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Abstract: In this paper, robustness of the damping injection schemes for passivity based

control (PBC) of the three-phase AC/DC voltage-source (Boost type) rectifier is studied.

The idea is to extend the tuning strategy for PBC that is presented in (Jeltsema and
Scherpen, 2004) for DC/DC converters to three-phase AC/DC rectifiers. In the DC/DC

converter case this tuning strategy leads to a PBC scheme with parallel damping injection

that is robust against load perturbations. Straightforward application of this scheme to
the three-phase AC/DC Boost rectifier, however, does not immediately lead to such robust

closed loop system. A closer analysis reveals that first a pre-compensation should be
done so that the AC input stage connected to the DC output stage is converted into

two DC input stages connected to the DC output stage. Then, the PBC parallel damping

injection scheme can be applied resulting in a closed-loop system that is robust against
load variations. Copyright © 2005 IFAC

Keywords: Passivity-Based Control, Brayton-Moser Equations, Power Converters,

Nonlinear Control.

1. INTRODUCTION

In the last decade, passivity-based control (PBC) de-
sign for switched-mode power converters has become

quite an active area in both the field of system and

control theory and power electronics. One particular
PBC technique is based on the classical Euler-Lagrange

(EL) equations. The application of EL-based PBC de-

sign to single-switch DC/DC power converters was
first proposed in (Sira-Ramírez et al., 1997; Ortega

et al., 1998) and is generalized to larger networks,
like the coupled-inductor Ćuk converter, and three-

phase rectifiers and inverters — see e.g. (Scherpen

et al., 2003; Lee, 2004), and the references therein.

? This research is partly sponsored by the European Union Erasmus

Program.

One of the major advantages of using the EL ap-

proach is that the physical structure (e.g., energy, dis-
sipation and interconnection), including the nonlin-

ear phenomena and features, is explicitly incorporated

in the model, and thus in the corresponding PBC.
This in contrast to conventional techniques that are

mainly based on linearized dynamics and correspond-

ing PID (Proportional-Integral-Derivative) or lead-lag
control. Since many power converters are nonlinear

non-minimum phase systems, controllers stemming
from linear techniques are sometimes difficult to tune

as to ensure robust performance, especially in the pres-

ence of large set point changes and disturbances that
cause circuit operation to deviate from the nominal

point of operation. Therefore, incorporating knowl-

edge about the nonlinear dynamics in the controller
design may be beneficial.



However, a key issue for EL-based PBC that only re-
cently obtained some attention is the selection and

tuning of various control parameters. In (Jeltsema and

Scherpen, 2004) we have presented some guidelines
concerning the adjustments of the control parame-

ters using modified versions of the stability theorems
proposed in (Brayton and Moser, 1964). The theory

is based on considering the so-called mixed-potential

functions of the system which are closely related to the
power in the system. Hence, the PBC scheme studied

in (Jeltsema and Scherpen, 2004) is basically a power-

based PBC scheme. This scheme in combination with
the theorems of (Brayton and Moser, 1964) justify the

possibility to choose either a series or a parallel damp-
ing injection scheme, while in most EL-based PBC de-

signs the location where to add the damping is mainly

motivated by the form of the open-loop dissipation
structure. 1 Additionally, but not less important, a ma-

jor advantage of the parallel damping injection PBC

scheme in comparison with series damping injection is
that it robustifies the closed-loop system since it does

not require adaptive or integral extensions in case the
load is unknown or varying, as is usually the case in a

practical situation.

So far, the ideas in (Jeltsema and Scherpen, 2004)
only concerned relatively simple DC/DC switched-

mode converters (like the elementary Buck and Boost
converters). In this paper, we study a more elaborate

switched-mode converter that is widely used and stud-

ied in industry: the three-phase AC/DC voltage-source
(Boost type) rectifier. As will become clear in the next

sections, for the three-phase voltage-source rectifier

the nice robustness properties of the parallel damping
injection PBC strategy will be lost due to the structure

at the AC-side of the system. However, comparing the
structure of the system with the DC/DC Boost con-

verter system results in a pre-compensation scheme

that can be interpreted as a cancellation of the AC-
structure in the system. Then, the ideas of (Jeltsema

and Scherpen, 2004) can be applied straightforwardly,

such that the parallel damping injection scheme re-
sults in a robust against load variation PBC scheme.

A disadvantage is that in this case the system is not
robust against variations in the input inductances due

to the pre-compensation scheme. However, for appli-

cations the input inductances are often constant or
only slowly varying. Thus, an adaptive mechanism to

compensate for these variations is likely to be less dif-

ficult to implement and less costly than an adaptive
mechanism that has to compensate for load variations.

The paper is structured as follows. Section 2 recapitu-
lates some preliminaries and presents the model struc-

ture that we use in the sequel. Section 3 treats the full
power-based PBC scheme for the three phase AC/DC

Boost rectifier. Then, in Section 4 we propose the pre-

compensation scheme which results in a system that

1 Usually, damping is added to those (error) states that do not

contain any damping terms a priori.

has two separate DC input stages that are connected
to the DC output stage. Then we apply the parallel

damping injection scheme. In Section 5 we present

some practical considerations about the new control
scheme, and in Section 6 we show the simulation re-

sults for a realistic closed loop AC/DC Boost rectifier.
Finally, we end with some conclusions in Section 7.

2. PRELIMINARIES: THE SWITCHED-MODE
BRAYTON-MOSER EQUATIONS

In (Brayton and Moser, 1964) it is shown that a large

class of nonlinear electrical networks N can be de-
scribed by a set of nonlinear first-order differential

equations of the form (for ease of notation, we omit
the functional arguments)

N :







−L
di

dt
=

∂P

∂i
(KVL)

C
du

dt
=

∂P

∂u
, (KCL)

(1)

where the vectors i and u denote the currents and

voltages associated to the set of independent linear

inductors and capacitors, represented by the matrices
L and C, respectively. 2 The topological relationships

of the network are captured by a single scalar function
P — called the mixed-potential function. For networks

without switches the mixed-potential function takes

the general form:

P =
∫ (

ur −
1

2
γu

)

di

︸ ︷︷ ︸

content

−
∫ (

ig +
1

2
γT i

)

du

︸ ︷︷ ︸

co-content

, (2)

where the vector functions ur = ûr(i) and ig = îg(u) rep-

resent the characteristics of the current-controlled and
voltage-controlled resistors and sources, respectively.

The terms containing the matrix γ can be considered
as the power flows between the inductors and capac-

itors. This suggests that the interconnection between

the inductors and capacitors can be viewed as ideal
transformers with turns-ratio matrix γ. For more de-

tails on such interpretation, see e.g. (Stern, 1965). Note

that P is related to the total power of the circuit and
that the dimension is that of power. Also note that the

set of equations (1) is just an alternative way the rep-

resent Kirchhoff ’s voltage (KVL) and current (KCL)
laws.

For DC networks that contain ideal switches σ, which
take values in the discrete set {0,1}, the set of equa-

tions (1) is modified by replacing P by a parameterized
mixed-potential Pσ. For example, if a network con-

tains a single switch σ, which is assumed to be ON

(σ = 1) or OFF (σ = 0), it is easily seen that such
parameterization is defined by

Pσ =σP1 + (1−σ)P0, (3)

2 The inductors and capacitors in this paper are assumed to be

linear, but the framework also allows nonlinear inductors and ca-

pacitors.



where P1 (resp., P0) represents the mixed-potential
potential function for the network topology associated

to the switch position σ= 1 (resp. σ= 0). Similar con-

ditions hold for more general switching policies. For
more details on the construction of such functions, the

reader is referred to (Jeltsema and Scherpen, 2004).

3. POWER-BASED PBC

In (Jeltsema and Scherpen, 2004) we have studied the

tuning of the parameters for a PBC scheme based on

the mixed potential function for DC/DC converters.
Some guidelines were presented concerning the ad-

justments of the control parameters based on mod-
ified versions of the stability theorems proposed in

(Brayton and Moser, 1964). This resulted in a robust

parallel damping injection scheme for DC/DC con-
verters. In this section, we apply the technique sug-

gested in (Jeltsema and Scherpen, 2004) to derive a

power-based PBC scheme for the three-phase voltage
source rectifier depicted in Figure 1, and study the

robustness properties of the parallel damping strategy.
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Fig. 1. Power stage of the three-phase AC/DC voltage-

source rectifier.

Similar to EL-based PBC design, for the derivation of
a power-based PBC we need to consider the rectifiers

pulse-width modulated (PWM) dynamics, instead of
the discrete switched-mode model. This means that,

under the condition that the switching frequency is

sufficiently high, we may replace the discrete switching
functions σk ∈ {−1,1}, with k= 1,2,3, by their corre-

sponding duty-ratios sk ∈ [−1,1]. Notice that sk may be

considered as the average values of σ, or, adopting the
interpretation of (Stern, 1965), sk are the modulated

‘turns-ratios’ of a bank of ideal interconnection trans-
formers. Hence, we need to consider an averaged pa-

rameterized mixed-potential Ps, which for the rectifier

of Figure 1 is constructed as follows. The first step in
the power-based PBC design procedure of (Jeltsema

and Scherpen, 2004) is the derivation of a set of av-

erage Brayton-Moser equations. Let ik denote the av-
erage input inductor currents, uo denote the average

output capacitor voltage, and let the source voltages

uk :







u1 = Uf cos(ωt)

u2 = Uf cos(ωt−2π/3),

u2 = Uf cos(ωt+2π/3),

with Uf the peak amplitude and ω the radial frequency.

Since ûr(ik) = uk, îg(uo) =R−1
o uo, and

γ̂(s) =−
1

2
diag(s1, s2, s3),

the averaged parameterized mixed-potential is readily

found as

Ps =
3∑

k=1

∫ (

−uk +
1

4
skuo

)

dik

−
∫ (

1

Ro

uo −
1

4

3∑

k=1

skik

)

duo

= −
3∑

k=1

ukik +
1

2
uo

3∑

k=1

skik −
1

2Ro

u2
o,

(4)

yielding the differential equations

N :







−Lf

dik

dt
=

∂Ps

∂ik

= −uk +
1

2
skuo

Co

duo

dt
=

∂Ps

∂uo

=
1

2

3∑

k=1

skik −
1

Ro

uo,

(5)

for k = 1,2,3.

Remark: Note that in the cases where the duty ratio

functions take the extreme values s = (−1,−1,−1),

s = (−1,−1,1), . . . , s = (1,1,1), for s = (s1, s2, s3), one
recovers the corresponding parameterized potentials

Pσ — which are eight in total. Î

The rectifier must fulfill two objectives: first, the out-

put capacitor voltage should maintain a constant de-

sired value u∗
o = Uo; second, the rectifier should oper-

ate with an unity power factor, which means that the

input inductor currents ik should be in phase with the
source voltages uk, i.e., ik = If U−1

f
uk, where If denotes

the amplitude of the average inductor currents.

Consider then the error variables ek = ik −ξk, and eo =
uo −ξo, where ξ(·) are some auxiliary variables (i.e., de-

sired trajectories for ik and uo) to be defined later. Fol-
lowing the power-based PBC methodology (Jeltsema

and Scherpen, 2004), we want to shape the closed-loop

mixed-potential to a desired mixed-potential:

Ps
d =

1

2
eo

3∑

k=1

skek −
1

2Ro

e2
o −

1

2Rp

e2
o , (6)

where Rp is the injected ‘virtual’ resistor in parallel
with the output capacitor Co. This yields the desired

closed-loop stabilization error dynamics

Nd :







−Lf

dek

dt
=

1

2
skeo

Co

deo

dt
=

1

2

3∑

k=1

skek −
(

1

Ro

+
1

Rp

)

eo

(7)

Based on the theorems in (Jeltsema and Scherpen,
2004), we can deduce from the latter set of equations

that the control objective is achieved if we set

1

Rp

=
1

1−δ

√

Co

Lk

−
1

Ro

, (8)

where 0< δ< 1 is a fine-tuning parameter. The associ-

ated (implicit) controller dynamics can be obtained by



taking the respective gradients of the controller mixed-
potential

Ps
c = −

3∑

k=1

ukξk +
1

2
ξo

3∑

k=1

skξk

−
1

2Ro

ξ2
o −

1

2Rp

(

uo −ξo

)2
,

(9)

i.e.,

Nc :







−Lf

dξk

dt
= −uk +

1

2
skξo

Co

dξo

dt
=

1

2

3∑

k=1

skξk−
1

Ro

ξo+
1

Rp

(

uo −ξo

)

,

(10)

Basically, the rationale behind the design of a parallel

damping PBC consists in making a copy of the model
(5), add damping in the error of the capacitor voltage,

and then solve for the controls sk. Since the last step
involves a partial system inversion it is necessary to

ensure that the associated state(s) are minimum phase,

i.e., the zero-dynamics of the part of the system to
be inverted are stable. It can be shown that the only

feasible solution is to indirectly control the output

voltage via regulation of the input inductor currents by
setting ξk = i∗

k
, where i∗

k
= IkU−1

f
uk denote the desired

equilibrium values for the input inductor currents.
Hence, by substituting ξk = i∗

k
in the implicit controller

dynamics resulting from the respective gradients of (9)

and solving for sk, yields the explicit control laws:

sk =
2

ξo

(

uk −Lf

di∗
k

dt

)

, (11)

where the auxiliary variable ξo, with ξo(0) > 0, is the
solution of the nonlinear differential equation

Co

dξo

dt
=

1

2

3∑

k=1

ski∗k −
1

Ro

ξo +
1

Rp

(

uo −ξo

)

. (12)

Convergence of the errors ek → 0, eo → 0, as well as
ξo → Uo can be proved by substituting (11) into (7),

and by simultaneously evaluating (12).

The unavoidable practical problem that arises is when

the load resistor is not exactly known. This is most

easily shown as follows. Suppose the load is composed
of a known nominal value Ro and a bounded uncer-

tainty ∆Ro, such that Ro +∆Ro > 0. In that case, the
input current amplitude, say If , is directly dependent

on the unknown load resistor, i.e., If (R′
o) =U2

o /(R′
oUf ),

where R′
o , Ro +∆Ro. On the other hand, since ∆Ro is

unknown, the nominal set-point used for the indirect

regulation scheme is Ia =U2
o /(RoUf ), which means that

(11) can be rewritten

sk =
2

ξo

(

uk −
Lf Ia

Uf

u̇k

)

, (13)

where u̇k = −ωUf sin(ωt ± ·· · ). Hence, if ∆Ro 6= 0, the
amplitude of the error, say Ek, (and thus ek!) will not

converge to zero as desired, but instead Ek → If −Ia 6= 0.
A similar discussion holds for eo, resulting in the fact

that u∗
o 6=Uo.

Since it is physically impossible to manipulate ∆Ro, the
nice features of parallel damping injection, as for the

class of converters in (Jeltsema and Scherpen, 2004),

are lost. This means for the present scenario that the
only solution to robustify the closed-loop is to extend

the PBC with an adaptive mechanism (or outer-loop
PI controller (Kugi, 2001)) to estimate the actual load

resistor Ro +∆Ro. However, this results in a compu-

tationally more expensive controller. Additionally, the
passivity properties of the closed-loop will then be lost.

In order to make a more transparent analysis of the

problem, it is beneficial to consider the Park transfor-
mation, which is done in the next section.

4. PRE-COMPENSATION SCHEME

Since the three-phase source is balanced, we apply a

Park transformation to the open-loop dynamics (5).
This means that, instead of the three-phase input in-

ductor currents ik and duty ratios sk, we consider their

associated direct and quadrature values, id, iq, sd, and
sq, respectively, in the so-called dq-frame, which ro-

tates at a constant angular frequency ω. For details,
see e.g., (Leonhard, 1985). The resulting open-loop

dynamics in the dq-frame read:

N :







Lf

did

dt
=

√

2

3
Uf −ωLf iq −

1

2
sduo

Lf

diq

dt
= ωLf id −

1

2
squo

Co

duo

dt
=

1

2
sdid +

1

2
sqiq −

1

Ro

uo.

(14)

In the dq–frame, the control objective can be reformu-
lated as follows. Find controls sd and sq such that for all

unknown R′
o > 0:

C.1 The output capacitor voltage converges to its de-
sired equilibrium value u∗

o =Uo;

C.2 The power factor of the rectifier asymptotically
converges to one, i.e., i∗

d
= Id and i∗q = 0, where

Id(R′
o) =U2

o /(2R′
oUd), with Ud ,

p
2/3Uf .

Thus, the control objective reduces to a set-point regu-

lation problem. Via the Park transformation, the cross

terms −ωLf iq and +ωLf id are directly related to the
derivative terms Lf ξ̇k in (11), which are causing the

sensitivity to unmodeled changes in the load resistor.

To overcome this problem, suppose that we are able

to precisely cancel the cross terms −ωLf iq and +ωLf id .

Theoretically, this could be accomplished by selecting
controls of the form

sd =−
ωLf iq

uo

+2sd , sq =
ωLf id

uo

+2sq, (15)

for all uo(0) > 0, and where sd and sq are some new

control inputs. We come back to the practical issues
later on. Hence, substitution of (15) into (14) yields

for the resulting ‘pre-compensated’ dynamics



Npc :







Lf

did

dt
= Ud − sduo, Lf

diq

dt
=−squo

Co

duo

dt
= sdid + sqiq −

1

Ro

uo.

It is recognized that we now have two separate DC

input stages which are connected to the DC output
stage as shown in Figure 2. In a similar fashion as

before, we can define a desired mixed-potential in

terms of the error variables ed = id −ξd, eq = iq −ξq, and
eo = uo −ξo, and try again a parallel damping injection

scheme, i.e.,

Ps
d =

(

sded + sqeq

)

eo −
1

2Ro

e2
o −

1

2Rp

e2
o .

The error stabilization dynamics are

Nd :







−Lf

ded

dt
=

∂Ps
d

∂ed

= sdeo

−Lf

deq

dt
=

∂Ps
d

∂eq

= sqeo

Co

deo

dt
=

∂Ps
d

∂eo

= sded + sqeq −
(

1

Ro

+
1

Rp

)

eo.

Again by invoking the theorems in (Jeltsema and

Scherpen, 2004) the control objective is achieved if we
set

1

Rp

=
max

{

sd , sq

}

1−δ

√

Co

Lf

−
1

Ro

, (16)

where 0< δ< 1 is a fine-tuning parameter, whereas the
associated (implicit) controller dynamics are obtained

by taking the respective gradients of the controller

mixed-potential

Ps
c = −Udξd +

(

sdξd + sqξq

)

ξo

−
1

2Ro

ξ2
o −

1

2Rp

(

uo −ξo

)2
,

(17)

i.e.,

Nc :







−Lf

dξd

dt
= −Ud + sdξo, −Lf

dξq

dt
= sqξo

Co

dξo

dt
= sdξd+sqξq −

1

Ro

ξo+
1

Rp

(

uo −ξo

)

.

By C.1 and C.2, the explicit PBC controls sd and sq are
found by letting ξd = Ia and ξq = 0, i.e.,

sd =
Ud

ξo

, sq = 0, (18)

where the auxiliary variable ξo, with ξo(0) > 0, now is

the solution of

Co

dξo

dt
=

Ud

ξo

Id −
1

Ro

ξo +
1

Rp

(

uo −ξo

)

. (19)

The rectifier dynamics (14), with ∆Ro 6= 0, in closed-

loop with the inner-loop pre-compensator (15) and
the outer-loop parallel damping injection PBC scheme

(18)—(19) then take the form:

PSfrag replacements

Ud

CoLf

Lf

Ro

sd
sq id

iq

uo

sduo

squo

sdid

sqiq
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compensated rectifier.

Ncl :







Lf

did

dt
= Ud −

Ud

ξo

uo, Lf

diq

dt
= 0

Co

duo

dt
=

Ud

ξo

id −
1

R′
o

uo

Co

dξo

dt
=

Ud

ξo

Ia −
(

1

Ro

+
1

Rp

)

ξo +
1

Rp

uo.

Interestingly, we note that control objective C.2 is al-
ways satisfied since the direct and quadrature current

equations are decoupled and the time-variation of iq is

always zero. Regarding C.1, it is easily observed that at
equilibrium uo = ξo, which implies that uo = u∗

o = Uo

and necessarily id = i∗
d
= Id, for time goes to infinity.

Hence, we have shown that, under the condition that

we can find controls (15), the robustness ideas pre-

sented in (Jeltsema and Scherpen, 2004) still remain
valid.

5. PRACTICAL ISSUES

In the previous section, we have shown that, under the

condition that we can find controls (15), the robust-

ness ideas presented in (Jeltsema and Scherpen, 2004)
still remain valid. Of course, one practical assumption

is that id , iq and uo are available for measurement (i.e.,

full-state knowledge is necessary). Additionally, in or-
der to fully cancel the cross terms in the dq–frame,

the quantity ωLf needs to be known exactly. Another
problem is the fact that the pre-compensation scheme

involves a division by uo, which is usually equal to zero

at start-up. Since in a ‘real-world’ rectifier the input
inductances and ω are usually constant, or at most

(very) slowly varying, we could extend the controller

with an adaptive mechanism that estimates the value
of of the term ωLf during the start-up of the rectifier.

In this way, we have shifted the problem of a constant
adaptation of the load resistor, as it is usually done, to

only a temporary adaptation of the inductance values

and the value the angular frequency. This is an addi-
tional computational effort, however, in practice this is

often far less costly than the computational effort that

would be necessary for changes in the load resistor.
Concerning the division problem, it is easily shown

that if we replace uo in (15) by its desired equilibrium
value Uo, which is strictly positive by definition, we

obtain the same equilibrium results as concluded at
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the end of the previous section. Summarizing, we have

the following statement.

Proposition: Consider the three-phase rectifier dy-

namics (14), in closed-loop with the controller

sd =−
ωLf iq

Uo

+
Ud

ξo

, sq =
ωLf id

Uo

, (20)

where ξo, with ξo(0) > 0, is the solution of (19). If

the injected parallel resistor Rp satisfies (16), then the
trajectories of the closed-loop system converge to their

desired equilibrium values in a non-oscillatory way,
regardless of ∆Ro >−Ro.

6. NUMERICAL RESULTS

For demonstrating the validity of the theoretical deriva-

tions and developments, a simulation study using

Matlab/Simulink is performed for the switched (i.e.,
not averaged) current and voltage states. Limiters are

used to ensure the duty-ratios of the actual switch con-
trol signals do not exceed their physical boundaries.

The design parameters of the rectifier are set as fol-

lows: Uf = 100 V, Lf = 10 mH, Co = 47 µF, Ro = 220 Ω,
Fs = 20 kHz. Suppose it is desired that the rectifier op-

erates at a constant DC output voltage Uo = 150 V. The

results are depicted in Figure 3. The top figure shows
the responses of the switched-mode input inductor

currents id(t) and iq(t), and the bottom figure shows
the response of the switched-mode output capacitor

voltage uo(t). As predicted from theoretical analysis in

the previous section, the currents store to their desired
equilibrium values i∗

d
= Id and I∗q = 0, and the output

capacitor voltage rapidly restores to its desired value

Uo without any overshoot due to the parallel damp-
ing resistor value defined in (16). Also notice that the

input inductor currents are precisely in phase with
the source voltages as shown in Figure 4. Hence, the

control objective C.1–C.2 is achieved.

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
−2

−1

0

1

2
Three−Phase Input Inductor Currents [A]

Time [sec]

Fig. 4. AC-side current responses in steady state for

∆Ro = − 1
2
Ro. The dashed lines represent the

scaled three-phase source voltages.

7. CONCLUSION AND OUTLOOK

In this paper we have developed a PBC scheme for
the three-phase AC/DC Boost rectifier that is robust

against load perturbations. The key idea is to use
the parallel damping injection scheme that has been

proven to be robust for DC/DC converters. However,

in this case, first a pre-compensation on the AC input
stage should be done. This pre-compensation may give

rise to another type of robustness problems, namely a

closed-loop system that is not robust against variations
of the input inductances. Nevertheless, it seems that

this can be easily solved by adding an additional adap-
tive mechanism that compensates for these variations.

This appears to be more practically appealing than the

alternative of adding an adaptive mechanism for the
load variations.
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