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Abstract: The analytical proportional-integral-derivative (PID) controllers, the tuning of 
which depends on simple formulas with one adjustable parameter, have been developed 
for processes with time delay. In this paper, using a simple method called dual-locus 
diagram, the solutions to the problems of stabilizing stable, integrating and unstable 
processes with time delay using analytical PID controllers are presented, respectively. For 
the stable and integrating process, the stabilizing range of the adjustable parameter is only 
related to the delay of the plant, while, for the unstable process, it depends on both the 
time constant of the plant and the ratio of the delay to the time constant. With the 
available stabilizing solution, the time-consuming stability check can be avoided in the 
controller application. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 

Despite great development of advanced control 
strategies and continual improvement in control 
theory, the majority of control systems in the 
industrial process are operated by PID controllers 
(Åström, 1995). The popularity of PID controllers 
stems from their robust performance in a wide range 
of operating conditions and functional simplicity, 
which allow process engineers to operate them in a 
simple and straightforward manner (Ming, 2002). In 
terms of the fact that practical requirements on the 
design of control systems are usually specified in 
terms of time-domain or frequency-domain response, 
such as overshoot and stability margin, the analytical 
PID controllers that can meet these indexes have 
been developed based on optimal control theory for 
the stable, integrating and unstable processes with 
time delay, respectively (Zhang, 2002a). The 
analytical PID controller of this kind has only one 
adjustable parameter and can provide the quantitative 
time-domain and frequency-domain responses. 
 
Although the analytical PID controllers can be 
operated more conveniently and provide good 
performance, they may fail to stabilize the original 
time-delayed plants in spite of their complete 
stabilization for the approximated plants since the 

rational approximation is employed in the controller 
design. Hence, certain constraint has to be imposed 
on the single adjustable parameter. However, it is not 
a trivial task to analyze the stability of the process 
with time delay since the corresponding closed-loop 
system has an infinite number of poles. Recently, by 
using the extended Hermite-Biehler Theorem, the 
complete set of the classical PID controllers for the 
first-order plants with time delay have been derived 
(Silva et al., 2002). Whereas, the method on the basis 
of the extended Hermite-Biehler Theorem is complex 
and there are great difficulties to achieve the 
stabilizing range of the adjustable parameter by 
taking this method. The D-partition technique has 
been used to derive the complete set of stabilizing 
PID controller parameters for first-order plus 
time-delayed unstable processes (Hwang, 2004), but 
it is inapplicable to the case of the analytical PID 
controller with single parameter since the nature of 
the D-partition technique is to determine the 
boundaries of the stability region by three equations. 
Though the method developed by Xu (2003) can be 
used to compute the stabilizing region of the PID 
controller parameter, the analytical results and the 
relation between the stabilizing region and the plant 
parameters will not be derived. Compared with these 
above-mentioned approaches, the analytical 
stabilizing criterion called dual-locus diagram offers 
remarkable simplicity and ease of mathematical 



calculations. The dual-locus diagram was proposed 
by Satche (1949) and then developed by Smith 
(1958). Using the dual-locus, Olgac (1995) discussed 
the design of delayed resonators as tunable active 
vibration absorbers. Zhong (2003) applied it to the 
robust stability analysis of simple systems controlled 
over communication networks.  
 
In this paper, the dual-locus diagram method is 
employed to analyze the problems of stabilizing 
processes with time delay using analytical PID 
controllers. The analytical ranges of the adjustable 
parameters for which the analytical PID controllers 
can stabilize stable, integrating and unstable 
processes with time delay are respectively presented. 
With the analytical stabilizing range of the adjustable 
parameter being available for a given process, it can 
avoid the time-consuming stability check in 
controller application and thereby to save the 
controller tuning time.     
    

2. PRELIMINARY KNOWLEDGE FOR DUAL- 
LOCUS DIAGRAM METHOD 

 
The dual-locus diagram method is based on the 
following argument principle. 
 
Lemma 1 (Argument principle (Roger, 2000)): Let a 
function f  be meromorphic in the domain interior 
to a positively oriented simple closed contour C , and 
suppose that f  is analytic and nonzero on C . If, 
counting multiplicities, Z is the number of zeros 
and P  is the number of poles inside C , then the 
number of times ( )f s  winds around the origin is 

1( ( ),0) arg ( )
2 Cn f s f s Z P
π

= ∆ = −  

where arg ( )C f s∆  represents the variation of the 
argument of ( )f s  along the contour C . 
 
The characteristic equation of the closed-loop system 
is usually written in the form 

1 ( ) 0F s+ =               (1) 
where ( )F s  is the open-looped transfer function. 
Since the closed-loop system has to remain stable, 
the number of the right-half plane poles of the 
closed-loop transfer function is zero (i.e. 0P = ). 
Here, the closed contour C  is the Nyquist contour. 
By appropriate separation of terms, the characteristic 
equation (1) can be rearranged as the following form: 

1 2( ) ( )F s F s=               (2) 
Then, the dual-locus diagram with respect to 1( )F s  
and 2 ( )F s is obtained when s  traverses the 
Nyquist contour. The argument of 1 2( ) ( )F s F s−  is 
the angle between the vector joining the 
corresponding points on the Nyquist plots of 1 ( )F s  
and 2 ( )F s , and the positive real axis. According to 
the argument principle, the system is stable 
(i.e. 0Z = ) if and only if the variation of the 
argument of 1 2( ) ( )F s F s−  is zero. 
 
Correspondingly, for the plants with time delay, the 

characteristic equation may be transformed into  
( ) sH s eθ= −                (3) 

where ( )H s is the delay-free open-loop transfer 
function and θ  is the time delay involved in the 
plants. Denote as m  and n the degrees of the 
numerator and denominator of ( )H s , respectively. 
Here, ( )H s  and seθ−  correspond to 1( )F s  and 

2 ( )F s  in Eq. (2), respectively. Hence, for the plants 
with time delay, the closed-loop system is stable if 
and only if the variation of the argument of 

( ) sH s eθ+  is zero. Equivalently, the criterion of the 
dual-locus diagram is simply illustrated as follows: 
 
Corollary 1: If the following conditions are satisfied, 
the system is stable. Otherwise, it is unstable. 
1) n m> , or, / 1m nb a <  for n m= , where na  and 

mb  are leading coefficients of the numerator and 
denominator of ( )H s , respectively. 
2) Either the loci of ( )H s  and seθ−  have no 
intersection or the locus of ( )H s  arrives at the 
point of intersection earlier than that of seθ−  if the 
two loci intersect. 
 
It is seen that the dual-locus diagram method for the 
systems with time delay employs a counterclockwise 
unity circle prepared beforehand and only requires 
the plotting of a simple curve derived from the 
open-looped transfer function free of delay. Thus, the 
criterion presents remarkable simplicity and ease of 
mathematical calculations over other available 
conventional methods.  

 

Fig. 1.  Feedback control system equation 
 

3. STABILIZATION USING ANALYTICAL  
PID CONTROLLERS 

 
For the purpose of controller design and system 
analysis, practical industrial processes are frequently 
expressed as first-order and second-order 
time-delayed models. Since the stability analysis 
process of the analytical PID controller for 
second-order plants with time delay is similar to the 
case of first-order, only the first-order plants with 
time delay are considered in this paper. The feedback 
control system is shown in Fig.1 where )(sG is the 
plant to be controlled, ( )C s  is the analytical PID 
controller, r  is the setpoint, and y  is the output 
of the plant. The analytical PID controller is of the 
following type 

1 1( ) (1 )
1C D

I F

C s K T s
T s T s

= + +
+

      (4) 

where CK , IT , DT and FT are the functions with 
respect to λ  if we denote as λ  the adjustable 
positive parameter of the analytical PID controller. 

+
-

C
r e u y

G



The cases of stable, integrating and unstable 
processes with time delay are considered as follows. 
 
 

3.1 Stable processes with time delay 
 
For the first-order stable plant with the following 
transfer function  

( )
1

skG s e
s

θ

τ
−=

+
            (5) 

CK , IT , DT  and FT  of the analytical PID 
controller ( )C s  in (4) are respectively written as 
(Zhang, 1996): 

2

2 / 2FT λ
λ θ

=
+

,  
2IT θτ= +  

2D
I

T
T

θτ
= ,  

(2 / 2)
I

C
T

K
K λ θ

=
+

 

The characteristic equation of the system in Fig.1 is 
given by 

2 2

(1 / 2)1 ( ) ( ) 1 0
(2 / 2)

ssC s G s e
s s

θθ
λ λ θ

−+
+ = + =

+ +
   (6) 

It is equivalent to  
( ) sH s eθ= −              (7) 

where 

2 2

2( )
2 (4 )

sH s
s s

θ
λ λ θ

+
=

+ +
         (8) 

The loci of ( )H s  and seθ− are shown in Fig.2. 
When ω  increases from 0 to +∞ , the locus of 

seθ−  is the counterclockwise unity circle starting at 
(-1,0) and the locus of ( )H s  is a curve from the 
bottom up in Fig.2. The locus of ( )H s  
corresponding to ~ 0ω = −∞  is symmetric with 
respect to the real axis and is thus not taken into 
account. Since the transfer function ( )H s  has one 
pole at the origin, its Nyquist plot shifts clockwise 
from / 2π  to / 2π−  with the infinite radius when 
s  changes from 0j−  to 0j . Firstly, compute the 
critical frequency cω  at which the locus of ( )H s  
intersects with the unity circle.  

2 2

2
1

2 ( ) (4 )
c

c c

j
j j
θω

λ ω λ θ ω
+

=
+ +

       (9) 

Simplifying (9) yields  
     4 4 2 24 (16 8 ) 4 0c cλ ω λ λθ ω+ + − =      (10) 

Eq.(10) has four analytical roots, of which the valid 
solution for cω  is 

4 3 2 2

2

5 4 2
c

β β β β β
ω

β θ
+ + − −

=       (11) 

where /β λ θ= . The other three roots are either 
negative or complex values. The phase angle of 

( )H s  at cω  is 
2

1 arctan( / 2) arctan[(4 ) /(2 )]cϕ θω λ θ λ ω π= + + +  
(12) 

and the phase angle of seθ−  at cω  is  
           2 cϕ π θω= +                  (13) 

From Fig.2, it is seen that the stability condition that 
the locus of ( )H s  arrives at the intersection earlier 
than that of seθ−  can be satisfied only when the 
phase angle of ( )H s  at cω  is larger than that of 

seθ−  (i.e. 1 2 0ϕ ϕ− > ). Taking 1 2 0ϕ ϕ− =  and 
substituting (11)-(13) into it yield  

1 2
2

arctan( / 2) arctan[(4 )

/(2 )]
c

c c

ϕ ϕ θω λ θ

λ ω θω

− = + +

−
   (14) 

It is clear that Eq.(14) is only related to β  (i.e. /λ θ ). 
The solution / 0.0735λ θ =  of Eq.(14) can be 
obtained by using the function fzero of the Matlab. 
Fig.3 shows that the requirement 1 2 0ϕ ϕ− >  can 
just be satisfied only if / 0.0735λ θ > . Moreover, 
from (8), it is known that the denominator degree of 

( )H s  is larger than its numerator. Therefore, in 
terms of the criterion of dual-locus diagram in  
 

 
Fig. 2 The loci of ( )H s in (8) and je ωθ−  

 

      
Fig.3 Plot of 1 2ϕ ϕ− in Eq.(14) as a function of β  

 
Corollary 1, the range of the adjustable parameter λ  
for which the analytical PID controller can stabilize 
the first-order stable plant with time delay is 
that 0.0735λ θ> . 
 

3.2 Integrating process with time delay 
 

The model of the integrating process with time delay 
is described as  

( ) skG s e
s

θ−=                (15) 

If the approximation (1 / 2) /(1 )se s sθ θ θ− = − + is 
adopted in Zhang (1999), the analytical PID 
controller designed for the plant with transfer 
function (15) has the following parameters  

β0.0735

1 2ϕ ϕ−

ϕ

seθ−

( )H s

0 Re 

Im 

cω ω=

1− 1

0s j= +

s j= + ∞
s j= − ∞

0s j= −



3

2 2

4
12 6FT λ

λ λθ θ
=

+ +
,   3IT λ θ= +  

26
4D

I

T
T

λθ θ+
= , 2 2

41
12 6

I
C

T
K

K λ λθ θ
=

+ +
 

The characteristic equation of the system in Fig.1 is 
given by 

2 2

3 3 2 2 2

(6 ) (12 4 ) 41 0
4 (12 6 )

ss s e
s s

θλθ θ λ θ
λ λ λθ θ

−+ + + +
+ =

+ + +
  (16) 

In terms of Eq. (3), we have 
2 2

3 3 2 2 2

(6 ) (12 4 ) 4( )
4 (12 6 )

s sH s
s s

λθ θ λ θ
λ λ λθ θ

+ + + +
=

+ + +
   (17) 

 
The loci of ( )H s  and seθ− are shown in Fig.4. Since 
the transfer function ( )H s  has two poles at the 
origin, its Nyquist plot shifts clockwise from π  
to π−  with the infinite radius when s  changes from 
 

 
Fig. 4.  The loci of ( )H s in(18) and je ωθ−  
 
0j− to 0j . Similar to the case of the stable process, 

only the positive values of ω  are considered .The 
frequency cω  satisfies the equation 

2 2

3 3 2 2 2

( )

(6 )( ) (12 4 ) 4
1

4 ( ) (12 6 )( )

c

c

H j

j j
j j

ω

λθ θ ω ω λ θ
λ ω λ λθ θ ω

=

+ + + +
=

+ + +

  (18) 

Simplifying (18), we have 
6 4 2 1 0c c ca b cω ω ω+ + − =          (19) 

where                            
6a λ=  

2 23(6 6 ) / 2b λ λθ θ= + +  
2 2(18 6 ) / 2c λ λθ θ= − + +  

Eq. (19) has six analytical roots, among which the 
valid solution for cω  is 

3 3

3c
bd e d e
a

ω = + + − −          (20) 

where 

      
2
qd = −  and 

2 3

2 3
q pe    = +   

   
     (21)        

p and q in (21) are given by the following equations, 
respectively. 

2

23
c bp
a a

= −   and 
3

3 2

2 1
27 3

b bcq
a a a

= − −   (22) 

The other five roots of (19) are either negative or 
complex values. Assume that /β λ θ= , then the 
Eq.(20) can be rewritten as 

( ) /c fω β θ=               (23) 
where ( )f β  denotes the function with respect to β . 
The phase angle of ( )H s  at cω is 

1 2 2

3

2 2

(12 4 )
arctan

4 (6 )

4
arctan

12 6

c

c

c

λ θ ω
ϕ

λθ θ ω

λ ω
π

λ λθ θ

 +
= − − + 

 
+ + + 

         (24) 

 
Following the similar lines as in the case of the stable 
process, the system is stable if and only if the phase 
angle of ( )H jω  at cω  is larger than that of je ωθ− , 
i.e. 1 0cϕ π θω− − > . Substituting (20), (24) and 
λ βθ=  into the equation 1 0cϕ π θω− − = , the 
 
 following equation is obtained.  

2

3

2

(12 4) ( )arctan
[4 (6 1)][ ( )]

4 ( )arctan ( ) 0
12 6 1

f
f

f f

β β
β β

β β β
β β

 +
− 

− + 
 

− = + + 

       (25) 

It is clear that Eq.(25) is only related to β  (i.e. /λ θ ). 
The solution of Eq.(25) is that / 0.3614λ θ = , so the 
requirement 1 2 0ϕ ϕ− >  can be satisfied only 
if / 0.3614λ θ > . Thus, in order to stabilize the 
integrating plant with the transfer function in (15) 
using the analytical PID controller, the value of the 
adjustable parameter λ  must be larger 
than 0.3614θ . 
 

3.3 Unstable process with time delay  
 

For the unstable process with the following transfer 
function 

( )
1

skG s e
s

θ

τ
−=

−
           (26) 

the values of CK , IT , DT and FT  in the analytical 
PID controller (4) are presented by (Zhang, 2002b).  

0FT = ,  
2 2

IT λ λτ θτ
τ θ

+ +
=

−
 

0DT = , 
2

2

2
( )CK

K
λ λτ θτ

λ θ
+ +

=
+

 

The closed-loop charact eristic equation is written as: 

    
2

2

[( 2 ) ]1 0
( ) ( 1)

ss e
s s

θλ λτ θτ τ θ
λ θ τ

−+ + + −
+ =

+ −
   (27) 

It can be rearranged as 
2

2

( 2 )( )
( ) ( 1)

sH s
s s

λ λτ θτ τ θ
λ θ τ

+ + + −
=

+ −
     (28) 

In terms of ( ) 1cH jω = , we have 
4 2 4 4

2 2 2 2

( ) [( )

( 2 ) ] ( ) 0
c

c

λ θ τ ω λ θ

λ λτ θτ ω τ θ

+ + + −

+ + − − =
   (29) 

cω ω=

seθ−

( )H s

0 Re 

Im 

1− 1

0s j= +

0s j= −



Taking /β λ τ= and /m θ τ= , the valid solution 
for cω  can be obtained from Eq. (29). 

21 4
2c

b b ac
a

ω
τ

− + −
=           (30) 

where  
4( )a mβ= +  
4 2 2( ) ( 2 )b m m mβ β β= + − + +  
2(1 )c m= − −  

The phase angle of ( )H s  at cω  is  
2

1
( 2 )

arctan
1

arctan( )
2

c

c

m
m

β β τω
ϕ

πτω

 + +
=  − 

+ +

         (31)                   

and the phase angle of seθ−  at cω is given in (13). 
Assume that 1 2 0ϕ ϕ− = for 0β β= . Then, from (30) 
and (31), we have 
 

                                 

 
Fig. 5. The loci of ( )H s in (28) and je ωθ−  

 

 
 

   Fig.6 the relation between λ  and /θ τ  
 
 
 
 
 
 

                                   
(32) 

 
 
 
 
 
where 0a , 0b and 0c  represent the corresponding 

values of a , b and c  for 0β β= , respectively. 
From Eq.(32), the plot of 0β  as the function of 

/θ τ  can be obtained, which is shown in Fig.6.it is 
known that the solution of β only depends on 
m (i.e. /θ τ ). In order to satisfy the requirement that 
the locus of ( )H s  arrive at the point of intersection 
earlier than seθ− , the phase angle 1ϕ  must be larger 
than 2ϕ , which is shown in Fig.5. Thus, the analytical 
PID controller is able to stabilize the unstable process 
with time delay only if the value of /λ τ is larger 
than the lower boundary 0β . The stabilizing region of 
the adjustable parameter for which the analytical PID 
controller can stabilize the first-order unstable 
process with time delay is related both θ  andτ . For 
a fixed value of /θ τ , the stabilizing range of the 
adjustable parameter λ  is given by 0λ τβ> , where 

0β is the solution of Eq.(32). The stabilizing solution 
denominates not all the unstable plants with time 
delay can be stabilized by the analytical PID 
controller and only the unstable plant with 

/ 1θ τ < can do so, which is shown in Fig.6. 
 

4. CONCLUSIONS 
 
In this paper, the problems of stabilizing processes 
with time delay using analytical PID controllers have 
been considered. By employing the dual-locus 
diagram method, the stabilizing range of the 
adjustable parameter in the analytical PID controller 
is respectively presented for three different cases: 
stable, integrating and unstable time-delayed 
processes. For the stable and integrating processes, 
the stabilizing range depends on the delay of the 
plant, and for the unstable processes, it is related to 
both the delay and time constant of the plant. The 
presented stabilizing solutions provide convenience 
for the tuning of the analytical PID controller.  
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