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1. INTRODUCTION

Since formulated by E.D.Sontag in the late 1980’s,
the notion of input-to-state stability (iss) has
found wide applications in system analysis and
design. For instance, various small gain theorems
(c.f., for instance, (Jiang et al., 1994), (Coron et
al., 1995), (Ingalls and Sontag, 2002)) in the iss
framework provide convenient tools for stability
of interconnected systems.

In practice, it is very often the case that the
systems under consideration are time varying.
Such a situation often arises from, e.g., trajectory
tracking problems. Another often seen situation
is that a time invariant system may fail to be
stabilized by a C1 time invariant feedback, yet
a time varying feedback may result in a stable
closed-loop system. For instance, it was shown in
(Karafyllis and Tsinias, 2003) that if a system
can be stabilized by a C0 time invariant feedback,
then it is stabilizable by a smooth time varying
feedback. It is thus natural to understand the iss
property for time varying systems.

The authors in (Lin, 1996), (Edwards et al., 2000)
and (Malisoff and Mazenc, to appear) studied
the uniform iss property for time varying sys-
tems with equivalent Lyapunov formulations. In
a series of recent work (see e.g., (Karafyllis and

Tsinias, 2004) and (Karafyllis and Tsinias, 2003)),
notions of nonuniform in time stability and input-
to-state stability were introduced. The nonuni-
form in time iss property roughly means that,
after some transition phases (whose lengths may
depend on t0), the trajectories are bounded by a
generalized L∞ norm of u with a weighting func-
tion. The authors of (Karafyllis and Tsinias, 2004)
and (Karafyllis and Tsinias, 2003) have obtained
Lyapunov results, small gain theorems together
with some interesting applications on the nonuni-
form in time iss property.

In this work, we will study two notions on iss,
nonuniform iss and semi-uniform iss. The nonuni-
form iss property in our work is different from the
nonuniform iss property proposed and studied in
(Karafyllis and Tsinias, 2004) and (Karafyllis and
Tsinias, 2003), mainly in that in our formulation,
we do not allow the weighting function in the
estimates of the gain functions (see Section 2.3
for more details).

This paper is organized as follows. In Section 2,
we introduce the time varying notions on iss, and
compare our notions with other related notions in
the literature. In Section 3, we establish Lyapunov
characterizations of the time varying notions on
iss. In Section 4, we show that the semi-uniform
iss property is equivalent to the conjunction of the



unfiorm (Lagrange) stability and the asymptotic
gain property. In Section 5, we present a small
gain theorem for the semi-uniform iss property.

Because of the length restriction, we have omitted
most of the proofs. The detailed proofs will be
provided in the forth coming paper (Lin et al.,
n.d.).

2. BASIC DEFINITIONS

Consider the time varying system

ẋ(t) = f(t, x(t), u(t)), (1)

where, for each t, x(t) ∈ Rn, u(t) ∈ Rm, and
f : R × Rn × Rm → Rn is locally Lipschitz.
Inputs, denoted by u, are measurable, locally es-
sentially bounded functions from R to Rm. We use
x(t, ξ, t0, u) to denote the trajectory of the system
corresponding to the initial condition x(t0) = ξ
and the input function u. This solution is uniquely
defined on some maximum interval [t0, Tt0,ξ,u)
with Tt0,ξ,u ≤ ∞. If Tt0,ξ,u = ∞ for all t0, ξ and
all u, the system is said to be forward complete.

Throughout this work, we use |ξ| to denote the
Euclidean norm for ξ ∈ Rn, and, for −∞ < a <
b ≤ ∞, we use ‖u‖(a,b) to denote the Lm

∞ norm of
u as a function defined on the interval (a, b). We
use ‖u‖ to denote the Lm

∞ norm of u on [0,∞).

A function α : R≥0 → R≥0 is of class N if it is
continuous and nondecreasing; is of class K if it is
continuous, positive definite, and strictly increas-
ing; and is of class K∞ if it is also unbounded. A
function β : R≥0 × R≥0 → R≥0 is said to be of
class KL if for each fixed t ≥ 0, β(·, t) is of class
K, and for each fixed s ≥ 0, β(s, t) decreases to 0
as t →∞.

2.1 Notions of Input-to-State Stability

Definition 2.1. A system as in (1) is input-to-state
stable (iss) if there exist β ∈ KL, σ0 ∈ N and
γ ∈ K such that, for each t0, each ξ and each u,
the following holds for all t ≥ t0:

|x(t, ξ, t0, u)| ≤ β(σ0(t0) |ξ| , t− t0)
+ γ

(
‖u‖(t0,∞)

)
.

(2)

A system as in (1) is semi-uniformly input-to-state
stable if it is iss, and if in addition, there exists
some σ ∈ K such that

|x(t, ξ, t0, u)| ≤ max{σ(|ξ|), σ(‖u‖)} ∀ t ≥ t0 (3)

holds for all ξ ∈ Rn, all u and all t0. 2

Similar to the discussions as in Section 2.2 of
(Sontag and Wang, 2001), one can show that
system (1) is semi-uniformly iss if and only if there
exist β ∈ KL, γ ∈ K and ρ ∈ K such that

|x(t, ξ, t0, u)| ≤ β

(
|ξ| , t− t0

1 + ρ(|t0|)

)
+ γ(‖u‖) (4)

for all t ≥ t0.

It is not hard to see that it will result in the
same definition if one requires ρ in (4) to be an N
function.

Note that it is natural to define a system as in
(1) to be uniformly iss (uiss) by requiring the
trajectories to satisfy an estimate as in

|x(t, ξ, t0, u)| ≤ β(|ξ| , t− t0) + γ(‖u‖[t0,∞)) (5)

for all t ≥ t0 (where β ∈ KL and γ ∈ K), that
is, when the function ρ in (4) can be chosen as
a constant function. Observe that the iss notion
studied in (Lin, 1996) and (Edwards et al., 2000)
is in fact the uniform iss property.

An estimate as in (4) nicely encapsulates both
the iss and the uniform boundedness property (3)
aspects of the semi-uniform iss property. It shows
intrinsically how the semi-uniform iss property
sits between the iss and the uniform iss prop-
erties: the semi-uniform iss property requires the
overshoots of the trajectories be bounded by |ξ|
(which is uniform in t0), yet the rates at which
the trajectories decay to the ball of radius γ(‖u‖)
is not necessarily uniform in t0. The uiss property
requires both the overshoot estimates and the
decay rates be uniform in |t0|.
To see the difference beween the semi-uniform
iss and the uniform iss properties, consider the
system

ẋ = − x− u

1 + |t|
. (6)

To make the discussions simpler, we will restrict
to the case t0 ≥ 0. It is not hard to see that the
trajectories of the system are given by

x(t) = x(0)
1 + t0
1 + t

+
1

1 + t

t∫
t0

u(s) ds

(t ≥ t0 ≥ 0), and thus, we get the following semi-
uniform iss estimate:

|x(t, x0, t0, u)| ≤ β

(
|x0| ,

t− t0
1 + t0

)
+ γ(‖u‖),

where β(r, s) = r
1+s , γ(r) = r. On the other hand,

it should not be hard to see that the system is not
uiss.

To see the difference between the semi-uniform
iss and the iss properties, one may consider the
system

ẋ1 = −2x1, ẋ2 = x1e
t − x2 + u. (7)

which is iss, but not semi-uniformly iss.

2.2 Notions of Asymptotic Stability

Observe that in the special case when there is no
input signal acting on a system, the iss property



reduces to asymptotical stability properties for
systems as in the following:

ẋ(t) = f(t, x(t)), (8)

where f is a locally Lipschitz map. We use
x(t, ξ, t0) to denote the trajectory of (8) with the
initial condition x(t0) = ξ. Corresponding to the
iss notions, we have the following:

Definition 2.2. Consider a system as in (8):

• it is globally asymptotically stable (gas) if for
some β ∈ KL and σ0 ∈ N , the following
holds for all ξ and all t0:

|x(t, ξ, t0)| ≤ β(σ0(t0) |ξ| , t− t0) ∀ t ≥ t0;(9)

• it is semi-uniformly gas if
• it is gas, and
• it is uniformly stable, that is, for some

σ ∈ K, it holds for all t0 and all ξ that
|x(t, ξ, t0)| ≤ σ(|ξ|) for all t ≥ t0;

• it is uniformly gas (ugas) if for some β ∈
KL, the following holds for all ξ and all t0:

|x(t, ξ, t0)| ≤ β(|ξ| , t− t0) ∀ t ≥ t0. (10)

We remark that the gas and the ugas properties
defined here are the same as the asymptotic sta-
bility in the whole and the uniform asymptotical
stability in the whole defined in (Hahn, 1967).

It can be proved that the semi-uniform gas prop-
erty is equivalent to the existence of a KL-function
β and an N -function ρ such that

|x(t, ξ, t0)| ≤ β

(
|ξ| , t− t0

1 + ρ(|t0|)

)
∀ t ≥ t0. (11)

By the definitions, one sees that if system (1) is iss
(semi-uniformly iss, uniformly iss, respectively),
then its zero-input system ẋ(t) = f(t, x(t),0)
is gas (semi-uniformly gas, ugas respectively),
where 0 denotes the zero input function.

2.3 Comparison with Other Notions

We remark that the (nonuniform) iss property
given in Definition 2.1 is not the same as the
nonuniform in time iss property proposed and
studided in (Karafyllis and Tsinias, 2004) and
(Karafyllis and Tsinias, 2003). The later notion
is equivalent to requiring the trajectories of the
system satisfy the estimate

|x(t, ξ, t0, u)| ≤ β(σ0(t0) |ξ| , t− t0)

+ γ
(
‖φu‖(t0,∞)

)
,

(12)

for some “weighting” function φ, where β ∈ KL,
σ0 ∈ N and γ ∈ K (Karafyllis and Tsinias, 2003).

It can be seen that the iss notion defined by (2)
is stronger than the one defined by (12). On the
other hand, the weighting function φ in (12) may
allow the trajectories not to converge to a ball
with radius “proportional” to ‖u‖ (and even to

diverge from such a ball), especially when φ(t) →
∞ as t →∞. For instance, the system

ẋ = −x + xu

is not iss as defined in Definition 2.1, because the
bounded input u ≡ 2 results in unbounded trajec-
tories. But since the system is forward complete,
and the corresponding 0-input system is gas, the
system does satisfy the iss property defined by
(12) (Karafyllis and Tsinias, 2004, Corollary 3.7).

For systems without input signals as in (8), both
of the iss notions defined by (2) and (12) lead to
the same notion of gas defined by (9) and studied
in (Karafyllis and Tsinias, 2003).

The semi-uniform iss and semi-uniform stability
properties describe the special cases of iss and
gas when the overshoots in the transient phases
do not depend on the values of the initial time
t0. Though not found in the past literature, we
believe that these notions have interesting appli-
cations in practice. While the iss notion defined by
(12) does not coincide with the usual iss property
in the special case for time invariant systems, the
uiss, the semi-uniform iss, and the iss notions
defined by (5), (4) and (2) all reduce to the usual
iss property in the special case for time invariant
systems.

We also point out that our blanket assumption
that f : R × Rn × Rm → Rn is a locally
Lipschitz map is stronger than the assumption
used in the work along the line (Karafyllis and
Tsinias, 2003), where f is not assumed to be
locally Lipschtiz with respect to the t variable.
Indeed, the Lipschitz condition on the t variable
should not be essential. However, because our
approach of treating the time varying notions as
output stability notions for some time invariant
auxiliary systems (see Section 2.4), we need to put
the Lipschitz condition on the t variable.

2.4 Time Varying Stability Properties as Output
Stability Properties of Time Invariant Systems

We associate with the system (1) the following
auxiliary time invariant system

τ̇ = 1, ẋ = f(τ, x, u) (13)

with the output map h(τ(t), x(t)) = x(t). It turns
out that the stability properties of (1) are related
to the output stability properties of (13) (see
(Sontag and Wang, 1999) for detailed definitions
of the output stability properties).

Proposition 2.3. The following holds for (1):

• it is iss if and only if (13) is input-to-output
stable;

• it is semi-uniform iss if and only if (13) is
output-Lagrange input-to-output stable;

• it is uiss if and only if (13) is state-
independent input-to-output stable.

Based on Proposition 2.3, many results on the
time varying notions of stability can be derived



from the results on the output stability properties
for time invariant systems.

3. LYAPUNOV FUNCTIONS

In this section we study the Lyapunov concepts
associated with the time varying stability proper-
ties. The following proposition was shown in the
previous work (e.g., (Lin, 1996) and (Edwards et
al., 2000)), where for a smooth (C∞) function
ϕ : (t, ξ) 7→ ϕ(t, ξ), we use Dtϕ to denote the par-
tial derivative of ϕ in the variable t, and Dξϕ(t, ξ)
for the gradient of ϕ in the variable x ∈ Rn.

Proposition 3.1. The system (1) is uniformly iss if
and only if there exists a smooth function V : R×
Rn → R≥0 such that
• for some αi ∈ K∞ (i = 1, 2):

α1(|ξ|) ≤ V (t, ξ) ≤ α2(|ξ|) ∀ ξ, ∀ t; (14)

• for some χ ∈ K and some α3 ∈ K∞,

V (t, ξ) > χ(|µ|)
⇓ (15)

DtV (t, ξ) + DξV (t, ξ)f(t, ξ, µ) ≤ −α3(ξ) .

We call a function V satisfying the conditions in
Proposition 3.1 a uiss-Lyapunov function for (1).

The proof of the sufficiency implication in Propo-
sition 3.1 is very similar to the proof in the time
invariant case. First of all, (15) implies that for
some β ∈ KL and some γ ∈ KL, it holds that

V (t, x(t, ξ, t0, u)) ≤ β(V (t0, ξ), t− t0) + γ(‖u‖).(16)

Together with (14), one can get a uniform iss
estimate on x(t, ξ, t0, u).

It should not be hard to prove that if (14) is
relaxed to

α1(|ξ|) ≤ V (t, ξ) ≤ α2(α0(t) |ξ|) ∀ ξ, ∀ t, (17)

where α0 ∈ N , then together with (15), and
hence (16), one can get an iss estimate for the
trajectories of the system. However, the conditions
(17) and (15) on the Lyapunov function are too
strong in the sense that the converse of the result
fails. To establish a Lyapunov formulation that
is equivalent to the iss property, we consider the
following:

Definition 3.2. With respect to the system (1), a
smooth function V : R×Rn → R≥0 and a function
λ : R × Rn → R≥0 are called an iss-Lyapunov
function and an auxiliary modulus if

(1) for some α1, α2 ∈ K∞ so that (17) holds;
(2) there exist χ ∈ K and α3 ∈ K∞ such that

V (t, ξ) > χ(|µ|)
⇓ (18)

DtV (t, ξ) + DξV (t, ξ)f(t, ξ, µ) ≤ − α3(V (ξ))
1 + λ(t, ξ)

;

(3) the following holds for the auxiliary modulus
function λ:
• for some κ ∈ K, 0 ≤ λ(t, ξ) ≤ κ(|(t, ξ)|)

for all t and all ξ; and
• λ is locally Lipschitz on R × (Rn \ {0})

and satisfies

V (t, ξ) > χ(|µ|)
⇓ (19)

Dtλ(t, ξ) + Dξλ(t, ξ)f(t, ξ, µ) ≤ 0

almost everywhere on R× Rn × Rm.

We say that an iss-Lyapunov function is a semi-
uniform iss-Lyapunov function for (1) if (17) can
be strengthened to (14) for some α1, α2 ∈ K∞. 2

Theorem 1. For a system as in (1):

(1) it is iss if and only if it admits an iss-
Lyapunov function;

(2) it is semi-uniformly iss if and only it admits
a semi-uniform iss-Lyapunov function.

3.1 Remarks on Lyapunov Functions

In contrast to the uniform iss-Lyapunov functions
(or with iss-Lyapunov functions in the time in-
variant case), one has to consider the auxiliary
modulus function λ(·, ·) in the non-uniform case.
This is mainly because in the non-uniform case,
the decay rate of the Lyapunov function along
trajectories are affected by t0. The following result
provides a Lyapunov sufficient condition. The con-
ditions on the decay rate of the Lyapunov function
along trajectories are ready to be checked. How-
ever, it is still not clear to us if the existence of
such Lyapunov functions is necessary for the iss
property.

Proposition 3.3. The system (1) is iss if there
exists a C1 function V : R×Rn → R≥0 satisfying
the following:

(a) there exist some α1 ∈ K and some α2 ∈ K
such that (17) holds;

(b) there exist some χ ∈ K, α3 ∈ K∞ and some
κ ∈ N such that

V (t, ξ) > χ(|µ|) (20)

⇓
DtV (t, ξ) + DξV (t, ξ)f(t, ξ, µ) ≤ −α3(V (t, ξ))

1 + κ(t)
;

(c)

∞∫
t0

1
1 + κ(s)

ds = ∞ for some t0.

Moreover, the system is semi-uniform iss if there
exists a function V as in the above satisfying
conditions (a)-(c) with (a) strengthened to the
existence of α1 ∈ K∞ and α2 ∈ K∞ such that
(14) holds.

A related result is an equivalent Lyapunov char-
acterization for uiss given in the recent work



(Malisoff and Mazenc, to appear). By Theorem
6 in (Malisoff and Mazenc, to appear), if the
condition (c) in Proposition 3.3 is strengthened
to the following:

∃h > 0, ε > 0 3:

t∫
t−h

1
1 + κ(s)

ds ≥ ε ∀ t ≥ 0

then the system is uiss.

Remark 3.4. Though conditions (b) and (c) in
Proposition 3.3 are perhaps too strong for the
existence of such a Lyapunov function to be nec-
essary for the iss property, they are more conve-
nient than the conditions in Definition 3.2 to be
checked. For instance, for the system

ẋ(t) = −x3(t) + x(t)u(t)
1 + |t|

, (21)

the function V (ξ) = ξ2/2 is such a Lyapunov
function, since

V (ξ) ≥ 2 |µ| ⇒ DV (ξ)f(t, ξ, µ) ≤ − ξ4

2(1 + |t|)
;

and
∫∞
0

1
1+s ds = ∞. Consequently, one concludes

that the system is semi-uniform iss. 2

Applying Proposition 3.3 to systems without in-
put signals, we get the following sufficient result
for time varying stability properties.

Corollary 3.5. Consider a system as (8). The sys-
tem is gas if there exists a C1 function V : R ×
Rn → R≥0 satisfying the following:

(a) there exist some α1 ∈ K and some α2 ∈ K
such that (17) holds;

(b) there exist some α3 ∈ K and some κ ∈ N
such that

DtV (t, ξ) + DξV (t, ξ)f(t, ξ) ≤ −α3(V (t, ξ))
1 + κ(t)

;

(c)

∞∫
t0

1
1 + κ(s)

ds = ∞ for some t0.

Moreover, the system is semi-uniform gas if there
exists a function V as in the above satisfying
conditions (a)-(c) with (a) strengthened to the
existence of α1 ∈ K∞ and α2 ∈ K∞ such that
(14) holds. 2

4. ASYMPTOTIC CHARACTERIZATIONS
OF THE SEMI-UNIFORM ISS PROPERTY

As in the time invariant case, the iss property
for a time varying system implies that the system
satisfies the local stability (ls) and the asymptotic
gain (ag) properties, that is,

• there exist σ ∈ K, ρ ∈ N and δ > 0 such that
for all |ξ| ≤ δ and all ‖u‖ ≤ δ,

(ls) |x(t)| ≤ max{σ(ρ(t0) |ξ|), σ(‖u‖)} ∀ t ≥ t0,

where x(t) = x(t, ξ, t0, u); and

• for some γ ∈ K,

(ag) lim
t→∞

|x(t, ξ, t0, u)| ≤ γ(‖u‖).

It can also be seen that if a system is semi-uniform
iss, then it satisfies the uniform local stability
(uls) property, that is,

• there exist σ ∈ K and δ > 0 such that for all
|ξ| ≤ δ and all ‖u‖ ≤ δ,

(uls) |x(t)| ≤ max{σ(|ξ|), σ(‖u‖)} ∀ t ≥ t0,

where x(t) = x(t, ξ, t0, u). Observe that in the
time invariant case, the ls and the uls properties
coincide.

A separation principle was established in (Sontag
and Wang, 1996) which states that the time in-
variant iss property is equivalent to the conjunc-
tion of the ls and the ag properties. This result
was later generalized to the time invariant output
Lagrange input-to-output stability in (Ingalls et
al., 2001). Based on (Ingalls et al., 2001, Theorem
1) and Proposition 2.3 of the current paper, we
get the following separation principle for the semi-
uniform iss property:

Theorem 2. The system (1) is semi-uniform iss if
and only if it is uls and ag.

It is natural to ask if the separation principle
in the time invariant case can be generalized to
the time varying case, that is, if the time varying
notion of iss is equivalent to the conjunction of
ls and ag. The answer is still not clear to the
authors at this stage.

Applying Theorem 2 to the system (8), we get
the following. Though the result appears to be
natural, we have not been able to find it in the
past literature (note here that the semi-uniform
gas property was defined in terms of (11) for some
β ∈ KL and ρ ∈ K).

Corollary 4.1. The system (8) is semi-uniform
gas if and only if the followings hold:

(1) (local uniform stability) for any ε > 0, there
exists δ > 0 such that |x(t, ξ, t0)| < ε for all
t ≥ t0 whenever |ξ| < δ;

(2) (attractivity) lim
t→∞

x(t, ξ, t0) = 0 for all ξ and
all t0.

5. A SMALL GAIN THEOREM

An important application of the time invariant
notion of iss is the small gain theorems for the
stability analysis for inter-connected systems. The
first small gain theorem in the iss-framework was
established in (Jiang et al., 1994). In conjunction



with the results in (Sontag and Wang, 1996),
a much simplified proof of the small gain the-
orem was provided in (Coron et al., 1995). In
(Jiang et al., 1996), a small gain theorem was
provided in terms of iss-Lyapunov functions. In
(Ingalls and Sontag, 2002), the authors presented
an iss-type small gain theorem in terms of opera-
tors that recovers the case of state space form.
In (Jiang and Wang, 2003), a small gain the-
orem was generalized to deal with the output-
Lagrange input-to-output stability. In the recent
work (Karafyllis and Tsinias, 2004), a small gain
theorem was proved for the weighted-iss property
for time varying systems followed by an interesting
application of smooth output time-varying feed-
back stabilization for time invariant systems. In
this section, we will obtain a small gain theorem
in terms of semi-uniform iss for inter-connected
time varying systems, which follows readily from
the small gain theorem in terms of time invari-
ant output-Lagrange input-to-output stability ob-
tained in (Jiang and Wang, 2003).

Consider an inter-connected time varying system

ẋ1(t) = f1(t, x1(t), v1(t), u1(t)),
ẋ2(t) = f2(t, x2(t), v2(t), u2(t)),

(22)

subject to the inter-connection constraints

v1(t) = x2(t), v2(t) = x1(t), (23)

where for i = 1, 2, xi(t) ∈ Rni , ui(t) ∈ Rmi , and
where fi is C1.

Theorem 3. Suppose both of the subsystems in
(22) are semi-uniform iss, and thus, there exist
some βi ∈ KL, and some K-functions κi γx

i , γu
i ,

(i = 1, 2), such that the following holds for all
t ≥ t0:

|x1(t)| ≤ max
{

β1

(
|x1(t0)| ,

t− t0
1 + κ1(|t0|)

)
,

γx
1 (‖v1‖), γu

1 (‖u1‖)
}

,

|x2(t)| ≤ max
{

β2

(
|x2(t0)| ,

t− t0
1 + κ2(|t0|)

)
,

γx
2 (‖v2‖), γu

2 (‖u2‖)
}

;

(24)

where we have used xi(t) to denote xi(t, ξi, vi, ui).
If the small gain condition γx

1 ◦ γx
2 (s) < s hold for

all s > 0, then the inter-connected system (22)-
(23) is semi-uniformly iss with (u1, u2) as the
inputs.
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