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Abstract: In this paper, stabilizability problems for discrete and continuous time linear
systems with switching or polytopic uncertainties are dealt with. Both state feedback
and full-information controllers are considered, possibly with an integral action. Several
cases will be analyzed, depending on the control, the uncertainty and the presence of
uncertainties in the input matrix. A complete overview of the stabilizability implications
among these different cases will be given.Copyright c©2005 IFAC
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1. INTRODUCTION

Linear parameter varying systems are an important
class of systems from a theoretical and practical point
of view. In this paper, the stabilization problem of
LPV systems is investigated by focussing on two main
factors: the uncertainty characterization and the class
of adopted controllers. As far as the time-varying pa-
rameter is concerned, two cases are considered: the
case of switched systems, in which the time-varying
parameter is allowed to take values in a discrete set of
points, and the polytopic case, in which the parameter
ranges in the convex hull of such points. A further rele-
vant distinction that will come into play is the presence
or absence of uncertainty in the input matrices.

As far as the class of controllers is concerned, depend-
ing on which are the variables measured for control
purposes, different concepts of stabilizability will be
defined. We will talk about robust stabilizability when
no online information concerning the uncertainty is
available to the controller. The case in which such
information is available will be referred to as gain-
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scheduling or full information stabilizability. Also, a
certain class of integral controllers, will be analyzed
by means of properly expanded systems. Introducing
an integrator in a loop has several well-known advan-
tages (such as that of imposing a null steady-state error
or handling rate-bounded control problems). Further-
more, the resulting ad-hoc built expanded system has
no uncertainties on the control input matrix. This fact
has several implications (Barmish (1983)), including
the property that gradient-based controllers can be ap-
plied.

The class of functions that will be used in this work
to establish the several interconnections that hold
among the mentioned stabilizability concepts is that
of polyhedral Lyapunov functions. Such class is wide
enough for our purposes, as it has been established
that the existence of polyhedral Lyapunov functions
is a necessary and sufficient condition for stability
(Molchanov and Pyatnitskiı̆ (1986)) and for stabiliz-
ability of LPV systems (Blanchini (1995); Blanchini
and Miani (2003)). Recently these functions have been
considered for the stabilization of switched systems
(De Santis et al. (2004); Sun and Ge (2005)). We will
review some results already known in the literature



and we will introduce some new statements to com-
plete the scenario about the subject.

2. PRELIMINARIES AND DEFINITIONS

The systems considered are of the form

ẋ(t) = A(w(t))x(t)+B(w(t))u(t) (1)

in the continuous time case and

x(t +1) = A(w(t))x(t)+B(w(t))u(t) (2)

in the discrete time case, wherex(t) ∈ IRn is the state
variable,u(t) ∈ IRq is the control input,w(t) ∈W ⊂
IRm is a time varying parameter.A andB are polytopes
of matrices:

A(w) =
m

∑
i=0

wiAi , B(w) =
m

∑
i=0

wiBi

W = {w :
m

∑
i=1

wi ≤ 1, wi ≥ 0} (3)

We distinguish different kinds of system depending on
the functionw(t).

Definition 2.1. The systems is said to be switched if
A andB assume values only on the vertices, precisely
A(w(t)) = Ai andB(w(t)) = Bi for all t (i.e. at each
time instant the components of the signalw(t) take
only valueswi = 1 andw j = 0 for i 6= j, for some
i). In the following,wi (to be intended aswi(t)) will
represent this kind of signals.

By default (i.e. without “switching” specificationw),
the system is intended as a polytopic LPV, sayw is
an arbitrary piecewise-continuous function satisfying
(3). As a special case, we will consider systems with
no uncertainty on the input matrixB:

ẋ(t) = A(w(t))x(t)+Bu(t) (4)

x(t +1) = A(w(t))x(t)+Bu(t) (5)

in the continuous and discrete time case respectively.

We investigate the following concepts of stabilization.

Definition 2.2. The state feedbacku = ΦR(x) is ro-
bustly stabilizing (RS) for system (1) if the closed loop
system

ẋ = A(w(t))x(t)+B(w(t))ΦR(x) (6)

is globally uniformly asymptotically stable (GUAS)
with respect to the origin.

Definition 2.3. The full information feedbacku =
ΦGS(x,w) is gain-scheduling stabilizing (GSS) for
system (1) if the closed loop system

ẋ = A(w(t))x(t)+B(w(t))ΦGS(x,w) (7)

is GUAS with respect to the origin.

Definition 2.4. The full information feedbacku =
ΦSGS(x,wi) is switched gain-scheduling stabilizing
(SGSS) for system (1) if the closed loop switched
system

ẋ = A(w(t))x(t)+B(w(t))ΦSGS(x,w) (8)

is GUAS with respect to the origin.

Similar definitions can be given for discrete time sys-
tems. We anticipate that, for robust state feedback
controllers, the switched and the “non–switched” case
(i.e. w as in (3)) are indistinguishable, since they are
strictly equivalent as later on will be explained.

Let us now introduce the notation and some basic
results that will be used in the sequel.

• ‖P‖1 represents the one norm of the matrixP
(‖P‖1 = maxj ∑i |pi j |);

• given a continuous functionΨ : IRn → IR, we
denote byN (Ψ,k) the set{x ∈ IRn : Ψ(x)≤ k};

• given a matrixX, conv(X) represents the convex
hull of the vectors given from the columns ofX;

• the time dependency of the variables will be
sometimes omitted to simplify the notation (x(t+
1) will be indicated withx+).

Definition 2.5. The locally Lipschitz positive definite
and radially unbounded functionΨ(x) is a Lyapunov
function for system (1) with the controlΦ(x,w) if for
all k > 0 there existβ > 0 such that

D+Ψ(x,w) = limsup
τ→0+

Ψ(x+ τ[A(w)x+B(w)Φ(x,w)])−Ψ(x)
τ

≤−β (9)

∀w ∈W and∀x /∈N (Ψ,k)

Definition 2.6. The continuous positive definite and
radially unboundedΨ(x) is a Lyapunov function for
system (2) with the controlΦ(x,w) if for all k > 0
there existsλ > 0 such that

Ψ(x)−Ψ(A(w(t))x(t)+B(w(t))Φ(x,w)) > λ (10)

∀w ∈W and∀x.

Definition 2.7. A function Ψ : IRn → IR is polyhedral
if it is defined as follows

Ψ(x) = ‖Fx‖∞ (11)

whereF is a full column rank matrix.

A crucial point for the considered class of systems is
the following theorem.

Theorem 2.1.Consider the following system:

ẋ(t) = f (x(t),w(t)), (12)

wherex(t) ∈ IRn is the state variable andw(t) ∈W ⊂
IRm is the time varying parameter (W is a compact
set andw(t) a piecewise continuous function).f is



continuous and locally Lipschitz onx uniformly in w.
The following statements are equivalent:

(1) System (12) is GUAS with respect to the origin.
(2) There exists a smooth Lyapunov function for

(12).

Proof 2.1. See Sontag et al. (1996). An earlier version
was provided Meılakhs (1979) which holds for expo-
nential stability only.

A tailored version of this theorem is stated below.

Corollary 2.1. The following statements are equiva-
lent:

(1) System (1) is GUAS with respect to the ori-
gin with the locally Lipschitz controlleru(t) =
Φ(x,w).

(2) There exists a smooth Lyapunov function for

ẋ(t) = A(w(t))x(t)+B(w(t))Φ(x,w). (13)

Based on this fact, the following can be shown (Liber-
zon (2003)).

Proposition 1.The closed loop system (6) (or the
corresponding discrete–time version) is GUAS if
and only if its switched versioṅx = A(wi)x(t) +
B(wi)ΦR(x) is GUAS.

The same property holds for discrete-time systems.
Indeed, any trajectory of the LPV system is formed
by vectors included in the convex hull of the vertices
generated by the switching system. This is why, when
we deal with state feedback, we will not distinguish
between switching and non-switchingw.

Lemma 2.1.Assume there exists a Lyapunov func-
tion Ψ1(x) for system (1) with the continuous control
Φ1(x,w) locally Lipschitz uniformly with respect to
w. Then there exists a polyhedral (and therefore con-
vex) Lyapunov functionΨ2(x) and a control function
Φ2 : (vert{N (Ψ2,1)},w)→ IRq for system (1) such
that any of the following equivalent conditions hold:

• there existsβ > 0 such that

D+Ψ2(x,Φ2(x,w),w)≤−β

∀w ∈W, ∀x ∈ vert{N (Ψ,1)} (14)

• there existτ > 0 and 0≤ λ < 1 such that

Ψ2(x+ τ[A(w)x+B(w)Φ2(x,w)])≤ λ

∀w ∈W, ∀x ∈ vert{N (Ψ2,1)} (15)

Proof 2.2. It is basically the same of that provided in
Blanchini (1995).

Remark 2.1.The first part of the previous lemma
states that there is no restriction in considering poly-
hedral Lyapunov functions when dealing with stability

and the second part shows that such functions can
be computed by considering the discrete-time Euler
approximating system of (1), defined as

x(t +1) = (I + τA(w(t)))x+ τB(w(t))u

3. EQUIVALENCES FOR CONTINUOUS TIME
SYSTEMS

3.1 Matrix B with uncertainties

It is known that for a continuous time polytopic sys-
tem, the gain-scheduling stabilizability implies robust
stabilizability (and, of course, viceversa).

Definition 3.1. An r × r matrix H belongs to the set
H if and only if it can be written as

H = τ
−1(P− I), f orsome τ > 0 (16)

where‖P‖1 < 1.

Theorem 3.1.(Blanchini (2000)) The following state-
ments are equivalent.

(1) There exists a locally Lipschitz stabilizing con-
troller of the formΦGS(x,w) for system (1).

(2) There exists a globally Lipschitz stabilizing con-
troller of the formΦR(x) for system (1).

(3) There existsr ≥ n and matricesX ∈ IRn×r (full
rank), U ∈ IRq×r, and Hi ∈ H such that, for
k = 1, . . . ,m

AiX +BiU = XHi (17)

where Ai , Bi are the vertices of the polytopic
system.

From the previous theorem it follows that the knowl-
edge of the disturbance acting on the system is not
necessary to achieve stability is the system state is
available for feedback. When switched gain-scheduling
stabilizability is considered the scenario is different.
Gain-scheduling (an therefore robust) stabilizability
implies switched gain-scheduling stabilizability, but
the opposite implications is not true in general as
shown next.

Example 3.1.Consider the uncertain system

ẋ = [α +2(1−α)]x+[α− (1−α)]u

Forα = 0 orα = 1 (switched case)ΦSGS=−3sgn[α−
(1−α)]x stabilizes the system. When 0≤ α ≤ 1 the
stabilizability is lost because forα = 0.5 the system is
unstable and not reachable.

The next theorem holds for switched systems.

Theorem 3.2.The following statements are equiva-
lent.

(1) There exists a continuous stabilizing controller
of the formΦSGS(x,wi) for (1).



(2) There existsr ≥ n and matricesX ∈ IRn×r (full
rank), Ui ∈ IRq×r, and Hi ∈ H such that, for
k = 1, . . . ,m

AiX +BiUi = XHi . (18)

Proof 3.1. From section 2 it follows that the first state-
ment is equivalent to the existence of a polyhedral
Lyapunov functionΨ2(x) and a controlΦ2(x,wi).
Therefore it just needs to be proved that (18) is equiv-
alent to (15). Equation (15) implies (see remark 2.1)
that for every vertexx j of the unit ballΩ = N (Ψ2,1)
there existu j i = Φ2(x j i ,wi) that assure

(I + τAi)x j + τBiu j i ∈ λΩ (19)

∀i = 1, ...,m. Equation (19) can be rewritten in the
following way

(I + τAi)x j + τBiu j i = X pj i (20)

∀i = 1, ...,m, where
∥∥p j i

∥∥
1 ≤ 1 andX represents the

matrixX = [x1 x2 . . . xr ]. Defining

Pi = [p1i p2i . . . pr i ]

Ui = [u1i u2i . . . ur i ]
a compact version of (20) can be achieved:

(I + τAi)Xi + τBiUi = XPi , (21)

that finally can be rewritten as

AiXi +BiUi = X(Pi − I)/τ = XHi (22)

obtaining (18).
This procedure can be reversed to prove the existence
of a polyhedral Lyapunov function starting from the
existence of the matricesHi .

3.2 Matrix B without uncertainties

When the matrixB is not affected by uncertainty,
the additional property that switched gain-scheduling
stabilizability implies gain-scheduling stabilizability
holds.

Theorem 3.3.The next statements are equivalent.

(1) There exists a globally Lipschitz stabilizing con-
troller of the formΦR(x) for system (4).

(2) There exists a locally Lipschitz stabilizing con-
troller of the formΦGS(x,w) the system (4).

(3) There exists a locally Lipschitz stabilizing con-
troller of the formΦSGS(x,w) the system (4).

Proof 3.2. (1⇔2) follows from Theorem 3.1. (2⇒3)
is trivial.

(3⇒2) Statement 3 implies the existence of a smooth
Lyapunov functionΨ(x) such that∀wi

Ψ̇(x,wi) = ∇Ψ(A(wi)x+BΦSGS(x,wi)) < 0

Choosing the following gain-scheduling controller
(that is also locally Lipschitz)

ΦGS(x,w) =
m

∑
i=1

ΦSGS(x,wi)wi

the non-positivity ofΨ̇(x) holds:

Ψ̇(x) = ∇Ψ(A(w)x+BΦGS(x,w))

= ∇Ψ(
m

∑
i=1

A(wi)wix+B
m

∑
i=1

ΦSGS(x,wi)wi)

=
m

∑
i=1

wi∇Ψ(A(wi)x+BΦSGS(x,wi)) < 0

3.3 Expanded systems

The expanded system is a concept already introduce
in the quadratic stabilization framework (Barmish
(1983)). In this subsection it will be shown that ro-
bust stabilizability implies robust stabilizability of the
expanded system and viceversa.

Theorem 3.4.The following statements are equiva-
lent.

(1) There exists a globally stabilizing controller of
the formΦR(x) for

ẋ = A(w)x+B(w)u (23)

(2) There exists a globally stabilizing controller of
the formΦ′

R(x,u) for[
ẋ
u̇

]
=

[
A(w) B(w)
0 0

][
x
u

]
+

[
0

Iq

]
v (24)

where v ∈ IRq is the input variable of the ex-
panded system.

Proof 3.3. (2⇒1) From theorem (3.1) it follows that[
Ai Bi

0 0

][
X

U

]
+

[
0

Iq

]
V =

[
X

U

]
H ′

i

The equation given from the first row guarantees the
stability of (23).

(1⇒2) As a consequence of theorem 3.1, there exists
r ≥ n and matricesX ∈ IRn×r (full rank), U ∈ IRq×r,
andHi ∈H such that, fori = 1, . . . ,m

AiX +BiU = XHi (25)

An equivalent gain-scheduling form for (24) is now
sought. The above equation can be written as follows:[

Ai Bi

0 0

][
X

U

]
+

[
0

Iq

]
Vi =

[
X

U

]
Hi

with Vi = UHi . Theorem 3.2 can be used to proof
the switched gain-scheduling stability of (24), but this
is not guaranteed if[XT UT ]T is not a full row rank
matrix. In this caseq zero columns are added to the
vectorX obtaining the following equation (equivalent
to (25))

Ai [X 0]+Bi [U 0] = [X 0]
[

Hi 0

0 0

]
and its expanded version[

Ai Bi

0 0

][
X 0

U 0

]
+

[
0

Iq

]
V ′

i =
[

X 0

U 0

][
Hi 0

0 0

]



whereV ′
i = [Vi 0]. A perturbation to the above equation

is now introduced[
Ai Bi

0 0

][
X 0

U γI

]
+

[
0

Iq

]
Z′′i =

[
X 0

U γI

]
Ĥi

whereγ > 0,V ′′
i = [Vi V̄i ] and

Ĥi =
[

Hi H ′
i

0 H ′′
i

]
It is alway possible to findV ′′

i and Ĥi such that the
perturbed equation holds. The full row rank condition
is now satisfied. The last thing to be proved is the
existence ofγ such thatĤi ∈ H . SinceHi ∈ H , it
follows thatHi = τ−1(Pi − I), where‖Pi‖1 < 1. Using
the same value ofτ, the following conditions can be
checked: ∥∥[H ′T

i (H ′′
i − τI)T ]T

∥∥
1 < τ

BiγI = XH′
i

It is always possible to findH ′
i to satisfy the last equa-

tion sinceX is full row rank (finding such matrices
corresponds to solvem× n× q linear equations with
m× r × q variables). Decreasing the value ofγ also
‖H ′

i ‖1 becomes smaller and therefore a suitableH ′′
i to

satisfy the first inequality can be found. So far only the
switched gain-scheduling stabilizability of (24) has
been proved. Due to theorem 3.1, the expanded system
is also gain-scheduling and robustly stabilizable.

4. EQUIVALENCES FOR DISCRETE TIME
SYSTEMS

4.1 Matrix B with uncertainties

In this subsection it will be shown that for discrete
time systems not all the implications that hold in the
continuous time case are still valid. Anyway, some
theorems that resemble the results of the previous
section can be stated.

In Blanchini (1995) the following theorem has been
proved.

Theorem 4.1.The following statements are equiva-
lent:

(1) There exists a stabilizing controller of the form
ΦRS(x) for system (2).

(2) There existsr ≥ n and matricesX ∈ IRn×r (full
rank), Pi ∈ IRq×r and ‖P‖1 < 1 such that, for
k = 1, . . . ,m

AiX +BiU = XPi . (26)

For the gain-scheduling case there is a similar result
only when the system is switched.

Theorem 4.2.The following statements are equiva-
lent:

(1) There exists a stabilizing controller of the form
ΦSGS(x,w) for system (2).

(2) There existsr ≥ n and matricesX ∈ IRn×r (full
rank), Pi ∈ IRq×r and ‖P‖1 < 1 such that, for
k = 1, . . . ,m

AiX +BiUi = XPi . (27)

Proof 4.1. The proof is similar to one given for theo-
rem 3.1 in Blanchini and Miani (2003) and it will be
omitted for brevity.

For a discrete time system robust stabilizability ob-
viously implies gain-scheduling stabilizability (RS⇒
GS). Unfortunately for discrete time systems the
equivalence does not hold, as it can be easily shown
by means of a counterexample.

Example 4.1.Consider the following system with one
state and one input variable

x(t +1) = w(t)x(t)+u(t)

where|w(t)| ≤ 3. It is easy to show that the system is
gain-scheduling stabilized byu(t) = −w(t)x(t) but it
is not robustly stabilizable.

Also for discrete time systems switched gain-scheduling
stabilizability does not imply gain-scheduling stabiliz-
ability as it can be shown with the following example.

Example 4.2.Consider the uncertain system

x(t +1) = 2x(t)+ [α− (1−α)]u(t)

For α = 0 or α = 1 (switched case) it is possible to
find ΦSGSto stabilize the system. When 0≤ α ≤ 1 the
stabilizability is lost because forα = 0.5 the system is
unstable and not reachable.

4.2 Matrix B without uncertainties

When there are no uncertainties on the matrixB the
following theorem can be stated.

Theorem 4.3.The following statements are equiva-
lent.

(1) There exists a controller of the formΦGS(x,w)
for (5).

(2) There exists a controller of the formΦSGS(x,w)
for (5).

(3) There existsr ≥ n and matricesX ∈ IRn×r (full
rank), Pi ∈ IRq×r and ‖P‖1 < 1 such that, for
k = 1, . . . ,m

AiX +BUi = XPi . (28)

Proof 4.2. (1)⇔(3) was proved in Blanchini and Mi-
ani (2003). (2)⇔(3) is a particular case of Theorem
4.2.



4.3 Expanded systems

Theorem 4.4.The following statements are equiva-
lent.

(1) There exists a globally Lipschitz stabilizing con-
troller of the formΦR(x) for

x+ = A(w)x+B(w)u (29)

(2) There exists a globally Lipschitz stabilizing con-
troller of the formΦ′

GS(x,w) for[
x+

u+

]
=

[
A(w) B(w)
0 I

][
x
u

]
+

[
0

Iq

]
v (30)

where v(t) ∈ IRq is the input variable of the
expanded system.

Proof 4.3. Almost identical to that of Theorem 3.4.

For the discrete time case, the expanded system
achieved from a robustly stabilizable system is only
gain-scheduling stabilizable but it may fail to be ro-
bustly stabilizable as in the case of the next example.

Example 4.3.Consider the following system:

x(t +1) = 2x(t)+(1+w(t))u(t) (31)

where|w(t)| ≤ 0.4. The controlleru(t) = −2x(t) sta-
bilizes the system, but there is no stabilizing controller
for the expanded system. Note that the expansion of a
system correspond to the insertion of a delay. If the
expanded robust stabilizability would be maintained,
the theorem, recursively applied, would imply robust
stabilizability with an arbitrary delay on the control
input.

5. SUMMARY OF THE IMPLICATIONS AND
DISCUSSION

Let us denote by

RS = robust stabilizability;
GSS = gain-scheduling stabilizability;
SGSS = switched gain-scheduling stabilizability;
ERS = expanded robust stabilizability;
EGSS = expanded gain-scheduling stabilizability;
ESGSS = expanded switched gain-scheduling stabi-

lizability.

In the continuous–time case, the implications among
these concepts are reported next.

• B with uncertainties

RS ⇐⇒ GSS =⇒ SGSS

• B without uncertainties

RS ⇐⇒ GSS ⇐⇒ SGSS

• Equivalences for the expanded system

RS

m
ERS ⇐⇒ EGSS ⇐⇒ ESGSS

In the corresponding discrete-time table, reported be-
low, several of the “⇐⇒” become “=⇒”.

• B with uncertainties

RS =⇒ GSS =⇒ SGSS

• B without uncertainties

RS =⇒ GSS ⇐⇒ SGSS

• Equivalences for the expanded system

RS

m
ERS =⇒ EGSS ⇐⇒ ESGSS

In conclusion, we have seen how several options in
the uncertainty specification and in the controller class
can be crucial in the stabilization of LPV systems.
We have also seen how continuous and discrete time
problems are differently affected by these options.

REFERENCES

B. R. Barmish. Stabilization of uncertain systems via
linear control.IEEE Trans. Automat Control, 28(8):
848–850, 1983.

F. Blanchini. Non-quadratic lyapunov function for
robust control.Automatica J. IFAC, 31(3):451–461,
1995.

F. Blanchini. The gain scheduling and the robust
state feedback stabilization problems.IEEE Trans.
Automat Control, 45(11):2061–2070, 2000.

F. Blanchini and S. Miani. Stabilization of LPV sys-
tems: state feedback, state estimation and duality.
SIAM J. Control Optim., 42(1):76–97, 2003.

E. De Santis, M. D. Di Benedetto, and L. Berardi.
Computation of maximal safe sets for switching
system. IEEE Trans. Automat Control, 49(2):184–
195, 2004.

D. Liberzon. Switching in Systems and Control.
Birkauser, Boston, USA, 2003.

A. M. Meılakhs. Design of stable control systems sub-
ject to parametric perturbation.Automat. Remote
Control, 39(10):1409–1418, 1979.

A. P. Molchanov and E. S. Pyatnitskiı̆. Lyapunov
functions that define necessary and sufficient condi-
tions for absolute stability of nonlinear nonstation-
ary control systems. I.Automat. Remote Control,
47(3):344–354, 1986.

E. D. Sontag, Y. Wang, and Y. Lin. A smooth converse
lyapunov theorem for robust stabylity.SIAM J.
Control Optim., 34(1):124–160, 1996.

Z. Sun and S.S. Ge. Analysis and synthesis of
switched linear control systems.Automatica J.
IFAC, 41(2):181–196, 2005.


