma 2.5,
we obtain

Jim [ G1(6) =0 (22)

Now, note that for anyt > 0, there exists a
positive integerk such thatkh — h < t < kh,
we have,(t) = — Zj:l j_):l((*Azlj)7'71C1(t —ih;(t)) +
Do (= A22))*Ca(t — khy(2)) With h = maz(hy...hyp).
Since|| ¢1(t) || is bounded and if

After taking the derivatives of these functionals and

performing some algebraic manipulations and assum-

ing that
AJWA, — Ty <0
we get :
V(G < ¢T(0) (M — Mi2 Mgy Mi5)C(8)
With AT h oy BT Ay + A WA + 0y
Mis = PAg — U3 + AT WA,

Moo = A;WAd — \I’Q

It comes then that’(¢;) is definite negative if

p(Aszj) <1 for  j=1...p (23)
which implies that
Jim | &(2) 1= 0 (24)
(15) Thus, the system (13) is stable.
Remark 3.1.The results of Theorem (3.1) are only
(16) sufficient and therefore if these conditions are not

verified we can't claim that the system under study is
a7 not stable.

(18)
4. ROBUST STABILITY

(M1 — M2 M,," M,) < 0 which associated with o
(15) and using the Schur complement and rewriting We assume that the system has uncertainties on all

the result we get

U, —¥3 0 P
|:\I/3T —Ty ():|+Sym{|:():|[Ag Aq 0]}<0
0 0o -W w
According to lemma 2.3, the condition above holds if

there existF,,,, m = 1, ..., 4, such that (9) is satisfied.

It follows from inequality ¢?) thatV (¢;) < 0 and

t t

MllG® I1? =Vi(G) < /V(C(S))ds < *Az/ I ¢(s) I1? ds

0 0
t

< */\2/ [RSION

0
with
A1 = Amin(P11) >0

A2 = =Amas { Miz — MiaMp' M5} >0
Taking into account (19), we deduce that

Mollae I +>\2/ I ¢i(s) 117 ds < V(Go)
0

Therefore ]
I ¢1() I°< 1 and / I ¢uls) IP< ez

0

where )
. V(Co)

=V Y —
a= (Co)  c2 X

Thus,|| ¢1(t) || is bounded and from system (13) we
note that% || ¢i(t) ||? is bounded too. By Lemma

the matricesj.e : Fi, = Ao(t)z, + Agq(t)zp(t)
with Ao(ﬁ) = Aoy + DoFQ(ﬁ)No, Ad(t) = Ag +
DyFy(t)Ng and Dy, F,, Ny are given byD,; =
[Di...D,), Ny = diag(Ny, ...N,), Fa(t) =
diag( Fy(t) Fy(t)).

Note that conditions (7) and (8) do not depend on the
system matrices so they do not need to be adapted to
the uncertain case. Besides, we have to replacand

A, respectively byA,(t) and A4(t) in condition (9).
Separating the nominal and the uncertain part and ap-
plying Lemma (2.2) and using the Schur complement
we get a condition for the robust case which is stated
by Theorem 4.1.

Theorem 4.1 Assume that assumptions (2.1) and (2.2)
are satisfied. If there exidt; for+ = 1,...,4 and
P>0,Q; >0,W; >0,Y;, Z;forj=1,2,...,p
and\ such that conditions (7), (8) and

fir. —¥3 0 P 0 0
. 2 0 0 0 0
0 0 -W W o0 0
P o W 0 o0 0
(29) 0 0 0 0 —AR 0
0 0 0 0 0 —ARg4
+sym {FJ Fa} <0 (25)
are feasible, with
(20)
Fs=[F 0 0]7(26)
Fa=[F2 Do Dy K27)
(21) fi1 =W + ANy RoNo  faz = —Wa + AN, RqaN{28)

then the uncertain system under study is asymptoti-
cally stable for all admissible uncertainties.



Proof of Theorem 4.1 We have to replacel, and ?

A, respectively byAy(t) and A4(t) in condition (9) csymd | B | (A A 0 -1 B (32)
,which gives after separating the uncertain terms Fy ‘
0
0
S Ny o7 0
Sym [%] [gﬂ {Fo(t) qu)} 0 J\{)J +  +8ymQ | 0| [LC-GK.)) —GK4, 0 0 —G]p <0
Fy ! 0 0 0
I
v, v, o0 P * are feasible. Then, the system (29) is asymptotically
vl v, 0 o0 - stable and the output feedback control law is given by
0 00w ow | tSm{F R} <0
P 0 w 0

K=G7'L
Applying Lemma 2.2 for expression (X) above, and ) )

(25)holds withf1; and f»» given, respectively, by (28) similar arguments as for Theorem 4.1.
and (28). Hence the uncertain system under study is

asymptotically stable for all admissible uncertainties. 6. ROBUST STABILIZATION
In this section, we are concerned by robust stabi-
5. STABILIZABILITY ANALYSIS lizability of the uncertain system under the control
. . . law (30). Introducing the uncertainty terms in (4), the
We consider the nominal system (2) given as closed loop system equation becomes
Ei(t) = Aoz (t) + Agzn(t) + Bu(t) Ei(t) = A () (t) + Ag(t)zn(t)
y(t) = Cx(t) (29) z(t) = ¢(t), —h <t <0 (33)
z(t) = ¢(t), —h <t <0 with

We propose to synthesize a stabilizing output feed- A" (1) = A(®) + BOKC  Aa(t) = Aa + DaFu(t)Na

back controller. Notice that a dynamical output feed- whereN, andD, are given by

back could be obtained as a statical output feedback _ s
for an augmented system. In addition state feedback Da=[D1 ... Dp] Ny=diag(N, ...Np)
could be obtained by adopting = 1, where[ indi- There exist any matrices, andK ;. , such as

cates the unit matrix. The controller is thus given by
el
e = Kye (30) A(t) = A(t) + B(t) KC + B(t)K; — B(t) K,
A(t) = A(t) + B()K, + B(t)(KC — K)
Substituting (30) in the plant model (29) and with Aa(t) = Ag(t) + B(t)Ka, — B(t)Ka,
A = Ay + BKC we get the closed-loop dynamic ‘ '
As(t) =A(t) + Bt)Ks Ag,(t) = Aq(t) + B(t)Kq,

Note that conditions (7) and (8) do not depend on the
B system matrices so they do not need to be adapted to
o(t) =), —h <t <0 the uncertain case. Besides, we have to replegitand
A, respectively byA<! (t) and A4(t) in condition (9)
to get a condition for the robust case which is stated
by Theorem 6.1.

Ei(t) = (Ao + BKC)x(t) + Agzp(t)

with
Al = Ag + BKC = Ay + BK, + B(KC — K.)

AS = A, 4+ BK,, — BK,, (32)

Theorem 6.1 Assume that assumptions 2.1-2.2 are
satisfied. If there exisk; fori =1,...,4andP > 0,
Q;>0,W;>0,Y;,Z;forj=1,2,...,p, L,Gand

A such that conditions (7), (8) and

As = Ao+ BKs Agq, = Aq+ BKy,

The objective of this study is to develop a new
delay-dependent stabilization method that provides an
output feedback controller(t) = Ky(t) for of class 0

. . . 0o P f 0 0
of dynamical singular systems. The following theorem chlri ;;z o o }} 0 0 o
1 5
states such a result: 0 0 -W W 0 0 0 0
P 0 w 0 0 0 0 0 (34)
Theorem 5.1 Assume that assumption 2.2 is satisfied | /> 22 0 0 fe= 0 0 0
. - 0
and there exist,,, pourm = 1,2,..,4, P > 0, o 0 o0 0 0 0 —MR, O
W; >0,Q; >0,Y;, Z;forj = 1,2,....,p, L et 0o 0 0 0 0 0 0  —ARy |
G such that the conditions (7), (8) and I3
Fy
Fs
v —Ws 0 P 0 Fl
_\I}; _\Pz 0 0 +Sym 04 [As Ay, 0 —I B Do D, Dy]p <0
0 0 -wW w 0
P 0 w 0 0




hold with
fi1 = W1 + ANy RoNo + AK] N, RyN, K,
faz = —Wa + AN] RgNg + MK N, RyNyKa,
fio = —U3 + MK N, Ry N, K,
f15 = (LC — GK,) + AK] N, Ry Ny,
fas =
fs5=—(G+ @) + N RyN,

~GKa, + XK ] N, RyN,

then system (33) is robustly asymptotically stabiliz-
able by the output feedback controller

K=G'L

The proof of Theorem 6.1 can be carried out with
similar arguments as for Theorem 4.1.

Example 6.1.In this example, we consider the prob-
lem of state feedback robust stabilization for the sys-
tem whose data are given as

15 05 1 1 0 -1
Ag=|-1 0 1|, A=|1 -1 05
05 0 1 0.3 05 —1
1 1 0 11
E=|1 -1 1|B=|10 (35)
2 0 1 01

The admissible uncertainties are given by

Do=D1=02I5, Ng=N; =13, N, =0, D, =0.2I3

We apply theorem 6.1 for the overall system and for

K= 4.8976 10.1848 21.3709
571 —9.6414 —35.0424 —41.3699
K, — 1.8620  1.3457 1.0246
ds 7 1 0.6899 —1.2852 —0.3757

we find out that this system is asymptotically stabi-
lizable with the state feedback gain

|

for h = 2s and0 < A(t) < 0.8.

177.5158
—47.0935

420.7779

663.7208
—198.5964

—210.2011

Figure 1 shows the behaviour of system (35) for a
maximum delay.

1

a L L L L L L L L .
o 2 4 6 8 10 12 14 16 18

Fig. 1. Evolution of states; , z» andx3 of system (35)

7. CONCLUSION

This paper deals with a class of dynamical uncertain
singular systems with multiple time-varying states de-
lays. Delay-dependent sufficient conditions have been
developed to check whether a system of this class is
stable or unstable, an output feedback controller with
consequent parameters has been used to stabilize the
system. The LMI technique is used in all the develop-
ment. A numerical example is given to illustrate the
obtained results.
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