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1. INTRODUCTION

In recent years, considerable efforts have been de-
voted to the analysis and synthesis of singular systems
(known also as descriptor systems, semi–state sys-
tems, differential algebraic systems, generalized state-
space systems, (Dai, 1989), (Lewis, 2002)). These
systems arise naturally in various fields including
electrical networks, robotics, social, biological, and
automatic control. Alike the case of uncertain sys-
tems without delay, methods based on the concepts
of quadratic stability and quadratic stabilizability have
been shown to be effective in dealing with these
problems in both continuous and discrete contexts
(Mahmoud and Al-Muthairi, 1994), (S. Xu and Yang,
2001).
On the other hand, control of singular systems has
been extensively studied in the past years due to
the fact that singular system better describe physical

1 Special thanks to ”La Région Poitou Charentes” for their finan-
cial supports

systems than regular ones. Recently, robust stability
and robust stabilization for uncertain singular sys-
tems have been considered. The notions of quadratic
stability and quadratic stabilization of regular sys-
tems have been extended (S. Xu, 2000), (S. Xu and
Lam, 2001). It should be pointed out that the robust
stability problem for singular systems is much more
complicated than that for regular systems because it
requires to consider not only stability robustness, but
also regularity and absence of impulses (for continu-
ous singular systems) or causality (for discrete singu-
lar systems) at the same time (Fang and Chang, 1993),
(C. H. Fang and Chang, 1994), and the latter two
properties need not be considered in regular systems.
Very recently, much attention has been paid to singu-
lar systems with time delay. For the continuous case,
numerical methods for such systems were discussed in
(Campbell, 1980) and (S. Xu and Yang, 1994). To the
best of our knowledge, there is not much results on the
problems of robust stability or robust stabilization for
singular systems with multiple time-varying delays in



the literature.
In this note, we address the problems of stabil-
ity/stabilization and robust stability/stabilization for
uncertain singular systems with multiple time-varying
delays. The parameter uncertainties are time invariant
and unknown, but norm bounded.

The paper is organized as follows. In section 2, the
problem is stated and the required assumptions are
formulated. Section 3 deals with the stability problem.
In section 4 we address the robust stability problem
and in section 5 we address the stabilization problem.
Section 6 deals with the robust stabilization. In section
7 we present a numerical example to show the useful-
ness of the proposed results.

Notation
In the sequelSym {�} is defined as

Sym {X} = X + X⊤

for any matrixX

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following uncertain singular systems
with multiple delays :

Eẋ(t) = A0(t)x(t) +

p∑

j=1

Aj(t)x(t − hj(t)) + B(t)u(t)

y(t) = Cx(t)

x(t) = φ(t), − h̄ < t < 0

wherex(t) is the state vector, inRn , u(t) ∈ Rm

is the control,y(t) ∈ Rr is the output vector,hj(t);
j = 1, 2, . . . , p, are the time-varying delays of the
system and the matricesAj(t); j = 0, 1, 2, . . . , p and
B(t) are given by :

Aj(t) = Aj + DjFj(t)Nj B(t) = B + DbFb(t)Nb (3)

with Aj , j = 0, 1, 2, . . . , p, B, Dj , Nj ; j =
0, 1, 2, . . . , p, Db and Nb are given matrices with
appropriate dimensions andFb(t) and Fj(t); j =
0, 1, 2, . . . , p represent the system uncertainties satis-
fying the following assumption.

Assumption 2.1.Assume that the uncertainty terms
satisfy what follows

F
⊤

0 (t)R0F0(t) ≤ R0 F
⊤

d (t)RdFd(t) ≤ Rd,

F
⊤

b (t)RbFb(t) ≤ Rb (4)

whereRd andFd(t) are diagonal matrices given by

Fd(t) = diag ( F1(t) . . . Fp(t) ) Rd = diag ( R1 . . . Rp )

Definition 2.1. (Dai, 1989)

(1) The pair(E, A) is said to be regular ifdet(sE −
A) is not identically zero.

(2) The pair (E, A) is said to be impulse free if
deg(det(sE − A)) = rankE.

The singular system (2) may have an impulsive so-
lution, however the regularity and the absence of im-
pulses of the pair(E, A0) ensure the existence and
uniqueness of an impulse free solution to this system,
which is stated by Lemma 2.1.

Lemma 2.1.(S. Xu and Lam, 2002) Suppose the pair
(E, A0) is regular and impulse free, then the solution
to (2) exists and is impulse free and unique on[0,∞)

In view of this, we introduce the following definition
for singular delay system (2).

Definition 2.2.

• The singular delay system (2) is said to be regular
and impulse free if the pair(E, A0) is regular and
impulse free.

• The singular delay system (2) is said to be stable
if for any ε > 0 there exists a scalarδ(ε) > 0
such that, for any compatible initial conditions
φ(t) satisfyingsup−τ≤t≤0 ‖ φ(t) ‖≤ δ(ε), the
solutionx(t) of system (2) satisfies‖ x(t) ‖≤ ε

for t ≥ 0. Furthermore

lim
t→∞

x(t) = 0

The following three lemmas are very useful for our
development in this paper.

Lemma 2.2.(Xie, 1996) LetZ, E, F , R and ∆ be
matrices of appropriate dimensions. Assume thatZ is
symmetric,R is symmetric and positive definite and
∆⊤R∆ ≤ R, then

Z + E∆F + F
⊤∆⊤

E
⊤

< 0

if and only if there exists a scalarλ > 0 satisfying

Z + E

(

λR

)

E
⊤

+ F
⊤

(

λR

)−1

F < 0

Lemma 2.3.(M.S. Saadni, 2003) LetΦ, a andb, then
the two statement are equivalent

a) the LMI
[

Φ a
a⊤ 0

]

+ Sym

{[
f
g

] [
b⊤ −I

]}

< 0

is feasible in the variablef andg.
b) Φ, a andb satisfy :Φ + ab⊤ + ba⊤ < 0

Lemma 2.4.(M.S. Saadni, 2003) LetΦ, a and b be
given matrices of appropriate dimension, then the two
statements are equivalent

a) the following LMI
[

Φ a + bG⊤

a⊤ + Gb⊤ −G − G⊤

]

=

[
Φ a
a⊤ 0

]

+Sym

{[
0
I

]

G
[

b⊤ −I
]}

< 0

is feasible in the variableG.
b) Φ, a andb satisfiesΦ < 0 and Φ+ab⊤+ba⊤ < 0



In our subsequent developments we need the follow-
ing lemma :

Lemma 2.5.(S. Xu and Lam, 2002) Consider the
functionϕ : R+ → R. if ϕ̇ is bounded on[0,∞), that
is, there exists a scalarα > 0 such that| ϕ̇(t) |≤ α

for all t ∈ [0,∞), thenϕ is uniformly continuous on
[0,∞).

Lemma 2.6.Barbalat’s Lemma: Consider the function
ϕ : R+ → R.if ϕ is uniformly continuous and
∫ ∞

0 ϕ(s)ds < ∞, then

lim
t→∞

ϕ(t) = 0

In the rest of the paper the notation is standard unless
it is specified otherwise.L > 0 (L < 0) means
that the matrixL is symmetric and positive-definite
(symmetric and negative-definite).

Assumption 2.2.The delayshj(t), j = 1, 2, . . . , p are
assumed to satisfy the following constraint:

0 ≤ hj(t) ≤ h̄j and 0 ≤ ḣj(t) ≤ l̄j < 1,

whereh̄j , are given positive constants.

Let us definēh ash̄ = max
(
h̄1, . . . , h̄p

)
.

3. STABILITY ANALYSIS

The goal of this section consists of establishing what
will be the sufficient conditions that can be used
to check whether or not the class of systems under
study is stable. We consider the system given by the
following dynamics:

Eẋt = A0(t)x(t) +

p∑

j=1

Aj(t)x(t − hj(t)) (5)

or in a compact form as

Eẋt = A0(t)x(t) + Ad(t)xh(t) (6)

with

Ad(t) = [ A1(t) A2(t) · · · Ap(t) ]

xh(t) =
[

x(t − h1)
⊤ x(t − h2)

⊤ · · · x(t − hp)⊤
]
⊤

The goal of this subsection consists of developing
some conditions that can be used to check whether
the class of systems under study is stable or not. The
conditions we are looking for should depend on the
upper bound of the delay as given in Assumption 2.2.
The following theorem states such a result.

Theorem 3.1.Assume that the assumption 2.2 is sat-
isfied. If there existFi, i = 1, . . . , 4, P > 0, Qj > 0,
Wj > 0, Yj andZj for j = 1, 2, . . . , p such that the
following hold:

E
⊤

P = P
⊤

E ≥ 0 (7)

[
Zj Yj

Y
⊤

j E
⊤

WjE

]

≥ 0 (8)

[
Ψ1 −Ψ3 0 P

−Ψ⊤

3 −Ψ2 0 0
0 0 −W W

P⊤ 0 W 0

]

+ Sym
{
F⊤

1 F2

}
< 0 (9)

are feasible with

F1 =
[

F⊤

1 F⊤

2 F⊤

3 F4

]
⊤

F2 = [ A0 Ad 0 −I ]

Ad = [ A1 A2 · · · Ap ] W =

p∑

j=1

h̄jWj

Ψ1 =

p∑

j=1

(

Qj + (1 − l̄j)

(

h̄jZj + Yj + Y
⊤

j

))

Ψ2 = diag

(

(1 − l̄1)Q1, . . . , (1 − l̄p)Qp

)

Ψ3 = [ (1 − l̄1)Y1 (1 − l̄2)Y2 · · · (1 − l̄p)Yp ]

then, system (6) is asymptotically stable.

Proof of Theorem 3.1 Note that the regularity and the
absence of impulses of the pair(E, A0) implies that
there exist two invertible matricesG andH ∈ Rn×n

such that (Dai, 1989)

Ē = GEH =

[
Ir 0
0 0

]

Ā0 = GA0H =

[
Ā1 0
0 In−r

]

Āj = GAjH =

[
A11j A12j

A21j A22j

]

(10)

whereIr ∈ Rr×r andIn−r ∈ Rn−r×n−r are identity
matrices. Using the same transformation as in (10), let

P̄ = H
⊤

PG
−1

, W̄j = G
−⊤

WjG
−1 (11)

Q̄j = H
⊤

QjH, Z̄j = H
⊤

ZjH, Ȳj = H
⊤

YjH

Taking account of (10) and using (7), we deduce that
P̄11 = P̄⊤

11 ≥ 0 andP̄12 = 0. Now, let

ζ(t) =
[

ζ⊤

1 (t) ζ⊤

2 (t)
]
⊤

= H
−1

x(t) (12)

whereζ1 ∈ Rr andζ2 ∈ Rn−r . Using the expression
in (6), the singular delay system (2) can be decom-
posed as

ζ̇1(t) = Ā1ζ1(t) +

p∑

j=1

[A11jζ1(t − hj(t)) + A12jζ2(t − hj(t))]

0 = ζ2(t) +

p∑

j=1

[A21jζ1(t − hj(t)) + A22jζ2(t − hj(t))](13)

φ(ζt) = ζ(t + β) β ∈ [−h̄, 0]

It is easy to see that the stability of the singular delay
system (2) is equivalent to that of the system (13). In
view of this, we shall prove next that the system (13)
is stable.

We consider the Lyapunov function candidate :

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (14)

with
V1(ζt) = ζ

⊤

t P̄
⊤

Ēζt

V2(ζt) =

p∑

j=1

t∫

t−hj(t)

t∫

s

ζ̇
⊤

z Ē
⊤

W̄jĒζ̇zdzds



V3(ζt) =

p∑

j=1

t∫

t−hj(t)

ζ
⊤

s Q̄jζsds

V4(ζt) =

p∑

j=1

t∫

0

(
1 − l̄j

)
z∫

z−hj(z)

[
ζ
⊤

z ζ̇(s)⊤
]

[
Z̄j Ȳj

Ȳ
⊤

j Ē
⊤

W̄j Ē

] [
ζz

ζ̇(s)

]

dsdz

Recall that for any matricesF1, F2 and F3 of
appropriate dimensions withF2 > 0

F⊤

1 F3 + F⊤

3 F1 ≤ F⊤

1 F2F1 + F⊤

3 F−1

2
F3

After taking the derivatives of these functionals and
performing some algebraic manipulations and assum-
ing that

Ā
⊤

d W̄Ād − Ψ̄2 < 0 (15)

we get :
V̇ (ζt) ≤ ζ

⊤(t)(M11 − M12M
−1
22 M

⊤

12)ζ(t)

with
M11 = Ā

⊤

0 P̄ + P̄
⊤

Ā0 + Ā
⊤

0 W̄Ā0 + Ψ̄1 (16)

M12 = P̄ Ād − Ψ̄3 + Ā
⊤

0 W̄Ād (17)

M22 = Ā
⊤

d W̄Ād − Ψ̄2 (18)

It comes then thatV̇ (ζt) is definite negative if
(
M11 − M12M

−1
22 M⊤

12

)
< 0 which associated with

(15) and using the Schur complement and rewriting
the result we get

[
Ψ̄1 −Ψ̄3 0

−Ψ̄⊤

3 −Ψ̄2 0
0 0 −W̄

]

+ Sym

{[
P̄
0
W̄

]

[ Ā0 Ād 0 ]

}

< 0

According to lemma 2.3, the condition above holds if
there existFm, m = 1, ..., 4, such that (9) is satisfied.

It follows from inequality (??) thatV̇ (ζt) < 0 and

λ1 ‖ ζ1(t) ‖2 −V (ζ0) ≤

t∫

0

V̇ (ζ(s))ds ≤ −λ2

t∫

0

‖ ζ(s) ‖2
ds

≤ −λ2

t∫

0

‖ ζ1(s) ‖2
ds

with
λ1 = λmin(P11) > 0

λ2 = −λmax

{
M11 − M12M

−1
22 M

⊤

12

}
> 0

Taking into account (19), we deduce that

λ1 ‖ ζ1(t) ‖2 +λ2

t∫

0

‖ ζ1(s) ‖2
ds ≤ V (ζ0) (19)

Therefore

‖ ζ1(t) ‖2≤ c1 and

t∫

0

‖ ζ1(s) ‖2≤ c2 (20)

where
c1 =

1

λ1

V (ζ0) c2 =
1

λ2

V (ζ0) (21)

Thus,‖ ζ1(t) ‖ is bounded and from system (13) we
note that d

dt
‖ ζ1(t) ‖2 is bounded too. By Lemma

2.5, we have that‖ ζ1(t) ‖2 is uniformly continuous.
Therefore, with (20) in mind and using Lemma 2.5,
we obtain

lim
t→∞

‖ ζ1(t) ‖= 0 (22)

Now, note that for anyt > 0, there exists a
positive integerk such thatkh̄ − h̄ ≤ t < kh̄,
we haveζ2(t) = −

∑
k

i=1

∑
p

j=1
((−A21j)

i−1ζ1(t − ihj(t)) +
∑

p

j=1
(−A22j)

kζ2(t − khj(t))) with h̄ = max(h1...hp).
Since‖ ζ1(t) ‖ is bounded and if

ρ(A22j) < 1 for j = 1 . . . p (23)

which implies that

lim
t→∞

‖ ζ2(t) ‖= 0 (24)

Thus, the system (13) is stable.

Remark 3.1.The results of Theorem (3.1) are only
sufficient and therefore if these conditions are not
verified we can’t claim that the system under study is
not stable.

4. ROBUST STABILITY

We assume that the system has uncertainties on all
the matrices,i.e : Eẋt = Ã0(t)xt + Ãd(t)xh(t)
with Ã0(t) = A0 + D0F0(t)N0, Ãd(t) = Ad +
DdFd(t)Nd and Dd, Fd, Nd are given byDd =
[ D1 . . .Dp ], Nd = diag

(
N1, . . . Np

)
, Fd(t) =

diag
(
F1(t) . . . Fp(t)

)
.

Note that conditions (7) and (8) do not depend on the
system matrices so they do not need to be adapted to
the uncertain case. Besides, we have to replaceA0 and
Ad respectively byÃ0(t) andÃd(t) in condition (9).
Separating the nominal and the uncertain part and ap-
plying Lemma (2.2) and using the Schur complement
we get a condition for the robust case which is stated
by Theorem 4.1.

Theorem 4.1.Assume that assumptions (2.1) and (2.2)
are satisfied. If there existFi for i = 1, . . . , 4 and
P > 0, Qj > 0, Wj > 0, Yj , Zj for j = 1, 2, . . . , p
andλ such that conditions (7), (8) and







f11 −Ψ3 0 P 0 0
−Ψ⊤

3 f22 0 0 0 0
0 0 −W W 0 0
P 0 W 0 0 0
0 0 0 0 −λR 0
0 0 0 0 0 −λRd







+Sym
{
F⊤

3 F4

}
< 0 (25)

are feasible, with

F3 = [F⊤

1
0 0 ]⊤(26)

F4 = [F2 D0 Dd ](27)

f11 = Ψ1 + λN⊤

0 R0N0 f22 = −Ψ2 + λN⊤

d RdNd(28)

then the uncertain system under study is asymptoti-
cally stable for all admissible uncertainties.



Proof of Theorem 4.1 We have to replaceA0 and
Ad respectively byÃ0(t) andÃd(t) in condition (9)
,which gives after separating the uncertain terms

Sym







[
F1

F2

F3

F4

]
[

D⊤

0

D⊤

d

]
⊤

[
F0(t)

Fd(t)

]





N⊤

0 0

0 N⊤

d

0 0
0 0





⊤






︸ ︷︷ ︸

X

+

[
Ψ1 −Ψ3 0 P

−Ψ⊤

3 −Ψ2 0 0
0 0 −W W
P 0 W 0

]

+ Sym
{
F⊤

1 F2

}
< 0

Applying Lemma 2.2 for expression (X) above, and
using of the Schur complement, we get a condition
(25)holds withf11 andf22 given, respectively, by (28)
and (28). Hence the uncertain system under study is
asymptotically stable for all admissible uncertainties.

5. STABILIZABILITY ANALYSIS

We consider the nominal system (2) given as

Eẋ(t) = A0x(t) + Adxh(t) + Bu(t)

y(t) = Cx(t) (29)

x(t) = φ(t), − h̄ < t < 0

We propose to synthesize a stabilizing output feed-
back controller. Notice that a dynamical output feed-
back could be obtained as a statical output feedback
for an augmented system. In addition state feedback
could be obtained by adoptingC = I, whereI indi-
cates the unit matrix. The controller is thus given by

ut = Kyt (30)

Substituting (30) in the plant model (29) and with
Acl = A0 + BKC we get the closed-loop dynamic

Eẋ(t) = (A0 + BKC)x(t) + Adxh(t)

x(t) = φ(t), − h̄ < t < 0

with

A
cl

= A0 + BKC = A0 + BKs + B(KC − Ks)

A
cl
d = Ad + BKds − BKds (31)

As = A0 + BKs Ads = Ad + BKds

The objective of this study is to develop a new
delay-dependent stabilization method that provides an
output feedback controlleru(t) = Ky(t) for of class
of dynamical singular systems. The following theorem
states such a result:

Theorem 5.1.Assume that assumption 2.2 is satisfied
and there existFm pour m = 1, 2, ..., 4, P > 0,
Wj > 0, Qj > 0, Yj , Zj for j = 1, 2, ..., p, L et
G such that the conditions (7), (8) and





Ψ1 −Ψ3 0 P 0
−Ψ⊤

3 −Ψ2 0 0 0
0 0 −W W 0
P 0 W 0 0
0 0 0 0 0





+ Sym











F1

F2

F3

F4

0



 [ As Ads 0 −I B ]






(32)

+Sym













0
0
0
0
I







[
LC − GKs) −GKds

0 0 −G
]







< 0

are feasible. Then, the system (29) is asymptotically
stable and the output feedback control law is given by

K = G−1L

The proof of Theorem 5.1 can be carried out with
similar arguments as for Theorem 4.1.

6. ROBUST STABILIZATION

In this section, we are concerned by robust stabi-
lizability of the uncertain system under the control
law (30). Introducing the uncertainty terms in (4), the
closed loop system equation becomes

Eẋ(t) = Ã
cl(t)x(t) + Ãd(t)xh(t)

x(t) = φ(t), − h̄ < t < 0 (33)

with
Ãcl(t) = A(t) + B(t)KC Ãd(t) = Ad + DdFd(t)Nd

whereNd andDd are given by
Dd = [ D1 . . . Dp ] Nd = diag

(
N1, . . . Np

)

There exist any matricesKs andKds
, such as

Ã
cl(t) = A(t) + B(t)KC + B(t)Ks − B(t)Ks

Ã
cl(t) = A(t) + B(t)Ks + B(t)(KC − Ks)

Ãd(t) = Ad(t) + B(t)Kds − B(t)Kds

As(t) = A(t) + B(t)Ks Ads(t) = Ad(t) + B(t)Kds

Note that conditions (7) and (8) do not depend on the
system matrices so they do not need to be adapted to
the uncertain case. Besides, we have to replaceAcl and
Ad respectively byÃcl(t) andÃd(t) in condition (9)
to get a condition for the robust case which is stated
by Theorem 6.1.

Theorem 6.1.Assume that assumptions 2.1-2.2 are
satisfied. If there existFi for i = 1, . . . , 4 andP > 0,
Qj > 0, Wj > 0, Yj , Zj for j = 1, 2, . . . , p, L, G and
λ such that conditions (7), (8) and










f11 f12 0 P f⊤

15 0 0 0

f⊤

12 f22 0 0 f⊤

25 0 0 0
0 0 −W W 0 0 0 0
P 0 W 0 0 0 0 0

f15 f25 0 0 f55 0 0 0
0 0 0 0 0 −λR0 0 0
0 0 0 0 0 0 −λRb 0
0 0 0 0 0 0 0 −λRd










(34)

+Sym















F1

F2

F3

F4

0
0
0
0









[ As Ads 0 −I B D0 Db Dd ]







< 0



hold with

f11 = Ψ1 + λN
⊤

0 R0N0 + λK
⊤

s N
⊤

b RbNbKs

f22 = −Ψ2 + λN
⊤

d RdNd + λK
⊤

ds
N

⊤

b RbNbKds

f12 = −Ψ3 + λK
⊤

s N
⊤

b RbNbKds

f15 = (LC − GKs) + λK
⊤

s N
⊤

b RbNb

f25 = −GKds + λK
⊤

ds
N

⊤

b RbNb

f55 = −(G + G)⊤ + N
⊤

b RbNb

then system (33) is robustly asymptotically stabiliz-
able by the output feedback controller

K = G
−1

L

The proof of Theorem 6.1 can be carried out with
similar arguments as for Theorem 4.1.

Example 6.1.In this example, we consider the prob-
lem of state feedback robust stabilization for the sys-
tem whose data are given as

A0 =

[
1.5 0.5 1
−1 0 1
0.5 0 1

]

, A1 =

[
1 0 −1
1 −1 0.5

0.3 0.5 −1

]

E =

[
1 1 0
1 −1 1
2 0 1

]

B =

[
1 1
1 0
0 1

]

(35)

The admissible uncertainties are given by

D0 = D1 = 0.2I3, N0 = N1 = I3, Nb = 0, Db = 0.2I3

We apply theorem 6.1 for the overall system and for

Ks =

[
4.8976 10.1848 21.3709
−9.6414 −35.0424 −41.3699

]

Kds
=

[
1.8620 1.3457 1.0246
0.6899 −1.2852 −0.3757

]

we find out that this system is asymptotically stabi-
lizable with the state feedback gain

K =

[
177.5158 420.7779 663.7208
−47.0935 −198.5964 −210.2011

]

for h̄ = 2s and0 ≤ ḣ(t) ≤ 0.8.

Figure 1 shows the behaviour of system (35) for a
maximum delay.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 1. Evolution of statesx1, x2 andx3 of system (35)

7. CONCLUSION

This paper deals with a class of dynamical uncertain
singular systems with multiple time-varying states de-
lays. Delay-dependent sufficient conditions have been
developed to check whether a system of this class is
stable or unstable, an output feedback controller with
consequent parameters has been used to stabilize the
system. The LMI technique is used in all the develop-
ment. A numerical example is given to illustrate the
obtained results.
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