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Abstract: A novel neuro adaptive control framework for déte-time multivariable
nonlinear uncertain systems is developed. The proposeteWwark is Lyapunov-based
and guarantees, instead of ultimate boundedness, paitialdotic stability of the closed-
loop system; that is, Lyapunov stability of the closed-laystem states and attraction
with respect to the plant states. Unlike standard neuralorétapproximation, we assume
that the approximation error can be confined in a small ggie-norm-bounded conic
sector over a compact set. This helps to couple tools fromstotontrol with adaptive
laws in discrete time to prove partial asymptotic stabilifythe closed-loop system.
Finally, an illustrative numerical example is provided tntbnstrate the efficacy of the
proposed approackopyright(© 2005 IFAC
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1. INTRODUCTION erature, it is quite common using Lyapunov-like func-
tions to claim that the neural network controllers can
guaranteeultimate boundednessf the closed-loop

Due to the severe complexities, nonlinearities, and system states. This implies that the plant states con-
uncertainties in modern controlled systems, neuralverge to aneighborhoodbf an equilibrium point (see,
networks provide an ideal framework for adaptive for example, Chen & Khalil (1995), Jagannathan &
control because of their parallel processing flexibility | ewis (1996), Geet al.(2003) for discrete-time cases).
and adaptability. This is owing to the fact that neural The reason why stability is not guaranteed stems from
networks can approximate continuous nonlinear mapsthe fact that uncertainties in the system dynamics can-
from collective action of very simple and autonomous npot pe captured by neural networks perfectly and the
process units that are mutually connected in simple resjdual approximation error is characterized wia
ways. Consequently, use of the neural networks for finity normover a given compact set. As one can sur-
system identification and control is one of the major mjse, however, the ultimate boundedness claims are
areas of research interest. somewhat conservative since standard Lyapunov-like

Even though neural network-based adaptive controlth€orems typically used to show ultimate boundedness
algorithms have been extensively developed in the lit- ©f the closed-loop states provide orgyfficientcon-



ditions, while neural network controllers may possi- continuously differentiable and satisfigé&) = 0, and
bly achieve plant state convergence to the equilibrium G : R® — R»*™,

oint. : . .
P In this section, we assume th#{-) is an unknown

In this paper we develop a neuro adaptive control function andf(-) andG(-) are given by
framework for a class of discrete-time nonlinear un-
certain dynamical systems which ensures state con- _
vergence as well as boundedness of the neural network fl@)= Az + Af(@), 2)
weighting gains. Specifically, the proposed framework G(z) = BGy(x), 3)
is Lyapunov-based and guarantees partial asymptotic
stagilig/ of the closed—logp system; tk?at is, Lygpu%ov wher.e A GE RE: andﬂgﬂxg .RWT(L are knowp
stability of the overall closed-loop states and con- Paﬁgtli?)?ﬁ&su%h. thail ?G (2) #'Soa ngwﬂgnmgtnr:;(
vergence with respect to the plant state. The neuroAf CRP s RY s ;n urlrlécertain fL’Jchction beion in
adaptive controllers are constructadthout requir- ¢ th. tainty SEE ai b ging
ing explicit knowledge of the system dynamics other 0 he uncertainty set given by

than the fact that the plant dynamics are continu-

ously differentiable and that the approximation error F={Af:R" - R": Af(0) =0,

of unknown nonlil_ﬂearities lies in a small gain-type Af(z) = Bé(z), x € R"}, 4)
norm boundectonic sector over a compact set. Fur-

thermore, the proposed neuro control architecture iswhered : R® — R™ is an uncertain continuously dif-
modular in the sense that if a nominal linear design ferentiable function such thaf0) = 0. It is important
model is available, the neuro adaptive controller can to note that sincé(z) is continuously differentiable

be augmented to the nominal design to account forand §(0) = 0, it follows that there exists a contin-
system nonlinearities and system uncertainty. uous matrix functionA : R™ — R™*™ such that
§(z) = A(z)x, z € R™. Furthermore, we assume that
the continuous matrix functiofk(-) can be approxi-
mated over a compact sBt, C R" by a linear in the
parameters neural network up to a desired accuracy so
that

Finally, we emphasize that we do not impose any lin-
ear growth condition on the system dynamics. Note
that in the literature on classical adaptive control for
discrete-time systems, it is typically assumed that the
nonlinear system dynamics have the linear growth
rate which is necessary in proving Lyapunov stabil-
ity rather than practical stability (ultimate bounded- col;(A(z)) =Wlro(x) +ei(z), z €D,

ness). Our novel characterization of system uncertain- i=1 NG
ties (the small-gain type bound on the norm of the

modelling error) allows to prove asymptotic stability where col;(A(-)) denotes theith column of A(+),
without requiring linear growth condition for the sys- W' € R™*%, i = 1,..- n, are optimalunknown
tem dynamics. (constant) weights that minimize the approximation
error overD., g; : R* — R™, ¢4 = 1,---,n, are
modeling errors such that,..(Y(z)) < v !z €
R", whereY(z) = [e1(x),---,e,(z)] andy > 0,
ando : R™ — R? is a given basis function such that
0<o(z)<1l,ze€R",

’...’n

The notation used in this paper is fairly standard.
Specifically, R denotes the set of real numbeR?
denotes the set of x 1 real column vectors, and/
denotes the set of nonnegative integers. Furthermore
we write (-)T to denote transpose(-) for the trace
operator]n(-) for the natural log operatos,,.x(-) to Next, defining
denote the maximum singular value of a matrix, (vgc A T
denotes the column stacking operator for a matrix, and p(x) =6(x) - W [z @o(x)], (6)
|| - || for the Euclidean vector norm.
whereW™T & [WE, ... WT] € R™*"s it follows
from (5) and Cauchy-Schwartz inequality that
2. STABLE NEURO ADAPTIVE CONTROL FOR
DISCRETE-TIME NONLINEAR UNCERTAIN

SYSTEMS " (@)e(@) = [A@)e — Wz @ o))
= A@@)z - ()|
In this section, we characterize neural adaptive feed- =T (z)z|?
back laws for discrete-time nonlinear uncertain sys- 9T
tems. Specifically, consider the controlled nonlinear <y zx, z€D, ™
uncertain dynamical systeghgiven by whereX(z) 2 [Wio(z), -, Wlo(z)] and® de-
notes Kronecker product. This corresponds to a non-
z(k+1)= f(z(k)) + G(z(k))u(k), z(0)= o, linear small gain-type norm bounded uncertainty char-

keN, (1) acterization forp(-) (see Figure 1).

wherez (k) € R™, k € N, is the state vectoy (k) € Theorem 2.1.Consider the nonlinear uncertain dy-
R™, k € N, is the control inputf : R* — R" is namical systeng given by (1) wheref(-) andG(-) are
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Fig. 1. Visualization of functiorp(-)

given by (2) and (3), respectively, alf(-) belongs
to F. Assume there exists a matrlx € R™*" such
thatA, £ A + BK is asymptotically stable. Further-
more, for a giveny > 0, assume there exist positive-
definite matrices® € R"*™ andR € R™*™ such that

P=ATPA, + ATPB[y*I,, — B"PB]"'BTPA,
+(1+a+p), +R, (8)

wherea > 0,~%1,,—BTPB > 0, and, forallz € D,
0 satisfies

1+ 2Pz

c+ T (z)o(x)
2 2

: (—BTPASASTPB +—(B"PB)* + BTPB),
o ay

9)

wheres(r) £ z ® o(x) ande > 0. Finally, letc > 0.
Then the neural adaptive feedback control law

B > max{c, n//\min(P)}v_2

(2(k)) | Ka(k)
~ W K)2(k) © o(a(k)]],  (10)

whereW T (k) € R™*"s, k e N, ando : R” — R*
is a given basis function, with update law

Wk +1) =W (k) + crorGmye e BT
(k4 1) — Aa(k)][z(k) ® o(x(k))]",
WT(0) =Wy, (11)

guarantees that there exists a positively invariant set
D, C R™ x R™*"s such that0, W7T) € D,, where
WT e R™*"s, and the solutior(xz(k), W7 (k))
(0, WT) of the closed-loop system given by (1), (10),
(11) is Lyapunov stable and(k) — 0 ask — oo for

all Af(-) € F and(zo, WT) € D,.

Proof. First, note that withu(k), k € N, given by (10)
it follows from (1)—(3) that

x(k+1)=Azx(k) + Af(z(k)) + BKz(k)
— BWT (k)[z(k) ® o(x(k))],

z(0) =xz9, keWN, (12)

or, equivalently, using (6),

x(k+ 1) = Asx(k) + Blo(z(k))
— W ()a(k) ® o(o(k)]

z(0) =x9, keWN, (13)
whereWT (k) £ WT(k) — WT. Now, adding and
subtracting’’ ™ to and from (11) and using (13) it
follows that

WT(k+1)
7T 1 T
=W (k) + coremeeommr B B

Je@®) = WP R)(2(k) |57 (2(k))
= W) + e (£ F)

— W (k)3 (2(k))] " (2(k)). (14)

To show Lyapunov stability of the closed-loop system
(11) and (13) consider the Lyapunov function candi-
date

V(z, WY =In(1 + 2" Pz) + atr WIWT, (15)

where

a = max{c, n/Amin(P)} (%BTPASASTPB

+ 2:(BTPB)® + BTPB). (16)

Note thatV' (0, WT) = 0 and, sinceP is positive
definite andz > 0, V(z, WT) > 0 for all (z, WT) #
(0,0). Now, lettingz(k), k € N, denote the solution
to (13) and using (7), (8), and (11), it follows that
the Lyapunov difference along the closed-loop system
trajectories is given by

AV (x(k), W™ (k)

2V (z(k+1), W (k+1)) — V(z(k), W (k))
=In(1+ (Aa(k) + B|p(e(k))

1) P (k) + Bofa(k)
D) + atr (WT(k:)
oG | — W RS (k)]

5" (z(k))) ( T (k) + e
Jota

3¢
W (k)5 (2(k)) |67 (@ (k)) )
—In(1 4 2T (k) Px(k)) — atrW (k)W (k)
=In(1+ [ (k) AT P Asa(k)
+ 22 (k) AS PBe(x(k))
— 22" (k) A PBW ™ (k)& ((k))

~W(k)o(x(k))

~W (k)& (x(k))

z(k))



¢ (x(k)) BPBep(x(k))
*2<P (x(k ))BPBWT( )5 (z(k))

5T (x(k))W (k)BPBWT (k)5 (x(k))
g (k)Pz(k)} [+ 2" (k) Pa(k)] 1)
+attW (k)W (k) + araissmm

W () [e(a(k) — W (R)3 (2(k)) | 67 ( (k)

+ e k) ¢ @ (k)

& @)W (B)] [e(@(k) = W (k)5 ((k)

5" (x(k)) — atrW (k)W (k)
2T (k) (1 +a+p), +R
+ AYPB[y*I,, — BYPB]"'BYPA,)x(k)
+ 2e T (k) AT PBo(x(k))
— 22T (k) AT PBW™ (k)& (x(k))
+ " (2(k)) BT PBp(z(k))
— 20" (x(k)) BT PBW™ (k)5 (x(k))
+ 6" (@ (k)W (k) BT PBW (k)5 (x(k))|

IN

-1

T a
L2t (R Px(k)] + SEraahiea

}

W () (k) = W (R)6 (2(k))] 57 ( (k)

T
t T EmE {@ (z(k))

=& (k)W (R)] [ (k) — WT (R)a (k)]

< [T B (1 + o+ B)1, + Rya(k)
— T (k)AT
+ 2T (k) AT
+ " (@(k)) (421 — B PB)p(a(k))
- 2xT(k)ATPBWT(k) 5(x(k))
@ (w(k)) BT PBi(a(k))
*2<P (@) BT PV (K)5 2 (K)
& (k)W (k)BT PBW (k)5 (a(k))|

-1 a
~[1+x W) Pz(R)] " + crratswm

PB[y*I,, — BYPB|"'BTPAx(k)
PB(y?I,, — BYPB) " 'BTPA.x(k)

W () (k) — W (R)3 (2(k))| 67 (2 (k)

a T
t T T {‘P (z(k))

= 0" (@(k)W (R)| [o(x(k) — W ()5 (x(k))].

17)

where in (17) we usetha — Inb = In § andIn(1 +

¢) < cfora,b > 0andc > —1, respectively, and

5’7 < 1. Furthermore, note that™(z)5(xz)

c+6T&

na:Tz:.

Now, defining@, £ 2BTPA,ATPB and Q,
+22(BTPB)?, it follows from (17) that
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Fig. 2. Visualization of sets used in the proof of
Theorem 2.1
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| sal, AIPB)[ (k)
| BTPA, Q1 | [ W7 (k)& (x(k))
- [soT(x(k)),&T(x(k))W(k)}

1av’1, BT™PB] [  ¢(x(k))
BB Q0 | [T M)
+ 5 (@(k)W (R)(Q1 + Qo)W (K)a (x(k))

+ T ()W (k) BTPBWT (k)3 (a(k))|
L+ 2 (k) Pa(k))
— cEraiEEm 0 @)W (R)WTE(x(k))

+ eraiEEm @ (@ k) e(@(k))
zT (k)Rz(k
< — T Peth)

_ (@)W (k) R(z(k)WT (k)& (z(k))
(c+6T (2(k))5 (x(k))) (14T (k) Pz(k))

(18)

where

R(z) 2 a(1 + 2T Px)1,,
—(Q1+ Q2+ B'PB)(c+ 5" (2)5(x))
>a(l + 2T Px)I,
—(Q1+ Q2+ BTPB)(c+na"x)

>0, ze€D.. (29)

Hence, the Lyapunov difference given by (18) yields
2T (k)Rx(k)

1+ 2T (k)Px(k)
keN.

AV (x(k), WT (k) < — <0,

(20)

Next, let

D, 2 {(ZE,WT) € R™ x R™*"s . V(z, WT) < a},
(21)
wherea is the maximum value such th&, C D, x

R™*"* (see Figure 2). Now, sinc&V (z(k), W™ (k))
< 0 for all (x(k),WT(k)) € D, andk € N, it



follows thatD,, is positively invariant. Next, sinc®,,
is positively invariant, it follows that

Do 2 {(z,WT) € R x R™¥"

(2, WT —WwT) e ba} (22)
is also positively invariant. Furthermore, it follows
from (20) and (the discrete version of) Theorem 2
of (Chellaboina & Haddad 2002) that the solution
(x(k), WT(k)) = (0,WT) to (11) and (13) is Lya-
punov stable and:(k) — 0 ask — oo for all
Af(-) € Fand(zg, W) € D,. O

Remark 2.1.The conditions in Theorem 2.1 imply
partial asymptotic stability, that is, the solutign(k),
WT(k)) = (0, WT) of the overall closed-loop system
is Lyapunov stable ang(k) — 0 ask — occ. Hence,
it follows from (11) thatiW ™ (k + 1) — WT (k) — 0
ask — oo.

Remark 2.2.Since the Lyapunov functioll (z, W'T)
used in the proof of Theorem 2.1 is radially un-

bounded, the control law (10) ensures global asymp-

totic stability in the case where the neural network
approximation holds ifR™. However, the existence of
a global neural network approximator for an uncer-

tain nonlinear map cannot in general be established.
Hence, as is common in the neural network literature,

for a given arbitrarily large compact s&t, C R",

we assume that there exists an approximator for the
unknown nonlinear map up to a desired accuracy. In

the case wheré\(-) is continuous orRR™, it follows

from the Stone-Weierstrass theorem tidt) can be

approximated over an arbitrarily large compactBgt

In this case, our neuro adaptive controller guarantee
semiglobal partial asymptotic stability.

Remark 2.3.Note that the neuro adaptive controller

(10) and (11) can be constructed to guarantee par-

tial asymptotic stability using standard discrete-time
linear H., theory. Specifically, it follows from stan-
dard discrete-timéd,, theory (Guet al. 1989) that

|G(2)]lee < 7, WhereG(z) ~ {%’%} and E is

suchthatt™E = (1 + a + 3)I, + R, if and only if
there exists a positive-definite matrk satisfying the
discrete-time bounded real Riccati equation (8).

It is important to note that the adaptive control law
(10) and (11) does not require the explicit knowledge
of the optimal weighting matrix/’. Furthermore, no
specific structure on the nonlinear dynamjs) is
required to apply Theorem 2.1. However, if (1) is in
normal form (Isidori 1995), then we can always con-
struct a neuro adaptive control lamithout requiring
knowledge of the system dynamig¢éz). To see this,
assume that the nonlinear uncertain systei gen-
erated by the difference model

zi(k+7i) = fui(z

)+ ZGsm)

k:e/\/,

k))u;(k),

i=1, (23)

’m’

where 7; € N denotes the time delay (or rela-
tive degree) with respect to the output z(k) =
[21(k), - (kb 4+ 71 — 1), 2m k), - zm (K +

— 1)], andz(0) = zo. Here, we assume that the
square matrix functioid7s(z) composed of the entries
Gs(ij)(2), 4,5 = 1,--+,m, is such thatlet G4(z) #
0, z € R7, where? = 7, + --- + 7,,,. Furthermore,
since (23) is in a form where it does not possess inter-
nal dynamics, it follows that = n. The case where
(23) possesses input-to-state stable internal dynamics
can be analogously handled as shown in Hayaketwa
al. (2004).

Next, definer; (k) = [z;(k), - -, zi(k+7—2)]%,i =
L--ym, oy (k) 2 [zl(k—i-ﬁ =1), -, zm(k +
Tm — DI, anda(k) = [2] (k)@ m+1(/~”v)]T SO
that (23) can be described by (1) with
A 0 n—m)Xx
A=l ] arw =[],
6to)=| g (24)

whereA4, € R("~")*" s a known matrix of zeros and

ones capturing the multivariable controllable canoni-

cal form representation (Chen 1984), : R* — R™

is an unknown function and satisfigs(0) = 0, and

Gs : R* — R™mxm, Note thatAf() belongs toF

with B = [0,x(nm), Im]" @andé(z) = fu(z). In

this case@,(x) = Gs(z). Furthermore, sincd is in

multivariable controllable canonical form, we can al-
ways construcK such thatd + BK is asymptotically

table.

3. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example to
demonstrate the utility of the proposed discrete-time
neural network adaptive control framework for adap-
tive stabilization. Specifically, consider the linear un-
certain system given by

2(k 4 2) + fu(2(k), 2(k + 1)) = bu(k),
2(0) =29, 2(1)=21, kEWN,

wherez(k) € R, k € N, ulk) € R, k € N,
and f, : R x R — R is continuously differen-
tiable. Note that withz, (k) = z(k) and zo(k) =
z(k + 1), (25) can be written in state space form

(1) with & = [21,25]T, A = {0 ! ] Af(z)

ay a9
[0, —a1z1 — azws — fu(a1, z2)]", andG(z) = [0,0]",
whereai,a, € R. Here, we assume tha‘xf( )i
unknown and can be written a&f(z) = x)

( I
whered(z) = f%[alzl + agxe + fu(x1,x2)] is an

(25)
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Fig. 3. State trajectory and control signal versus time

unknown, continuously differentiable function. Next,
let K = %[kl, k2], wherek,, ko are arbitrary scalars,
0 1
so thatd, = A+ BK = ar by as ks |
with the proper choice of; andks, it follows from
Theorem 2.1 that if there exisf3 > 0 satisfying (8),
then the adaptive feedback controller (10) guarantees
that z(k) — 0 ask — oo. Specifically, here we
choosea; = 0,a2 = 0, k1 = 0.1,k = 0.1, = 1,
c=1,v =18, a = 1, 8 = 28001, o(z) =
[1, tanh(>\1l‘1), sy, tanh(G)qxl), tanh()\gxg), ceey,
tanh(6Ao12)]T, whered; = Xy = 0.1, andR =
0.199915 so thatP satisfying (8) is given by

Adaptive gains
| \ \

Now,

Adaptive gains

Fig. 4. Neural network weighting functions versus
P {5.1057 0.1179} time
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