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Abstract: In this paper,we propose a low effort control scheme for chaotic systems

by using fuzzy model-based design method. First, we represent nonlinear systems

into T-S fuzzy models in a working region covering the point to be regulated. The

stability condition of the overall system is formulated into (LMIs). To guarantee

the stability, the region of attraction is also investigated. According to topologica-

lly transitive property for chaotic systems, the feedback control force is activated

only when the trajectory passes through the neighboring region of the regulated

point. Compared to purely fuzzy model-based controller, the control force for the

fuzzy chaos hybrid controller is extremely low. Copyright c©2005 IFAC
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1. INTRODUCTION

emptyempty Recently, the Takagi-Sugeno (T-S) fuzzy
approach has been extensively used to model nonlin-
ear systems. The basic idea is to decompose a non-
linear system into a set of linear subsystems with as-
sociated nonlinear weighting functions. Two meth-
ods are often employed to construct T-S fuzzy mod-
els, namely approximated modeling using a local
linearization technique (Bergsten, et al., 2002) and
exact modeling (Lian, et al., 2001) using nonlinear
combination technique. Since chaotic systems are
sensitive to parameter variation, the exact model-
ing is adopted in this paper. Once the linear mod-
els are obtained, the local linear controller for each
subsystem can be designed and inferred to an over-
all controller. Many algorithms of T-S fuzzy control
have been developed recently (Lian, et al., 2001).
There are also wide applications in the control of
complex systems by using T-S fuzzy model. In ad-
dition, the T-S fuzzy model-based controller analy-
sis and synthesis rely on a linear matrix inequality
(LMI) (Boyd, et al., 1994) approach. In tracking
control, using the T-S fuzzy model based approach,
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has been limited to model following, where the ref-
erence input is considered as disturbance and atten-
uated using a robust criterion. However, in the con-
trol process, the control inputs sometimes are large.
This, of course, is not desired.

Chaos has been found in many different physical sys-
tems (Ott, et al., 1990). Analyzing and predicting
the behavior of a chaotic system is beneficial, but to
maximize the benefit, one has to be able to control
it (Joo, et al., 1999). Nowadays, most conventional
control methods and many specific techniques can
be used for chaos control. On the other hand, a
nonlinear dynamical system can exhibit chaotic dy-
namics by using some of the latent characteristics of
chaotic attractors, which can be achieved by appro-
priate usages of open-loop control. When employ-
ing chaos in developing control algorithms, there are
many advantages such as low energy consumption,
robustness of the controller performance and sim-
plicity in the original system itself (Udawatta, et
al., 2002).

In this paper, we give guidelines to exact model a
general nonlinear system into a nonlinear combi-
nation of linear dynamical subsystems. According
to these linear dynamical subsystems, we design a
hybrid type controller which includes an open-loop



control and closed-loop control. The open-loop con-
trol is used to make the controlled system exhibit
chaotic phenomenon, whereas the closed-loop con-
trol formed by T-S fuzzy method is to drive the
neighboring system states to approach desired state.
An output tracking control based on T-S fuzzy model
is also proposed. Then, the trajectory of chaotic sys-
tems can be steered to track specific orbits.

2. STABILIZATION USING FUZZY

CHAOS HYBRID CONTROLLER

2.1 Fuzzy Chaos Hybrid Controller

In this section, we consider a stabilization problem
for a chaotic system. According to the topologically
transitive property, a chaotic system has dense or-
bits in its working space. In light of this, we will
not activate the control force until that the trajec-
tory enters in a neighbor region of equilibrium point
to be stabilized. Therefore, the control force can be
kept small. The concept is illustrated in Fig. 1. The
system trajectory, shown in the figure, starts from
initial state x0 and is to be steered to a desired state
xd. The region Ω denotes a neighborhood including
xd. For a system with no chaotic feature, we will
apply a small signal as open-loop control input to
induce a chaotic attractor.

dx
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yΩ
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xΩ

Fig. 1. The region of interest is chosen

Accordingly, the hybrid control law is temporar-
ily assumed to take the following form:

u =







uo, if x /∈ Ω

uc, if x ∈ Ω
(1)

where uo denotes the open-loop control and uc de-
notes the closed-loop control. If the original nonlin-
ear system did have chaotic feature, it is natural to
let the open-loop control be zero, i.e., uo = 0. The
closed-loop control uc is to drive the system states to
approach the desired state xd. To this end, an LMI-
based controller will be derived. First, we consider
a nonlinear system where its fuzzy model over the
universe of discourse Ω is with the following rules:

Rule i : IF z1(t) is F1i and · · · and zg(t) is Fgi

Then ẋ (t) = Aix (t) + Biu (t)

y (t) = Cix (t) , i = 1, 2, · · · , r

which yields the following inferred output:

ẋ (t) =

r
∑

i=1

µi(z(t)) (Aix (t) + Biu(t))

y (t) =
r
∑

i=1

µi(z(t))Cix (t) , (2)

where x (t) =
[

x1 (t) x2 (t) · · · xn (t)
]T

∈ Rn

is the state vector; Ai, Bi, Ci are system matrices

of appropriate dimensions; z =
[

z1 z2 · · · zg]
T

are the premise variables of the T-S fuzzy model
which would consist of the states of the system;
µi (z (t)) = ωi (z (t)) /

∑r

i=1 ωi (z (t)) with ωi(z (t)) =
∏g

k=1 Fki (z (t)) where Fki for k = 1, 2, . . ., g are
fuzzy sets. Note that

∑r

i=1 µi (z (t)) = 1 for all t,
where µi (z) ≥ 0 are normalized weights.

According to parallel distribution compensation (PDC),
the controller consists of the following rules:

Rule i : IF z1(t) is F1i and . . . and zg(t) is Fgi

THEN u(t) = −Kix(t), i = 1, 2, · · · , r (3)

where Ki is a feedback gain. The inferred output of
(3) is

u(t) = uc(t) = −
r
∑

i=1

µi(z(t))Kix(t) (4)

Applying PDC on (2), we obtain the overall closed-
loop system

ẋ (t) =

r
∑

i=1

r
∑

j=1

µi(z)µj(z) {Ai − BiKj}x(t) (5)

Notice that a dummy index j has been introduced
to represent the coupling indices between the local
linear subsystem and the PDC. As a similar result
of (Kim, et al., 2000), the control gains determined
by the following theorem has a stronger decay rate
which is important in practical applications.

Theorem 1 The augmented system (5) of closed-
loop controller is exponentially stable if there exists
a common positive definite matrix P = P T > 0,
a diagonal positive definite matrix D and Xij such
that

ΛT
iiP + ΛiiP + Xii + DPD < 0, i = 1, ..., r(6)

ΛT
ijP + ΛGij + Xij ≤ 0, i < j ≤ r(7)

















X11 X12 · · · X1r

X12 X22 · · · X2r

...
...

. . .
...

X1r X2r · · · Xrr

















≡ X̃ > 0 (8)

where Gij ≡ Ai − BiKj , Λii ≡ Gii, i = 1, · · · , r,
Λij ≡ (Gij + Gji)/2.

Proof. Choose the Lyapunov function candidate as
V = xT (t)Px(t). Taking the derivative of V with



respect to t, we have

V̇ =
.
x

T
Px + xT P

.
x

=
r
∑

i=1

µ2
i (z)

{

xT (GT
iiP + PGii)x

}

+ 2
∑

i<j≤r

µi(z)µj(z)

{

xT

(

(

Gij + Gji

2

)T

P

+ P

(

Gij + Gji

2

))

x

}

According to (6) and (7), it follows that

V̇ ≤ −µ2
i x

T (Xij + DPD)x − 2
∑

i<j≤r

µiµjx
T Xijx

= xT HT (−X̃)Hx − xT HT DPDHx

where H =
[

µ1I µ2I · · · µrI
]T

Therefore, once the inequality (8) is satisfied, we
have V̇ < −xT HT DPDHx which further results in

V (x(t)) ≤ V (0)e−
λmin(DP D)

rλmax(P )
t where λmin(M), λmax(M)

denote the minimal and maximal eigenvalue of ma-
trix M, respectively. Therefore,

‖x‖
2
≤

V (0)

λmin(P )
e−

λmin(P DP )

rλmax(P )
t

is concluded.

Remark: To obtain control gains Ki by using ef-
ficient toolbox, we may transform (6) ∼ (8) into
LMIs. Let Mi = KiX and X = P−1 > 0, we rewrite
(8) the following LMI:

Hii < 0, i = 1, · · · , r

Zij + 2Yij ≤ 0, i < j ≤ r
















Y11 Y12 · · · Y1r

Y12 Y22 · · · Y2r

...
...

. . .
...

Y1r Y2r · · · Yrr

















≡ Ỹ > 0

where Zij = XAT
i +AiX +XAT

j +AjX −MT
j BT

i −

BiMj −MT
i BT

j −BjMi and KKi = AT
i X + AiX −

BiMi − MT
i BT

i + Xii

Hii =





KKi XDT

DX −X



 .

In the derivation, the region Ω denotes the domain
where the T-S fuzzy model (2) is well defined. How-
ever, it is not the region of attraction, an interesting
region where the trajectory starts form the region
will lie in it forever. Notice that even though a tra-
jectory crossing and entering Ω will move from a
Lyapunov surface V (x) = c1 to an inner Lyapunov
surface V (x) = c2, with c2 < c1, there is no guar-
antee that the trajectory will remain forever in Ω.
Specifically, when a trajectory crosses Ω at the cor-
ner region, it will often leave Ω, for instance, the
Path I in Fig. 2. When the trajectory evolves in

Ω, we see that Lyapunov function value decreases
until it reaches the boundary (point B). However, it
goes away from the region. Hence, it is apparently
that the region (Ω) does not stand for the convex
attractive region.

2.2 Analysis of Attraction Region

Lyapunov functions can be used to estimate the do-
main of attraction. Let σ(Ω) denote the boundary
of Ω. The simplest estimate is provided by the set

Ωc = {x ∈ Rn | V (x) ≤ c} (9)

where c = min {V (x) | x ∈ σ(Ω)} . The attraction
region Ωc is illustrated in Fig. 2. As shown by Path
II, the trajectory into Ωc at C is with function value
less than C and decreasing. Hence the state trajec-
tory can not leave this region. If we want to avoid
the bounce of the trajectory, the hybrid control law
is modified to the following form:

u =







uo, if x /∈ Ωc

uc, if x ∈ Ωc

ΩCΩ
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Fig. 2. The Lyapunov functions are used to estimate

the domain of attraction

2.3 Predefined Attraction Region by Minimizing
Ellipsoid Volume

In the above subsection, the level set of Lyapunov
functions is used to estimate the domain of attrac-
tion. The attraction region is determined until we
get P . Here, we want the attraction region con-
taining a predefined region described by polytope
Co{v1, ..., vr}, where Co denotes the convex hull and
vi ∈ Rn are designed vectors. Notice that the poly-
tope centers at the equilibrium point xd. The convex
minimization problem is simply by solving

minimize log det P−1

subject to P > 0, vT
i Pvi ≤ 1, i = 1, ..., L

Let R1 denote the ellipsoid centered at the equilib-
rium point xd determined by P , i.e., R1 = {x|(x −
xd)

T P (x − xd) ≤ 1}. The constraints imply (vi +
xd) ∈ R1. An alternative expression to minimize
ellipsoid volume is by solving

minimize c2

subject to (6), (7), (8) P > 0, vT
i Pvi ≤ c2,

i = 1, ..., L (10)



Then the minimum volume ellipsoid containing the
polytope Rc = {x|(x − xd)

T P (x − xd) ≤ c2}. The
Schur complement procedure implies that the con-
ditions in (10) yields

[ c2 vT
i

vi X

]

> 0, i = 1, ..., L (11)

2.4 Constraints on Control Force

In this subsection, the attraction region Rc is further
modified to guarantee ‖u(t)‖ ≤ β, for a given β.

Theorem 2 Consider the augmented system (5)
with closed-loop controller (4). The input constraint
‖uc(t)‖ ≤ β is enforced in the attraction region Rc

if the LMIs (10) and attraction region Rc

[ β2I cMi

cMT
i X

]

≥ 0 (12)

are feasible.

Proof. According to (4) and considering the state
lies in Rc, we can rewrite

max
x(t)∈Rc

∥

∥

∥
−

r
∑

i=1

µi(z)Kix(t)
∥

∥

∥

= max
∥

∥

∥
X

−

1
2 x(t)

∥

∥

∥
≤c

∥

∥

∥
−

r
∑

i=1

µi(z)KiX
1
2 X− 1

2 x(t)
∥

∥

∥

≤
∥

∥

∥
−

r
∑

i=1

µi(z)KicX
1
2

∥

∥

∥

for all t ≥ 0. Then, the inequality ‖u(t)‖ < β is
satisfied under the condition of

∥

∥

∥
−

r
∑

i=1

µi(z)cKiX
1
2

∥

∥

∥
< β

which is equivalent to

[

−

r
∑

i=1

µi(z)cKiX
]

X−1
[

−

r
∑

i=1

µi(z)c(KiX)T
]

< β2I (13)

The inequality (13) is transformed into (12) by the
Schur complement.

3. OUTPUT TRACKING CONTROL

For a chaotic system, it is an interesting issue to
track a specific signal such as a periodic signal. For
this purpose, we consider the output tracking con-
trol problem. The control objective is required to
satisfy

y(t) − yd(t) → 0 as t → ∞

where yd(t) denotes the desired trajectory. In or-
der to convert the output tracking problem into a
stabilization problem, we introduce a set of virtual
desired variables xd which are to be tracked by the

state variables x. According to y(t) = h(x), it is
natural to require

yd(t) = h(xd). (14)

Let x̃(t) = x(t) − xd(t) denote the tracking error
for the state variables. The time derivative of x̃(t)
yields

˙̃x(t) = ẋ(t) − ẋd(t)

=
r
∑

i=1

µi(z)(Aix(t) + Biu(t)) − ẋd(t) (15)

If the control input is assumed to satisfy the follow-
ing equation

r
∑

i=1

µi(z)Biu =

r
∑

i=1

µi(z)(Biτ − Aixd) + ẋd (16)

where τ(t) is a new control to be designed, then the
tracking error system (15) results in the following
form:

˙̃x(t) =

r
∑

i=1

µi(z)Aix̃(t) +

r
∑

i=1

µi(z)Biτ(t) (17)

For the error system (17), we can find that the track-
ing control design for τ(t) is similar to solve a sta-
bilization problem. Our control purpose is to steer
x̃(t) to zero, which means that the state x(t) tracks
xd(t). The new fuzzy controller τ(t) is designed
based on PDC and represented as follows:

Rule i : IF z1 is F1i and . . . and zg is Fgi

THEN τ(t) = −Kix̃(t)

The inferred output of the PDC controller is with
the following form:

τ(t) = −
r
∑

i=1

µi(z(t))Kix̃(t) (18)

Substituting (18) into (17), we obtain the closed-
loop system

˙̃x(t) =

r
∑

i=1

r
∑

j=1

µi(z(t))µj(z(t))(Ai−BiKj)x̃(t) (19)

Theorem 3 The output tracking is achieved if the
virtual desired variables xd and control input u sat-
isfy (14) and (16) whereas the LMIs defined in (6)
∼ (8) are feasible.

Proof. The proof is similar to that of Theorem 1.
Choose the Lyapunov function candidate as V =
x̃T Px̃. Then V̇ < 0 once the inequalities (6) ∼ (8)
is satisfied.

3.1 Hybrid Control for Output Tracking

Consequently, the hybrid control law considering low
effort force for output tracking is with the following
form:

u =







uo, if x /∈ Ωc

uc, if x ∈ Ωc

(20)



The open-loop control input uo is the same as in
stabilization problem. The purpose of uc is to drive
the system states to achieve the desired states when
the trajectory entering Ωc. According to Thm. (3),
the closed-loop input is designed as the following
form:

r
∑

i=1

µi(z)Biuc(t) = ẋd(t) −

r
∑

i=1

µi(z) (Aixd(t))

−
r
∑

i=1

r
∑

j=1

µi(z)µj(z)BiKj (x(t) − xd(t)) (21)

3.2 Attractive Region for Output Tracking
Controller

The attracting region Ωc, however, is now more com-
plex. In this subsection, the attractive region Ωc of
tracking problem is estimated by minimizing ellip-
soid volume. Let ε̃ denote the ellipsoid centered at
the xd determined by P , ε̃ = {x̃|x̃T Px̃ ≤ c2}. The
constraints are simply ṽi ∈ ε̃.

minimize c2

subject to (6), (7), (8) P > 0, ṽT
i P ṽi ≤ c2,

i = 1, ..., L (22)

According to (22), notice that even though a tra-
jectory crossing and entering ε̃ will move from one
Lyapunov surface V (x̃) = c1 to an inner Lyapunov
surface V (x̃) = c2, with c2 < c1. However, T-S
fuzzy modeling usually focus on x-domains. So that,
we need mapping x̃-domains to x-domains. The
concept is illustrated in Fig. 3. In this Figure,
ε̃ is the ellipsoid centered at the xd. We denoted
Rε = {conv(x)|(x − xd)

T P (x − xd) ≤ c2}. If the
bounded interval Ω of T-S fuzzy model include Rε,
then this fuzzy model arrive tracking control.
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Fig. 3. The domain of attraction for tracking control

4. SIMULATION RESULTS

The dynamic equation of a mass-spring system are
given by

mẌp + cẊp + kXp + ka2X3
p = u (23)

Let m = 1, c = 0.4, k = 1.1, a2 = 0.9. The state
equations are written as follows:

ẋ1(t) = x2 (t)

ẋ2(t) = −1.1x1 (t) − x3
1(t) − 0.4x2 (t) + u(t)

where u(t) is external control input. Using the ex-
act T-S fuzzy modeling method, the system is rep-
resented by the fuzzy rules:

Plant Rule i : IF x1(t) is Fi THEN

ẋ(t) = Aix(t) + Bu(t)

where the system matrices are

A1 =





0 1

−1.1 − d −0.4



 , A2 =





0 1

−1.1 −0.4





and the common B = [ 0 1 ]T . The corresponding

fuzzy sets are F1 =
x2
1

d
and F2 = 1 − F1 and the

initial values of states are set as xT (0) = [ 4 4 ].

Purely T-S fuzzy model-based controller
According to (6) ∼ (8), the d = 25 are chosen. The
control gains obtained via LMI toolbox of Matlab
are given below:

K1 = [ −15.6714 0.6714 ];K2 = [ 0.3286 0.6714 ]

Based on only T-S fuzzy model-based controller, we
choose the simulation time is 20 s and control result
is shown in Fig. 4. In this case, we focus on the
maximum of control input u = 113.6258.
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Fig. 4. Purely T-S fuzzy model-based controller

Fuzzy chaos hybrid stabilization controller

Let the open-loop control be uo = 1.8 cos(1.8t). The
region Ω, denotes −3 < x1 < 3, −3 < x2 < 3
and d = 9. According to (9), the attraction region
Ωc = 0.0145x2

1+0.0116x1x2+0.0145x2
2−0.092. The

control result is shown in Fig. 5. The maximum of
control input is u = 19.9838.

Fuzzy chaos hybrid stabilization controller with input
constraints

According to Thm. 2, the input constraint β = 100
and c = 1 are chosen. The control gains obtained
via LMI toolbox of Matlab are given below:

K1 = [ −1.0928 1.1428 ];K2 = [ 2.6743 1.2050 ]

The control result is shown in Fig. 6. The maximum
of control input is u = 5.4859.

Fuzzy chaos output tracking Control
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Fig. 5. Stabilization using fuzzy chaos hybrid

controller
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Fig. 6. Stabilization with input constraint

Before the state entering the universe of discourse
Ω, the fuzzy chaos hybrid tracking controller is the
same as stabilization controller. When the state of
system enters Ω, the tracking controller is activated.

The desired state xd is
[

2 sin(t) 2 cos(t)
]T

. Ac-

cording to (21), the tracking control input is

[ 0

1

]

(u − τ)=
[ ẋ1d

ẋ2d

]

−
[ 0 1

−1.1 − x2
1 −0.4

][ x1d

x2d

]

where τ = Σ2
i=1Ki(x − xd). The simulation results

are shown in Fig. 7.
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Fig. 7. Output tracking control for fuzzy chaos

hybrid controller

5. CONCLUSIONS

In this paper, we first introduce stabilization using
fuzzy chaos hybrid controller. The attraction region
can be derived simply by using the level set of Lya-
punov function. Furthermore, minimizing ellipsoid
volume and constraints on control input containing
a predefined region is presented by LMI condition.
Furthermore, the attraction region for output track-
ing problem is given. In the simulation, we choose
a mass-spring mechanical system to verify the theo-
retical results. From theoretical and numerical sim-
ulations, the fuzzy chaos hybrid controller are shown
to have low effort.
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