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Abstract: A new method to implement fuzzy Kalman filters is introduced in this paper.
This has special application in fields where inaccurate models or sensors are involved,
such as in mobile robotics. The innovation consists in using possibility distributions,
instead of gaussian distributions. The main advantage of this approach is that uncertainty
is not needed to be symmetric, while a region of possible solutions is allowed. The
contribution of this work also includes a method to propagate uncertainty through both
the process and the observation models. This one is based on quantifying uncertainty
as trapezoidal possibility distributions. Finally, an example of a mobile robot during a
localization process using landmarks is shown. Copyright ©)2005 IFAC
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1. INTRODUCTION

Mobile robots localization is traditionally carried out
using probabilistic techniques. The well known Ex-
tended Kalman Filter (EKF) provides an accurate so-
lution to mobile robots localization. Apparently, the
only condition is to initiate appropriately uncertainty
matrices of the initial state estimation P(0]0), the
process model Q(k + 1) and the measurement model
R(k+1).

Nevertheless, localization is done by combining in-
coming measures with an accurate map of the environ-
ment. This implies three main inherent problems to the
EKE. First, initial maps of the environment are usually
fuzzy. Second, measure uncertainty is not gaussian
and, indeed, is not symmetric. Third, uncertainty prop-
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agation through non-linear equations produce accu-
mulative errors, which have demonstrated to become
important when the robot moves hundreds of meters.

At least the two first problems suggest the idea of
representing uncertainty by using fuzzy logic. A novel
Fuzzy Kalman filter (FKF) is presented in this paper.

Many authors propose to combine fuzzy logic and
the Kalman estimation process. (L. Jetto and Ven-
turini, 1999) and (K. Kobayashi and Watanabe, 1995)
present a probabilistic EKF for mobile robots, where
fuzzy rules are used to adapt uncertainty matrices
Q(k) and R(k+ 1). (D. Longo and Sacco, 2002) ap-
plies fuzzy rules combined with a Kalman filter for
mobile robots localization, but fuzzy logic is only
used for sensor fusion outside the state estimation
process. (Layne and Passino, 2001) goes further and
uses fuzzy relations to represent both the observation
model and the system model. Nevertheless, noise is
white. (Trajanoski and Wach, 1996) presents a fuzzy
filter for a glucoregulatory system that has better per-



formance that a conventional EKF, but still includes
probability. Finally, (Wan and van der Merwe, 2000)
presents the unscented Kalman filter as a method to
minimize the inconsistency problem of the EKF. This
method does not use fuzzy logic, and proposes the use
of higher order probabilistic measures.

While existent works on FKF focus on using fuzzy
rules and fuzzy relations, we propose to include fuzzy
logic in variables modelling (Oussalah and Schut-
ter, 2000). This implies that gaussian probability dis-
tributions are replaced by possibility distributions.
(Zadeh, 1978) introduces what a possibility distribu-
tion is and states the probability / possibility consis-
tency principle. (Dubois and Prade, 1988) formalizes
management of possibility distributions using sup-min
rules. These operators are replaced in this work to fa-
cilitate the implementation of the Kalman filter. Addi-
tionally, the expected value of a possibility distribution
is defined in (C. Carlsson and Majlender, 2003), but
we redefine their concept of variance matrix.

In our work, possibility distributions are considered
at several a-cuts (in fact only a = {0,1} are taken
into account). This means that many operations can
be done using interval arithmetic (L. Jaulin and Wal-
ter, 2001). Along this article we show how the three
problems stated above disappear or are reduced with
this new approach, maintaining at least the same accu-
racy of the localization process.

2. UNCERTAINTY REPRESENTATION
2.1 Fuzzy variables

In many applications, information about variables be-
haviour is possibilistic rather than probabilistic. Fur-
thermore, a person is able to reason using qualitative
criteria instead of highly precise information. Humans
are able to make estimations in the presence of uncer-
tainty, and so an algorithm should be.

In order to use aqualitative estimation algorithm, the
possibilistic representation of the uncertainty is re-
called. A fuzzy variable defined over the universe of
discourse X is said to be modelled by a possibility
distribution such as
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where [x2,x3] is the possible region and [x;,x4] is the
not impossible region, being x; < xp < x3 < x4. We

represent the possibility distribution by the expectaion
of x

E[x] ~ I(x1,x2,x3,%4) 2)
The function may be, in general, non-symmetric,

which is the usual case of a sensor uncertainty, for
example.

2.2 Uncertainty measures

If we define the area of the distribution as

%:Jmnw 3)
the central value
Clyty) = I HI @
and the center of gravity as
x:Qﬂ=£i%ﬁ@ )

which can be considered an average between the most
possible value and the less impossible value, then we
define the uncertainty of x as

x — X)2m(x)dx
Unel] = Cl(x— 9?) = L= T

0ty
=l - ©
with
Clx—i = Jx(x —é)n(x)dx
Jyxm(x)dx io0 -
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2.3 Multivariable systems

In the case of a multivariable system, with x and
v defined over the universes of discourse X and Y,
respectively, a joint possibility distribution t(x,y) is
used with

sup m(x,y) =1, Vx,y ®)

which satisfies that its volume is

Oy = / / n(x,y)dxdy )
XY

The marginal distributions verify that

) _ Jymxy)dy
Oy Oly,y

(10)



) _ Jxmlx,y)dx (1)
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being E[x] ~TI(x1,x2,x3,%4) and E[y] ~ TI(y1,y2,y3,y4)
respectively.

The dependency between both fuzzy variables is given
by

Deplx,y] = C[(x— %) (y — ¥)]
_ Jx Jy (x = %) (v = 9)n(x, y)dxdy (12)

Oy y
and the correlation index is
n(x,y) = % (13)
When x and y are independent,
Tx,y) = n(x)n(y) (14)

this means
Oy y = /n(x)dx/n(y)dy = 04,0l (15)
X Y
Deplx,y] =0 (16)

and
nx,y) =0 (17

If x and y are fully correlated, i.e.,y = ax+b

Oy =0 (18)
Dep[x,y] = |Z—| Unc[x]Uncly) (19)

and
nix,y) ==+1 (20

Then, the following array notation may be used:

_ X
X = M 1)

with E[x] ~ TI(x1,X2,X3,X4) and uncertainty matrix

Unclx] = C[(x — %) (x —%)T]

_ | Unclx] Deplx,y]
- {Dep[x,y] Unclx] } (22)

3. UNCERTAINTY PROPAGATION

Uncertainty is propagated as follows. Suppose the
affine relation given by z = ax+ b. Then,

n(z) =7n(x), Vx,y,z|z=ax+b (23)

This implies that

_Jaxi+b ifa>0
Vie{l,...,4}, Zl_{ax5l+bifa<0 (24)
Unclz] = a® Unclx] (25)

Note that this problem (the sign of a) does not appear
in the probabilistic case, because gaussian functions
are symmetric. Anyway, the shape is maintained, in-
stead of the area. As we can see, this is the main
difference with respect to the probabilistic case.

Table 1. Distribution functions.

Probability  Possibility
Area always 1 changes
Shape  symmetric ~ asymmetric
On the other hand, if z=x+1y,
a=x+y (26)

and

Unclz] = Unc[x] + Uncly]
+ 2Ny y\/ Unc[x]Uncly) 27

although the trapezoidal shape is not longer main-
tained. And finally, when z = Ax + b,

2= Ax; b (28)

and

Unclz] = A Unc[x] AT (29)

4. DYNAMIC ESTIMATION
4.1 The Kalman filter

Let there be now the process and observation models

x(k+1) = o(k)x(k)
+Gk+Duk+1)+v(k+1) (30)

2(k+1) =H(k+ Dx(k+ 1) +w(k+1)  (31)

with possibility distributions

E[w(k+1)] ~ II(w1, w2, w3, W4) (measure noise)(32)
E[v(k+1)] ~TI(vy,v2,v3,v4) (process noise) (33)
E[X(k|k)] ~ TI(X;,X2,X3,%4) (state estimation) (34)

with W(k+ 1) = 0, ¥(k+ 1) = 0 center of gravities,

x(k) € [%2,%3] and R(k+ 1) = Unc[w(k+1)], Q(k +

1) = Unc|v(k+1)], P(k|k) = Unc[X(k|k)] uncertainty
matrices. u(k + 1) is a non fuzzy variable.

The Kalman filter steps follow:



a) Prediction:

% (k+ 11k) = 0(k)%; (k|k)
+Glk+ Dulk+1)+v(k+1) (35)

P(k+ 1|k) = ¢(k)P(k[k)o" (k) + Q(k+1)  (36)
Zi(k+1) =H(k+ D% (k+ 1) +w(k+1) (37

S(k+1)=H(k+ 1)P(k+ 1|k)H" (k+1)
+R(k+1) (38)
b) Observation:

2(k+1) (39)

with

nk+1)=z(k+1), Vie{l,....4}  (40)

¢) Matching:

A possibilistic criteriun to accept or reject the obser-
vation is

n(z(k+1)) > a (41)

with o a confidence value.
d) Correction:

It can be proved that the fuzzy Kalman gain W(k + 1)
that minimizes the uncertainty P(k + 1|k + 1) is the
same than in the probabilistic case:

W(k+1)=Pk+1/0)H (k+1)S™(k+1) (42)

K (k+1lk+1)=[I—W(k+ DH(k+ 1)]% (k+ 1]k) +
+W(k+ 1)z (k+1) (43)

P(k+1)k+1) =P(k+ 1]k)
— W(k+1)S(k+ 1)WT (k+1)(44)

4.2 Example

Let there a mobile robot located at
E[%(4]4)] ~T11(0.173,0.373,0.673,0.773)  (45)
E[y(4|4)] ~ 11(0.283,0.483,0.783,0.883)  (46)

(47)

1)(4|4):[0.019 0 ]

0 0.019

If we suppose again that the robot is completely
stopped, i.e., u(5) =0, Q(5) =0and ¢(4) =L,

E[V(k)] ~ H(0,0,0,0) (48)

0.373 0.673

0.173 0.773 x(414)

0.483 0.783

0.283 0.883 5(414)

Fig. 2. Possibility distributions at (4|4)

and that the sensor model is given by
H(5)=[0 1] (49)
E[w(5)] ~ I1(—0.233,-0.033,—0.033,0.267) (50)
R(5) =0.011 (5D

and that the observation at k = 5 is 0.498, then the
estimation at this instant follows:

a) Prediction:
E[%(5]|4)] ~T1(0.173,0.373,0.673,0.773)  (52)
E[§(5]4)] ~T1(0.283,0.483,0.783,0.883)  (53)

0.019 0
P(5|4):[ 0 0.019] 54)
4(5) =H(5)x(5/4) +wi(5) (55)
E[Z(5)] ~T1(0.05,0.45,0.75,1.15)  (56)

S(5) = H(5)P(5/4)H” (5) +R(5) = 0.030  (57)

b) Observation:
z(5) =0.498 (58)
E[z(5)] ~11(0.498,0.498,0.498,0.498) (59

¢) Matching:
7(0.498) =1 (60)

d) Correction:

w<5):P<5|4>HT(s>s‘<5)=[ 0 ] 61)

0.633
%(5]5) = [1 - W(SH(5)]%,(5]4) + W(5)z(5) (62)
E[%(5]5)] ~ T1(0.173,0.373,0.673,0.773)  (63)
E[§(5|5)] ~ T1(0.419,0.492,0.603,0.639)  (64)

P(5[5) = P(5]4) — W(5)S(5)W' (5)
:[0.019 0 }

0 0.007 65)



0.492 0.603

0.419 0.639 5(515)

Fig. 3. Possibility distribution at (5|5)

It can be seen that the uncertainty of § also decreases,
although the trapezoidal shape is not maintained. The
example shows that, although the accuracy is not
necessary to navigate, it can be also achieved using
fuzzy logic.

5. NON-LINEAR ESTIMATION
5.1 The extended possibilistic filter

The probabilistic estimation has two error sources,
originated by the linearization. The first one affects
the state expectation, which is an approximation to
force to obtain a symmetric (gaussian) projection. The
second one affects the uncertainty matrices, which
are calculated through the jacobian matrices of the
non-linear functions, and which directly affects the
Kalman gain calculation,

W(k+1) =P+ 1KH (k+1)S™'(k+1) (66)

which uses those uncertainty matrices and is used to
correct the state prediction. These errors can lead to
inconsistencies in the filter when k — oo, a phenomena
that appears, for example, when a mobile robot navi-
gates for hundreds of meters.

In the case of the proposed FKF, the first problem,
i.e., the error due to projection of the center of gravity
is minimised by projecting the four points of the
trapezoidal funcion:

% (k+1]k) = f(k+ 1,%,(k|k),u(k+ 1)) + v;(k+ 1)(67)
Zi(k+1)=h(k+1,%(k+1|k)) +wi(k+1) (68)
vik+1)=zk+1)—Z(k+1) (69)

K (k+1k+1) =% (k+ 1|k) + W(k+ 1)v;(k+ 1)(70)

SO
7 # h(X) (71)

It must be taken into account that this phylosophy
of uncertainty propagation can not be applied to the
probabilistic Kalman filter, because its distributions
are gaussian and so, they must always keep their
symmetric shape.

The second problem, i.e. the error due to the uncer-
tainty matrices, also appears as we are suppossing
trapezoidal shape,

o 7 (%) o (72)

Unclz] # [ (%))* Unc[x] (73)

which has also a small effect on the Kalman gain
calculation.

5.2 Application to the localization of a mobile robot

The following experiments reflects a mobile robot fol-
lowing a straight line, and localizing itself by using
one landmark. Figure 4 represents the evolution of the
possibility distributions of the estimation components
%, ¥, 6. Each graph shows the corners of the trapezoidal
distribution. The probabilistic estimation should al-
ways be inside the possible region.

X evolution

Fig. 4. Possibility distributions evolution

Figure 5 shows the evolution of the uncertainty of the
estimation components, Unc[#], Unc[§] and Unc[8)].

Finally, 6 reflects a more complex experiment in
which a b21r robot moves inside a room, using three
landmarks and three walls represented as segments.

The figure shows both the odometry and the estimated
paths. Uncertainty in (x,y) is shown as a set of rectan-
gles which apply for the possible and not impossible
regions, respectively.

6. CONCLUSION

A new FKF has been introduced which is a classic
EKEF able to manage possibilistic uncertainty. Its main
characteristic is that fuzzy logic is included in the
uncertainty model of the state estimation, instead of
using fuzzy rules for process and observation models,
as other authors do. Uncertainty propagation through
those models has been explained, and proved to be
reasonable even in the non linear case.
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Fig. 5. Estimation uncertainty evolution

Fig. 6. Navigation with landmarks and segments

The main differences between the probabilistic and the
possibilistic approaches are illustrated in table 2.

This means that the FKF has more sense in applica-
tions where uncertainty is managed in a qualitative
manner, as in navigation issues in mobile robotics.
Furthermore, the selection of one method does not
excludes the other. In fact, the higher advantage of the
presented ideas is that both types of models may be
applied in parallel.
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