
EFFICIENT COMPUTATION OF SUPERVISORS FOR
LOOSELY SYNCHRONOUS DISCRETE EVENT

SYSTEMS: A STATE-BASED APPROACH

Benoit Gaudin ∗ Hervé Marchand ∗∗

∗ Irisa/université de Rennes 1, Campus universitaire de
Beaulieu, Rennes, France.

∗∗ Irisa/Inria-Rennes, Campus universitaire de Beaulieu,
Rennes, France.

First.Last@irisa.fr

Abstract: In this paper, we are interested in the control of a particular class of Concurrent
Discrete Event Systems defined by a collection of components that interact with each
other. We here consider the state avoidance control problem. We provide algorithms that,
based on a particular decomposition of the set of forbidden states, locally solve the control
problem (i.e. on each component without computing the whole system) and produce a
global supervisor, that can be efficiently evaluated on the fly.Copyright c©2005 IFAC.

Keywords: Discrete Event Systems, Supervision and control, Concurrent Systems, State
Avoidance Control Problem.

1. INTRODUCTION
In this paper, we are interested in the Supervisory
Control Problem for Concurrent Discrete Event Sys-
tems defined by a collection of components that in-
teract with each other. We are concerned with systems
where the construction of the entire system is assumed
not to be feasible (due to the state space explosion
resulting from the composition), making the use of
classical supervisory control methodologies imprac-
tical (See e.g. [(Wonham, 2003)] or [(Cassandras
and Lafortune, 1999)]). Several approaches have been
considered, in the literature, to take into account the
structure of concurrent systems [(deQueiroz and Cury,
2000; Akesson et al., 2002; Willner and Heyman-
n, 1991; Rohloff and Lafortune, 2003)]. In most of the
above works, the authors adopt a language-based ap-
proach and their methodology is characterized by the
fact that the specification (i.e. the expected behavior)
can be decomposed according to the structure of the
plant. Under this hypothesis, they provide necessary
and sufficient conditions under which it is possible to
compute local modular supervisors acting upon each
component and to operate the individually controlled

plant concurrently in such a way that the behavior of
the controlled plant corresponds to the supremal one.

However, it may happen that the specification that has
to be ensured is more related to the notion of states
rather than to the notion of trajectories of the system
(the mutual exclusion for example). For this class
of problem, one of the main issue is the invariance
control problem (or dually the state avoidance control
problem), i.e. the supervisor has to control the plant so
that the controlled plant remains in a safe set of states
or dually do not reach a set of forbidden states (See
e.g. [(Wonham, 2003)]). Note that if one wants to used
a language-based approach(as in e.g. (Gaudin and
Marchand, 2004a)]) to encode this problem, then the
obtained specification does not fit with the structure
of the system (i.e. is, in general, not separable), and
may be of the size of the global system itself, which
renders the use of the above works useless or at least
intractable. This leads us to develop techniques totally
devoted to the state avoidance control problem.

Following the methodology described in [(Minhas,
2002)] and [(Vahidi et al., 2004)], we decompose

the computation in two phases (an off-line and an
on-line computation). Based on a decomposition of
the forbidden set of states in terms of set products,
we provide a methodology that locally computes on
each component of G the set of bad states (these
are the states that may lead to the forbidden states
via an uncontrollable trajectory). This is performed
without computing the whole system. At this point,
the supervisor is evaluated on the fly w.r.t. the bad
states and thus requires an on-line evaluation in order
to determine the set of events that has to be disabled
by control (these are the events that may lead to a bad
state). It is performed in such a way that the global
partial transition function does not need to be built.
Moreover, we make the necessary effort to obtain a
good complexity during the on-line computation and
off-line evaluation. For the latter, this is basically due
to the fact that we give a structure to the set of bad
states, similar to the one of the plant, so that the
realization of the supervisor on the fly becomes easier.

2. PRELIMINARIES

We consider in this study a system represented as a
Finite State Machine (FSM). An FSM is a 4-tuple
(Σ, Q, q0, δ) where Σ is the set of events that can
occur, Q is the set of states , q0 is the initial state and
δ : Σ×Q −→ Q is the partial transition function. For
q ∈ Q, δ(q) denotes the active event set of q. Similarly,
δ−1(q) denotes the set of events that lead to q. We also
define the operator PreG

A for all E ⊆ Q by

PreG
A(E) = E ∪ {q ∈ Q| ∃σ ∈ A, δ(σ, q) ∈ E},(1)

as well as CoReachG
A(E) =

⋃

n≥0 PreG
A

(n)
(E).

CoReachG
A(E) represents the set of states from which

it is possible to reach a state of E by only triggering
events of A. Note that E ⊆ CoReachG

A(E).

We now recall the classical definition of the syn-
chronous product of two FSM. This operation will be
intensively used in the sequel to combine the different
components involved in the specification of the plant
we want to control.

Définition 1. Let Gi = (Σi, Qi, q0i
, δi), i = 1, 2 be

FSM s.t. Σs = Σ1 ∩ Σ2. The synchronous product
G1 ‖ G2 of G1 and G2 is the FSM G = (Σ, Q, q0, δ)
where Σ = Σ1 ∪ Σ2, Q = Q1 × Q2, q0 = 〈q01

, q02
〉,

and δ is defined by: for all q = 〈q1, q2〉 ∈ Q and
σ ∈ Σ

δ(σ, 〈q1, q2〉) =















〈δ1(σ, q1), q2〉 if σ ∈ Σ1 \ Σs

〈q1, δ2(σ, q2)〉 if σ ∈ Σ2 \ Σs

〈δ1(σ, q1), δ2(σ, q2)〉 if σ ∈ Σs

Undefined otherwise

The State Avoidance Control Problem. Let G be a
plant modeled as an FSM (Σ, Q, q0, δ). In order to
control this FSM, we classically partition the alphabet
into controllable events Σc and uncontrollable events
Σuc. Given this partition, a supervisor S is given by

a function S : Q → 2Σc , delivering the set of
actions that are disabled in state q of G by control.
Write S/G for the closed-loop system, consisting
of the initial plant G controlled by the supervisor
S. In the sequel, we are interested in solving the
State Avoidance Control Problem (SACP), where the
control objective consists in states that have to be
avoided by control:

SACP: given G and E a set of states, the problem is
to build a supervisor SE such that (1) the traversed
states do not belong to E and (2) SE/G is the most
permissive solution (according to the inclusion of lan-
guages).

In order to solve this problem, we first introduce the
weak forbidden set I:

I(E) = CoReachG
Σuc

(E) (2)

I(E) corresponds to the set of states from which it is
possible to evolve into E by a trace of uncontrollable
events. Note that this operator is monotonic and dis-
tributes over union.

Proposition 1. Given an FSM G and E ⊆ Q, a set of
states E. If qo /∈ I(E), then the supervisor SE of G,
such that ∀q ∈ Q

SE(q) = {σ ∈ Σc| δ(σ, q)! ∧ δ(σ, q) ∈ I(E)} (3)

is the most permissive supervisor ensuring the avoid-
ance of E in G (otherwise there is no supervisor en-
suring the property). �

The proof (with a predicate approach) can be found
in [(Wonham, 2003)].

3. CONTROL OF CONCURRENT SYSTEMS

3.1 Concurrent System description

Let us now consider a plant G modeled as a collection
of FSM Gi = 〈Σi, Qi, qoi, δi〉. The global system is
given by G = G1 ‖ · · · ‖ Gn. The resulting FSM
will be noted 〈Σ, Q, qo, δ〉 and the states of G will be
denoted by q = 〈q1, . . . , qn〉.

Σs represents the set of shared events of G, i.e Σs =
⋃

i6=j(Σi ∩ Σj). Now, given the set of FSMs Gi

modeling G, IN(.) is a function, which for each σ ∈ Σ
gives the set of indexes i ∈ {1, . . . , n} such that
σ ∈ Σi.

Event Status. The alphabet of Gi is partitioned into
the controllable event set Σi,c and the uncontrollable
event set Σi,uc, i.e. Σi = Σi,uc

.

∪ Σi,c. The alphabet
of the global plant G is given by: Σ =

⋃

i Σi, Σc =
⋃

i Σi,c, and Σuc = Σ \ Σc. Moreover, we assume
that the following relation holds between the control
status of shared events: ∀i, j, Σi,uc ∩Σj,c = ∅, which
simply means that the components that share an event
agree on the control status of this event. Under this
hypothesis, we have that Σuc = ∪iΣi,uc. Note that as
we will consider a monolithic supervisor acting upon
the whole system, this hypothesis seems to be relevant.

3.2 Control Problem formulation

In the remainder of this section, our aim is to solve the
SACP for a set of forbidden states E of a concurrent
system. In a first step, we assume that this set is
decomposed according to the structure of G. In fact,
it can be shown that any set of states E can be
represented as a union of Cartesian products of sets,
i.e.

E =
⋃

1≤j≤m

Ej , where (4)

∀1 ≤ j ≤ m, Ej = Ej
1 × · · · × Ej

n, and
∀1 ≤ i ≤ n, Ej

i ⊆ Qi

(5)

Given the concurrent structure of the system, this de-
composition of sets in terms of product sets happens to
be very natural and will be the basis for the expression
of states that will have to be forbidden by control.

Example 1. To illustrate this aspect, we consider the
classical example of the flexible manufacturing cel-
l control [(Krogh, 1993)].This manufacturing cel-
l is composed of five workstations (three processing
workstations, a part-receiving station (Work Station
1) and one completed parts station (Work Station 4)).
Five Automated Guided Vehicles (AGV’s) transport
materials between pairs of stations, passing through
conflict zones shared with other AGV’s. We assume
that we can stop the AGV’s before they enter in some
conflict zones (Ci events). The control synthesis prob-
lem is to coordinate the movement of the various
AGV’s in order to avoid collisions in the conflict zones
(i.e., it is required that all AGV’s be controlled so that
each zone be occupied by no more than one AGV).
Each components of the system can be modeled by an
FSM (AGVi, i = 1, . . . , 5 for the Automated Guided
Vehicles, and WSTi, i = 1, . . . , 5 for the worksta-
tions). The global system is given by the concurrent
system G = AGV1 ‖ · · · ‖ AGV5 ‖ WST1 ‖ · · · ‖
WST5 (the manufacturing cell is represented by an
FSM with more than 3.107 global states). Note that, in
this example, Σc = {Ci, i ≤ 10} and Σs ⊆ Σuc. Now
from a control point of view, the goal of a supervisor
will be to avoid the plant to be in particular global
states that belongs to E = ∪1≤i≤4Zonei, such that

Zone1 = E1
1 × E2

1 × QAGV3
× QAGV4

×
QAGV5

× Π1≤i≤jQWSTi

Zone2 = QAGV1
× E2

2 × E3
2×

QAGV4
× QAGV5

× Π1≤i≤jQWSTi

where Ei
j is the set of states of AGVi modeling the fact

the ith AGV is located inside the jth conflict zone (i.e.
Zonej is a product set encoding all the global states
of the plant in which two AGVs are located inside
the conflict zone j whatever the position of the other
components of the plant (The conflict zone 3 and 4 are
similarly defined). �

As explained in Section 2, this problem can be reduced
to the computation of the set of weak forbidden states

I(E) = CoReachG
Σuc

(E) and an optimal supervisor
ensuring the avoidance of E is then simply given by
the formula (3). It is theoretically possible to compute
I(E) on G as far as G can be efficiently represented
by a single FSM. However, due to the state space
explosion, this may be not feasible for concurrent
systems. Moreover, the expression of the supervisor
requires an on-line evaluation in order to determine the
set of events that has to be disabled by control (given
an event, one have to test whether the state, reached
by triggering this event belong to I(E) or not). This
evaluation is even better when the set I(E) is itself
well structured.

3.3 The State avoidance Control Problem

In this section, we provide a methodology that locally
solves the control problem (i.e. on each component of
G without computing the whole system) but produces
a global supervisor ensuring the global avoidance of
E. In Section 3.3.2, we focus on systems composed of
components not sharing uncontrollable events, where-
as Section 3.3.3 is devoted to the general case. But
first, we present some properties related to the concur-
rent systems and the predecessor operator.

3.3.1. Properties of the Pre operator. The compu-
tation of the weak forbidden set of states I(E) is the
results of the fix-point computation using the PreG

Σuc

operator. Hence, the fact that the plant we want to
control is given by a concurrent system G = G1 ‖
. . . ‖ Gn, lead us to see how this operator can be
locally computed.

Proposition 2. Let G = G1 ‖ . . . ‖ Gn be a
concurrent system and E = E1 × · · · × En a set of
states, then

PreG
A(E1 × · · · × En) =

⋃

σ∈A

(

Π

i ∈ IN(σ)
PreGi

{σ}(Ei)

)

×

(

Π

k /∈ IN(σ)
Ek

)

(6)

Moreover, if A ⊆ Σ \ Σs, then
(

PreG
A

)∗
(E1 × · · · × En) =

(PreG1

Σ1∩A)∗(E1) × · · · × (PreGn

Σn∩A)∗(En)
(7)

3.3.2. The case Σs ⊆ Σc. Let us consider a plant
G = G1 ‖ · · · ‖ Gn, such that the uncontrollable
events are local to each component of the plant (i.e.
Σs ⊆ Σc).

Efficient computation of I(E). First we assume that
E is reduced to a product set E = E1 × · · · ×
En (with Ei ⊆ Qi). The next proposition shows that
the I(·) operator can be expressed using only local
computations performed on each component.

Proposition 3. Let us consider G = G1 ‖ . . . ‖ Gn,
such that Σs ⊆ Σc. Let E = E1 × · · · × En, with
Ei ⊆ Qi. Then,

I(E) = I1(E1) × · · · × In(En)

where Ii(Ei) represents the weak forbidden set of
states w.r.t. Ei and Gi.

The above proposition gives us an efficient way to
compute I(E), in the sense that the computation can
be locally performed on each sub-system. We now
give a modular description of I(E) for the general
case (i.e. when the set of states is given by a union
of product sets.

Proposition 4. Consider G = G1 ‖ . . . ‖ Gn, such
that Σs ⊆ Σc. Let E =

⋃

1≤j≤m Ej
1 × · · · ×Ej

n, with

Ej
i ⊆ Qi. Then,

I(E) =
⋃

1≤j≤m





∏

1≤i≤n

Ii(E
j
i)



 (8)

The proof of this property is simply based on the fact
that I(E ∪ E′) = I(E) ∪ I(E′). Finally, in order
to compute I(E), it is sufficient to compute on each
component the sets of states (Ii(E

j
i))j≤m,i≤n. Based

on (8), the overall complexity is in O(m.n.k.N),
where n is the number of components, N = maxi(|Qi|)
the number of states of each component and k =
maxi(|Σi|). It is worthwhile noting that if I(E) is ex-
panded then it may be of the size of the global system
and then unfeasible to compute. In order to avoid to
store in memory this large set of states (i.e. I(E)), we
prefer to store in memory local set of states (i.e. the
Ii(E

j
i)) and to perform some on-line computations.

This is the aim of the Corollary 1.

Example 2. Let us consider the well known Cat &
Mouse example. The cat and the mouse movements
are respectively modeled by the FSMs CAT and
MOUSE for which the states are respectively Ci and
Mi, for i = 0 · · · 4 corresponding to the room in which
the animals are (the events ci and mi model the move-
ments of the animal from one room to another). The
goal of supervisor is to avoid the cat and the mouse to
be at the same time in the same room.

The set of forbidden global states can be decomposed
in 5 product sets

E =
⋃

1≤j≤5

Ej avec ∀1 ≤ j ≤ 5, Ej = {Cj}×{Mj}

m2

m5 m6 m3

m4
M0 m1

M3 M1

M4 M2

C3

c7

C1

c5

c4
c1

c2

C2c3
C0c6

C4

Fig. 1. The cat an mouse example

Now, according to Proposition 4, I(E) =
⋃

1≤j≤5 I(Ej),
with

I(E1) = {C1, C3} × {M1}, I(E2) = {C2} × {M2}
I(E3) = {C3, C1} × {M3}, I(E4) = {C4} × {M4}
I(E5) = {C5} × {M5}

�

On-line supervision. Finally, given I(E) as in (8),
one can easily extract a supervisor as follows

Corollary 1. Let G = G1 ‖ . . . ‖ Gn, such that
Σs ⊆ Σc, and E a set of states of G. With the notations
of Corollary 4, the supervisor S defined for all q ∈ Q
by

SE(q) = {σ ∈ Σc| δ(q, σ)!∧

δ(q, σ) ∈
⋃

1≤j≤m

(I1(E
j
1) × · · · × In(Ej

n))}

ensures the avoidance of E and is maximal. �

The proof follows directly from the expression of the
supervisor (3) and Proposition 4.

Let us now see how the expression given in Corol-
lary 1 allows en efficient on-line evaluation of SE(q).
To do so, it is sufficient, for each σ ∈ Σc to de-
termine δ(σ, q) = 〈q′1, . . . , q

′
n〉 and to test whether

〈q′1, . . . , q
′
n〉 ∈ I(E) or not. According to (8) we

just have to test that there exists j ∈ {1, . . . , m}
such that ∀i ∈ {1, . . . , n}, q′i ∈ Ii(E

j
i). This can be

done in O(|Σc|m.n.log(N)), which is an acceptable
complexity as far as the objectives are well structured.
Note that only the (Ii(E

j
i)), i, j need to be stored in

memory. The supervisor is only evaluated on the fly
along the execution of the system.

3.3.3. General case. In the previous section, we
have shown an efficient method allowing the compu-
tation of a supervisor ensuring the avoidance of a set
of forbidden set of states for concurrent discrete event
systems for which the shared events were assumed
to be controllable. Even though there exist numerous
systems that respect this hypothesis, it is also of inter-
est to consider the case where some shared events are
uncontrollable.

We thus consider a concurrent system G = G1 ‖
· · · ‖ Gn an a set of states E. As the shared event are
not supposed to be controllable anymore, the propo-
sition 3 is no more valide. We thus need to refine the
computation of the local weak forbidden set of states
Ii(·) in order to take into account that some shared
event are uncontrollable.

Forbidden states and local events. Consider a Con-
current system G = G1 ‖ . . . ‖ Gn and E ⊆ Q, we
define

Iloc(E) = CoReachG
Σuc\Σs

(E)

and for a set of states Ei of Gi,
Ii,loc(Ei) = CoReachGi

Σi,uc\Σs
(Ei)

Iloc(E) (resp. Ii,loc(Ei)) represents the set of states of
G (resp. Gi) from which it is possible to evolve into
E (resp. Ei) by triggering a sequence of events which
are uncontrollable and only local (i.e. with no shared
event). Based on these sets, we obtain the following
result:

Proposition 5. Let G = G1 ‖ · · · ‖ Gn be a
concurrent system and E a set of states of G such
that E =

⋃

j Ej with ∀j, Ej = Ej
1 × · · · × Ej

n and

∀i, j, Ej
i ⊆ Qi, then

Iloc(E) =
⋃

j≤m

∏

i≤n

Ii,loc(E
j
i) �

One can easily note that Iloc(E) ⊆ I(E), where I(E)
is computed as in (2) on the whole system G. Equality
is not met since the states that are traversed by an
uncontrollable trajectory leading to E, and having at
least one shared event are not taken into account.

We are now interested in finding conditions under
which Iloc(E) = I(E) (one can remark that accord-
ing to the previous section, Σs ⊆ Σc is a sufficient
condition. In this case, Ii,loc = Ii). Now, in order to
characterize a necessary condition, we introduce the
following operator Fσ

G(·).

Définition 2. Let G be a concurrent system s.t. L(G) ⊆
Σ∗, σ ∈ Σ, and E a set of states of G,

Fσ
G(E) = PreG

{σ}(Iloc(E)) \ Iloc(E) (9)

Fσ
G(E) represents the set of states of G from which

it is possible to reach Iloc(E) by triggering σ, but
that do not belong to Iloc(E) 1 . Based on these sets,
it is now possible to define a condition under which
Iloc(E) = I(E).

Proposition 6. Consider G = G1 ‖ · · · ‖ Gn and E a
set of states of G. Then,

⋃

σ∈Σs∩Σuc

Fσ
G(E) = ∅ ⇐⇒ I(E) = Iloc(E)

Proposition 6 gives a necessary and sufficient con-
dition under which Iloc(E) = I(E). In particular,
if ∪σ∈Σs∩Σuc

Fσ
G(E) = ∅, the maximal supervisor

ensuring the avoidance of E is given for all q ∈ Q
by :

SE(q) = {σ ∈ Σc|δ(q, σ)! ∧ δ(q, σ) ∈ Iloc(E)}

1 Note that, according to Proposition 2, Pre
G

{σ}
(Iloc(E)) can be

locally computed w.r.t. the local components.

Complexity discussion. Proposition 6 is interesting
from an algorithm point of view in the sense that I(E)
is given by a union of product sets. Indeed with the no-
tations of Proposition 6, I(E) can be computed using
only the sets (Ii(E

j
i))i,j , which reduces the off-line

computation to the one of these sets. The overall com-
plexity is in O(m.n.k.N). By definition of Fσ

G(E), in
order to check the condition of Proposition 6 one has
to check that for all σ ∈ Σuc ∩ Σs,

PreG
Σuc∩Σs

(Iloc(E)) ⊆ Iloc(E) (10)

It is worthwhile noting that the number of states of
PreG

Σuc∩Σs
(Iloc(E)) may be of the size of the global

system. However, for loosely synchronous system for
which most of the behavior of the components is local,
checking the inclusion (10) is hoped to be tractable.
Further, one has also to take into account the compu-
tations that have to be done on-line when controlling
the plant (i.e when computing the supervisor on the
fly). Indeed, deciding whether the next state belong to
the set of forbidden states is done at execution time.
According to the previous section, the evaluation is in
O(|Σc|m.n.log(N)).

Example 3. Coming back to the AGV example, it is
easy to see that the above condition is checked. Using
our tool SYNTOOL, based on enumerative methods,
the computation of I(E) is performed in less than 2
second, whereas the on-line evaluation of the supervi-
sor, during a simulation, is immediate. �

If
⋃

Σuc∩Σs
Fσ

G(E) 6= ∅, then according to Proposi-
tion 6, I(E) 6= Iloc(E). In this case, one can remark
that the weak forbidden states that are not taken into
account are the ones that lead to E via an uncon-
trollable sequence having shared events. The idea is
then to consider this states are forbidden and to iterate
until the previous condition is satisfied 2 . Obviously,
the price to be paid is the increase of the number of
product sets inducing a more important on(off)-line
complexity 3 .

In order to capture these states, we introduce the
following function Φ:

Définition 3. Consider G = G1 ‖ · · · ‖ Gn and
E ⊆ Q. Then the function Φ : 2Q → 2Q is defined
by:

Φ(E) = E
⋃

σ∈Σs∩Σuc

Fσ
G(E)

The set Φ(E) contains E and the set of states that
may lead to E triggering a sequence of uncontrollable
events such that its first event is shared and uncon-
trollable. We now consider the sequence (Φn(E))n≥o

(with Φo(E) = E). For all n ≥ 1, elements of

2 Note that we still want I(E) to be expressed by means of a union
of product sets in order to facilitate the on-line evaluation of the
supervisor.
3 The number of new product sets depends on the system and thus
is not possible to characterize.

Φn(E) can lead to E triggering a sequence of uncon-
trollable events which contains less than n elements
of Σs. We denote by Φ∗(E) the limit of the sequence
(Φn(E))n≥o (see Figure 2). This limit always exists
and is reached in a finite number of iterations, since
the number of states of the system is finite.

E

Iloc(E)

Φ(E) = E ∪ F1

Φ2(E) = E ∪ F1 ∪ F2 F2 =
⋃

σ∈Σuc∩Σs
Fσ

G
(F1)

F1 =
⋃

σ∈Σuc∩Σs
Fσ

G
(E)

Iloc(F1)

Computation of Φ∗(E)

Fig. 2. Φ∗ Intuition from the point of view of G

Proposition 7. Consider G = G1 ‖ · · · ‖ Gn and E a
set of states of G. Then, I(E) = Iloc(Φ

∗(E))

The previous proposition gives us a method to locally
compute I(E) without having to build the global sys-
tem G. We made the necessary effort to perform the
computation locally on each component of G, hence
reducing the global complexity of the algorithm. How-
ever, it is worthwhile noting that the complexity of the
computation of I(E) heavily depends on the number
of product sets that is used to express E as well as
the number of iterations needed to compute Φ∗. In-
deed, at each iteration, new product sets need to be
forbidden (i.e. the one that belongs to Fσ

G(Φi(E)) for
σ ∈ Σuc ∩ Σs (in particular, this number obviously
depends on the cardinal of the shared uncontrollable
events). Hence, this method is more suitable and ef-
fective for loosely synchronous systems, for which
most of the behavior of the components is local and
is synchronized occasionally with other components).

Corollary 2. Let G = (Σ, Q, q0, Qm, δ) be a con-
current system and E ⊆ Q. With the notations of
Proposition 7, the maximal supervisor E ensuring the
avoidance of E is defined for all q ∈ Q by :

SE(q) = {σ ∈ Σc| δ(q, σ)!∧δ(q, σ) ∈ Iloc(Φ
∗(E))} �

The corollary 2 can be directly deduced from the
expression (3) and from the proposition 7. From a
computational point, we know from Proposition 5 that
Iloc(Φ

∗(E)) is indeed computed and expressed using
the local sets Ii,loc(), thus reducing the complexi-
ty of the on-line computation/evaluation phase (ac-
cording to the above complexity discussion, it is in
O(|Σc|.M.n.log(N)) 4 . Note that as previously men-
tioned M may be important.

4 where M is the number of product sets that are necessary to
express Φ∗(E)

4. CONCLUSION

In this paper, we investigated the State Avoidance
Control Problem for loosely synchronous systems.
The methodology is based upon a decomposition of
the set of forbidden states E according to the structure
of the system. Based on this decomposition, it is then
possible to locally compute the set of weak locally for-
bidden states on each component leading to a global
supervisor ensuring the avoidance of E, that has to
be computed on the fly. Let us now emphasize some
points that we did not mention so far: One can note
that, in order to increase the efficiency of the methods,
all the algorithms given in this paper can be easily
implemented using BDD. Based on the results, it is
easy to extend the methodology presented in [(Gaudin
and Marchand, 2004b)] and to solve the SACP for
a synchronous hierarchical finite state machines with
two levels.

REFERENCES

Akesson, K., H. Flordal and M. Fabian (2002). Ex-
ploiting modularity for synthesis and verification
of supervisors. In: Proc. of the IFAC.

Cassandras, C. and S. Lafortune (1999). Introduc-
tion to Discrete Event Systems. Kluwer Academ-
ic Publishers.

deQueiroz, M.H. and J.E.R. Cury (2000). Modular
supervisory control of large scale discrete-event
systems. In: Discrete Event Systems: Analysis
and Control. Proc. WODES’00. Kluwer Academ-
ic. pp. 103–110.

Gaudin, B. and H. Marchand (2004a). Modular super-
visory control of a class of concurrent discrete
event systems. In: Workshop on Discrete Event
Systems, WODES’04.

Gaudin, B. and H Marchand (2004b). Supervisory
control of product and hierarchical discrete event
systems. European Journal of Control.

Krogh, B. H. (1993). Supervisory control of petri nets.
In: Belgian-French-Netherlands’ Summer School
on Discrete Event Systems.

Minhas, R.S. (2002). Complexity Reduction in Dis-
crete Event Systems. PhD thesis. Univeristy of
Toronto.

Rohloff, K. and S. Lafortune (2003). The control
and verification of similar agents operating in a
broadcast network environment. In: 42nd IEEE
Conference on Decision and Control. Hawaii,
USA.

Vahidi, A., B. Lennarston and M. Fabian (2004).
Efficient supervisory synthesis of large system-
s. In: Workshop on Discrete Event Systems,
WODES’04.

Willner, Y. and M. Heymann (1991). Supervisory con-
trol of concurrent discrete-event systems. Inter-
national Journal of Control 54(5), 1143–1169.

Wonham, W. M. (2003). Notes on control of
discrete-event systems. Technical Report ECE
1636F/1637S. Department of ECE, University of
Toronto.

