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Abstract: A control engineering benchmark problem with industrial relevance is
presented. The process is a simulation model of a nonlinear four-mass system,
which should be controlled by a discrete-time controller that optimizes perfor-
mance for given robustness requirements. The control problem concerns only the
so-called regulator problem. Copyright c©2005 IFAC
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1. INTRODUCTION

Researchers active within the academic systems
and control society develop and propose very so-
phisticated and advanced methods for controller
design and synthesis. However, some of the pro-
posed methods and solutions have seldom been
applied to advanced, realistic and industrially rel-
evant problems. This is unfortunate for many
reasons. For control engineers active in industry,
e.g., it would be a great help to learn about the
potentials (and maybe also the drawbacks) of a
proposed method in the light of a realistic exam-
ple. Some of the academic researchers could learn
valuable lessons from the feedback that realistic
experiments often give, lessons that might help
pointing out new directions for future research.

This paper presents a realistic and relevant indus-
trial benchmark problem and the intention is to
stimulate research in the area of robust control
of flexible industrial manipulators (robots). Pro-
posed solutions to this benchmark problem will

also be presented and discussed. An example of a
similar (at least in some parts) benchmark prob-
lem is the flexible transmission system presented
by (Landau et al., 1995). Another benchmark
problem for controller design is (Graebe, 1994)
where the participants did not know the true sys-
tem, which was supplied in the form of scrambled
simulation code. A third example is the Grumman
F-14 Benchmark Control Problem described in
(Rimer and Frederick, 1987). However, in the area
of robot manipulator control we think that a re-
alistic and relevant industrial benchmark problem
is needed for reasons stated above.

2. THE MANIPULATOR

The most common type of industrial manipula-
tor has six serially mounted links, all controlled
by electrical motors via gears. Such a serial six-
degrees-of-freedom (6 DOF) industrial manipula-
tor is shown in Figure 1.



The dynamics of a serial 6 DOF manipulator
change rapidly as the robot arms move fast within
its working range and the dynamic couplings be-
tween the arms are strong. Moreover, the arm
structure is elastic and the gears have nonlinear-
ities in form of backlash, friction and nonlinear
stiffness (elasticity).

From a control engineering perspective such a
manipulator can be described as a nonlinear mul-
tivariable dynamical system having the six motor
currents as the inputs and the six measurable
motor angles as outputs. The goal of the motion
control is, however, to control the orientation and
the position (3+3 = 6 DOF) of the tool when
moving the tool along a certain desired path. It
is a big challenge to control such an industrial
manipulator so that high accuracy is guaranteed.

The benchmark problem described in this paper
concerns only the so-called regulator problem and
the controller should be designed such that the ac-
tual tool position is close to the desired reference,
in the presence of motor torque disturbances, e.g.
motor torque ripple, and tool disturbances acting
on the tool e.g. under material processing. Since

Fig. 1. IRB6600 from ABB

one direction of future manipulator development
points toward increased elasticity, the motion con-
trol for high accuracy will require the use of
more advanced control methods than already used
today. Hence, the benchmark problem has great
practical significance.

3. THE SIMULATION MODEL

The simulation model that will be used is a sim-
plified SISO model and corresponds to one de-
coupled robot axis that operates close to a fixed
operating point. The strong couplings between the

six axes of the real manipulator, as well as the
nonlinear dynamics associated with the change of
configuration (operating point), will then be ig-
nored. Furthermore, the nonlinear friction present
in the gear is also ignored. The model to be
used is a four-mass model having nonlinear
gear elasticity and a time delay Td in the
measurement system of the motor angular
position. The motor current- and torque control
is assumed to be ideal so that the motor torque
becomes the model input. The model is illustrated
in Figure 2.

The damping and the nonlinear stiffness of the
gear are represented by d1 and k1 respectively
and the corresponding parameters for the arm are
represented by d2, k2, d3 and k3. The nonlinear
stiffness of the gear is further described in section
5 and illustrated in Figure 3. The moment of
inertia of the arm is here split-up in the three
components Ja1, Ja2 and Ja3. The moment of
inertia of the motor is Jm. The parameters fm,
fa1, fa2 and fa3 represent viscous friction in the
motor and in the arm structure respectively. qm

is the motor angle which is measured. qa1, qa2

and qa3 are arm angles of the three masses and
together they define the position of the tool. The
angles in this model are, however, expressed on the
high-speed side of the gear so in order to get the
real arm angles one must divide the model angles
by the gear-ratio (see the next section). The motor
torque um, is the manipulated input of the system
and w and v represent disturbances acting on the
motor and the tool respectively.

Fig. 2. Nonlinear model of the robot arm

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−4

−2

0

2

4

Delta Position [rad]

T
or

qu
e 

[N
m

]

Nonlinear Gear Box

Fig. 3. Nonlinear gear stiffness

4. MATHEMATICAL DESCRIPTION OF THE
LINEARIZED MODEL

The linearized model (k1 = constant, Td = 0) is
given by the following equation:

Jq̈ + (D + F )q̇ + Kq = u (1)



where
q = [qm qa1 qa2 qa3]

T (2)

and
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The tool position z (which is the controlled vari-
able) can for small variations around a given work-
ing point be calculated as

z =
l1qa1 + l2qa2 + l3qa3

n
(8)

where n is the gear-ratio and l1, l2, l3 are distances
between the (fictive) masses and the tool.

On state-space form the linearized system can now
be described by

ẋ(t) = Ax(t) + Bu(t) (9)
y(t) = Cx(t) (10)
z(t) = Ex(t) (11)

where y is the measured motor angle and z the
controlled variable. By selecting the states as

x =

[

q

q̇

]

(12)

we get

A =

[

0 I

−J−1K −J−1(D + F )

]

(13)

B =

[

0
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]

(14)

C =
[

1 0 0 0 0 0 0 0
]

(15)
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[

0
l1

n
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n

l3

n
0 0 0 0

]

(16)

5. NOMINAL MODEL

The parameter values of the nominal model, which
will be denoted by Mnom, is defined in Table 1.

The nonlinear gear stiffness illustrated in Figure
3 is approximated and described by five piecewise
linear segments in the simulation model. In the
table only the first segment, k1,low, the last seg-
ment, k1,high, and the position difference where
the last segment begins, k1,pos, are given.

Table 1. Nominal parameter values

Parameter Value Unit

Jm 5 · 10
−3 kg · m2

Ja1 2 · 10
−3 kg · m2

Ja2 0.02 kg · m2

Ja3 0.02 kg · m2

k1,high 100 Nm/rad
k1,low 16.7 Nm/rad
k1,pos 0.064 rad
k2 110 Nm/rad

k3 80 Nm/rad
d1 0.08 Nm · s/rad
d2 0.06 Nm · s/rad
d3 0.08 Nm · s/rad
fm 6 · 10

−3 Nm · s/rad
fa1 1 · 10

−3 Nm · s/rad
fa2 1 · 10

−3 Nm · s/rad
fa3 1 · 10

−3 Nm · s/rad
n 220
l1 20 mm
l2 600 mm
l3 1530 mm
Td 0.5 · 10

−3 s

6. PARAMETER VARIATIONS AND MODEL
SETS

Performance of the control systems will be eval-
uated for the nominal model Mnom and for two
sets of models which will be denoted by M1 and
M2 respectively, and which contain ten models,
m, each. The set M1 represents relatively small
variations in the physical parameters and the set
M1 represents relatively large.
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Fig. 4. Amplitude curves for Mnom

In Figure 4 the frequency response function am-
plitude for Q̈(ω)

U(ω) of Mnom is shown. The solid line
corresponds to the most stiff region of the gear
(k1,high) and the dashed line corresponds to the
least stiff region (k1,low). The Figures 5 and 6 show



the corresponding curves of the models m ∈ M1

and m ∈ M2 respectively, for the most stiff region
of the gear (k1,high). 1
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Fig. 5. Amplitude curves ∀m ∈ M1
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Fig. 6. Amplitude curves ∀m ∈ M2

7. THE TASK

The task of this benchmark problem is to
design one or two discrete time controllers
for the systems described above. One of
the controllers must be capable of control-
ling all the models m ∈ Mnom ∪ M1 ∪ M2

whereas the other controller should be able
to control Mnom alone. The controllers can
be linear or nonlinear.

In order to investigate how well a controller can
perform when really good models are available it
is recommended to design two different controllers
where one is optimized for the control of Mnom

only. This controller will in the sequel be denoted
by C1 and the other by C2. Note that C1 and C2

can be identical, can have the same structure and
differ only by different tuning or can have com-
pletely different structure and tuning parameters.

The control systems will be exposed to a sequence
of torque disturbances acting on the motor and on
the tool according to Figure 7. The disturbance
sequence consists of steps, pulses and sweeping
sinusoids (chirp). Figure 8 shows the tool position
and Figure 9 shows the controller signal (motor
torque) when the disturbance sequence in Figure
7 acts on the nominal system. A simple PID-type
controller is used here.

As a tool for controller design, a cost function
will be used. The smaller the cost function the

1 In the simulation model, M1 and M2 also have the
nonlinear gear stiffness described in section 5.
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Fig. 9. Motor torque when using PID-control

better the design. Figures 8 and 9 show all the
performance measures that are weighted together
into this cost function. Peak-to-peak error of the
tool position (e1 - e8), settling times (Ts1 - Ts4),
maximum torque TMAX , adjusted rms torque
TRMS and torque "noise" (peak-to-peak) TNOISE .

Note that TNOISE, which can be measurement
noise and/or chattering caused by a discontinuous
controller, is measured by the simulation routines
when the system is at rest but that a good
controller would keep the chattering/noise on a
decent level also when it operates actively.

For the nominal system the following cost function
Vnom will be used:

Vnom = γ

15
∑

i=1

αiei (17)

where ei represents a generalized "error" (position
error, settling time or torque), γ and αi are



weights. It should be mentioned that Vnom is
calculated only when C1 is used for the control of
Mnom. For the sets M1 and M2 (using controller
C2) the maximum error from the simulations is
used and the cost functions V1 and V2 are given
by the following expressions:

V1 = γ

15
∑

i=1

αi max
m∈M1

(ei) (18)

V2 = γ

15
∑

i=1

αi max
m∈M2

(ei) (19)

The total cost function V is given by

V = βnomVnom + β1V1 + β2V2 (20)

The following requirements must also be met:

• Settling times for Mnom (C1) and M1 (C2):
Ts1,2,3,4 < 3 s, error band ± 0.1 mm

• Settling times for M2 (C2): Ts1,2,3,4 < 4 s,
error band ± 0.3 mm

• Torque noise TNOISE < 5 Nm for all systems
• Stability for all systems
• Stability for Mnom when increasing the loop

gain by a factor 2.5 for C1 and C2

• Stability for Mnom when increasing the delay
Td from 0.5 ms to 2 ms for C1 and C2

By "stability" we also mean that limit cycles larger
than 10 µm peak-to-peak are not allowed.

The control requirements we put on the systems
Mnom and M1 above can be motivated by e.g. dif-
ferences between robot individuals, non modeled
nonlinearities, model reduction, uncertainties due
to varying applications and incorrect payload def-
inition. The use of the model set M2 is motivated
by the fact that a real control system must be
stable even for relatively large deviations between
the model and the real manipulator dynamics. It
might then seem strange to weight performance
for the set M2 into the total cost function but the
reason is that we want to reward the robustness
of the proposed controller.

8. THE CONTROL SYSTEM

The control system is shown in form of a
SimulinkTM -model in Figure 10. The following
conditions rules:

• Sampling time 0.5 ms
• Time delay Td 0.5 ms
• Torque saturation limits ±20 Nm (the satu-

ration function in the controller block should
not be removed)

• Relatively strong measurement noise (only
the motor shaft angle is measured)

• Only the blocks "Controller1" and "Con-
troller2" and the files "Controller_1.m" and

Fig. 10. The control system

"Controller_2.m" are allowed to be changed.
The system comes with a simple PID-controller

• No continuous-time blocks can be added
• No knowledge of deterministic nature about

the noise and disturbances can be used in the
controller (of course)

• The controller C2 must have the same initial
states and parameter values for all the simu-
lations of m ∈ Mnom ∪ M1 ∪ M2

The control system and the models are described
in detail by MatlabTM and SimulinkTM files
available for download at
http://www.robustcontrol.org. The MatlabTM prod-
ucts used are described in e.g. (MathWorks, 2003).

9. SUGGESTED SOLUTIONS

This benchmark problem was first presented as
"Swedish Open Championships in Robot Con-
trol" at the Swedish control meeting, Chalmers
University of Technology, Sweden (Moberg and
Öhr, 2004). On request, this competition was
spread outside the borders of Sweden.

Three interesting solutions for the competition
were proposed:

• QFT controller by P.-O. Gutman, Israel In-
stitute of Technology, Israel

• Linear Sliding Mode Controller by W.-H.
Zhu, Canadian Space Agency, Canada

• Polynomial Controller by F. Sikström and
A.-K. Christiansson, University of Trollhät-
tan/Uddevalla, Sweden

The controllers are of order 3 to 7. The QFT ap-
proach is generally described in (Nordin and Gut-
man, 1995) and the linear sliding mode approach
in (Zhu et al., 1992) and (Zhu et al., 2001). The
polynomial controller is optimized for the given
cost function and the optimization procedures
used are described in (MathWorks, 1999). 2 3

2 The winner of the championship was W.-H. Zhu, Cana-
dian Space Agency, Canada.
3 A fuzzy PID controller for the nominal case only was
proposed by J. Varso and H. Koivo, Helsinki University of
Technology. Vnom for this controller is 59.3



A second QFT controller of order 13 was pro-
posed in the Master Thesis Work described in
(Roberto, 2005) but since the authors of this ar-
ticle supervised that work, the solution did not
qualify for the competition.

The frequency response of the controllers are
shown in Figure 11 and 12. The cost function

10
−1

10
0

10
1

10
2

10
3

25

30

35

40

45

50

55

60

65

70

75

Frequency [Hz]

M
ag

n
it

u
d

e 
[d

B
]

Comparison of Controllers C2

Gutman

Roberto

Sikstrom

Zhu

Fig. 11. The Frequency Response Amplitude of
the Controllers C2

10
−1

10
0

10
1

10
2

10
3

−100

−50

0

50

100

150

Frequency [Hz]

P
h

as
e 

[d
eg

]

Comparison of Controllers C2

Gutman

Roberto

Sikstrom

Zhu

Fig. 12. The Frequency Response Phase of the
Controllers C2

V1 and the generalized errors for model set M1

are shown in Table 2. Table 3 shows a summary
of the result.

Since a real manipulator has multiple inputs and
outputs, a second step in the evolution of this
benchmark problem could be to look at the mul-
tivariable case and/or using additional measured
variables like e.g. arm position or tool position.
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Table 2. Result for M1

Gutman Roberto Sikström Zhu

e1 [mm] 8.22 8.57 9.75 9.11
e2 [mm] 2.56 2.43 3.41 3.22
e3 [mm] 5.39 5.56 5.34 5.28
e4 [mm] 1.58 1.74 2.12 1.77
e5 [mm] 7.78 8.22 9.37 8.64
e6 [mm] 2.82 2.82 4.02 3.68
e7 [mm] 4.88 5.13 4.20 4.59
e8 [mm] 1.40 1.56 1.90 1.57
Ts1 [s] 2.04 2.13 1.79 1.68
Ts2 [s] 1.25 1.47 1.52 1.05
Ts3 [s] 1.04 0.77 0.71 0.77
Ts4 [s] 0.95 0.55 0.69 0.71
TNOISE [Nm] 2.67 1.05 1.85 1.66
TMAX [Nm] 12.1 12.0 11.0 11.3
TRMS [Nm] 1.53 1.52 1.43 1.46

V1 82.5 80.8 84.8 80.5

Table 3. Summary of Result

Gutman Roberto Sikström Zhu

Vnom 64.6 58.8 64.8 62.0
V1 82.5 80.8 84.8 80.5
V2 82.6 84.2 84.1 81.6

V 146.0 141.4 148.9 142.2
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