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“La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy
∗∗ Laboratoire des Signaux et Systèmes, CNRS-ESE,
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1. INTRODUCTION

The problem of the equivalence to observer canon-
ical forms, first set in a continuous–time context
in [Krener et al., 1983], [Bestle et al., 1983] and
further developed in [Krener et al., 1985], [Xia et
al., 1989], was addressed by several authors both
in continuous and discrete time: see for instance
[Chung et al., 1990], [Lee et al., 1991], [La Scala et
al., 1995], [Song et al., 1995], [Moraal et al., 1995],
[Lin et al., 1995], [Besançon et al., 1998], [Lilge,
1998], [Barbot et al., 1999], [Besançon et al., 1999],
[Huijeberts, 1999], [Kazantzis et al., 2000]. In [Hou
et al., 1999] necessary and sufficient conditions
were given for the equivalence under coordinates
change to nonlinear multi output continuous time
observers with linear error dynamics. However
these conditions require the solution of a set of
partial differential equations.

Recently in [Califano et al., 2003] the problem was
addressed for nonautonomous single output dis-
crete time systems in the geometric framework in-
troduced in [Monaco et al., 1997a] by considering
both state and output transformations. Necessary
and sufficient conditions for local equivalence were
given. The proof of the result is constructive w.r.t.

the coordinates change and the required output
transformation.

In the present paper a first solution to the problem
of the equivalence under coordinates change to
observer canonical forms for multi output discrete
time systems is proposed. The approach used gives
the methodology to cope with nonlinear output
transformations as shown in [Califano et al., 2003]
for the single output case, thus leading to more
general results than those proposed in [Hou et al.,
1999] for continuous time systems.

The relevance of the addressed problem stands
in the possibility of designing nonlinear discrete
observers based on the extended Kalman filter as
shown in [Reif et al., 1999].

We will consider a nonlinear discrete-time system

x(k + 1) = F (x(k), u(k))
(1)

y(k) = h(x(k))

where x ∈ IRn, u ∈ IRm, y ∈ IRp, F : IRn ×
Rm → IRn and h are analytic functions, (0, 0) is
an equilibrium pair, i.e. F (0, 0) = 0, and h(0) = 0.
We will assume that the Jacobian matrix ∂F0

∂x



has full rank at x0 = 0. As a consequence,
the drift term F0 is locally invertible, and the
complete dynamics too is locally invertible in a
neighborhood of (0, 0). In the sequel X0 and U0

will denote such suitable meighborhoods of x0 = 0
and u = 0 respectively.

Definitions The problem of the equivalence to
the generalized observer form has a solution if
there exists a locally defined coordinates change
z = φ(x) such that, in the new variables, (1) reads

z(k + 1) =A(u(k))z(k) + Ψ(y(k), u(k))
(2)

y(k) =Cz(k)

with (A(0), C) an observable pair in the canonical
Brunovskij form, i.e.

A(0)=diag(A1(0) · · ·Ap(0)), C = diag(C1 · · ·Cp),

Ai(0)=




0 · · · · · · · · · 0

1
. . .

...

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0




ki×ki

,

Ci=( 0 · · · 0 1 )1×ki

where ki is the observability index associated with
the i–th output.

The problem will be locally or globally solvable de-
pending on the properties of the transformations.
Dropping the term ”generalized ” will mean that
A(u) = A(0) = A.

The paper is organized as follows. Some technical
arguments concerning the geometric framework
are given in Section 2. In Section 2.1 the single
output case is recalled. In Section 3, the problem
of local equivalence to the generalized output
injection observer form is addressed. The global
version of the result is presented in Section 3.1.

2. RECALLS AND NOTATIONS

The following notations are issued from [Monaco
et al., 1986], [Sontag, 1986], [Jakubczyk et al.,
1990]. Given two vector fields τ1(x), τ2(x), a real
valued function λ(x) and a diffeomorphism φ(x),

defined on IRn, Lτ1λ(x) := ∂λ(x)
∂x

τ1(x), is the

standard Lie derivative, adτ1τ2(x) := [τ1, τ2](x) =
Lτ1 ◦Lτ2(Id)|x −Lτ2 ◦Lτ1 (Id)|x is the Lie bracket
of vector fields and Adφτ1 is the transport of τ1
along φ(x), i.e.Adφτ1 :=

(
∂φ
∂x
τ1

)∣∣∣
φ−1

. δrs denotes

the kronecker index which is 0 for r 6= s and 1
for r = s, Id denotes the identity function, I the

identity operator and Jφ(x) := ∂φ(x)
∂x

.

Consider now ([Monaco et al., 1997a], [Monaco
et al., 1997b]) the parameterized family of vector
fields associated with (1)

i1G0(x,u)=̇

(
∂

∂ε

∣∣∣∣∣
ε=0

F (·, u1 , · · · , ui1+ε, · · · , um)

)∣∣∣∣∣
F−1 (x,u)

i1 = 1, · · · ,m, locally well defined around u = 0
and set for ij ∈ [1,m], and k > 1

i1,i2···ikG
0
k(x)=̇

∂k−1

∂ui2 · · ·∂uik

∣∣∣∣∣
u=0

i1G
0(x, u)

with i1G
0
1(x)=̇i1G

0(x, 0). Accordingly (1) admits
the following exponential representation

F (x, u) = F0(x) +

m∑

i=1

uiL
iG0

1(·)(Id)|F0(x) +

m∑

i=1

m∑

j=1

uiuj

2

(
L

ijG0
2(·)+L

iG0
1(·)◦LjG0

1(·)

)
(Id)|F0(x)+0(u3)

= euG0(·,u)(Id)

∣∣∣
F0(x)

=

(
I +
∑

p>0

1

p!
Lp

uG0(·,u)

)
(Id)

∣∣∣∣∣
F0(x)

.

uG0(., u) := Rn → Rn, is defined by its series
expansion with respect to u. It is a smooth vector
field parameterized by (u1, · · · , um) and a Lie
element in the (i1...ikG

0
k)’s [Monaco et al., 1997a].

The transport of a vector field τ0 along the dy-
namics (1) is thus a vector field τ1(·, u) given by

τ1(·, u)=

(
∂F (·, u)

∂x
τ0(·)

)
F−1(·,u)

= e
−ad

uG0(·,u)(AdF0 τ0(·))

=(I +
∑

p≥1

(−1)p

p!
adp

uG0(·,u)
)(AdF0 τ0(·)) (3)

= AdF0 τ0(·) −
m∑

i=1

ui ad
iG0

1
AdF0 τ0(·) +

m∑

i=1

m∑

j=1

uiuj

2
(−ad

ij G0
2

+ ad
iG0

1
ad

jG0
1
)AdF0 τ0(·) + O(u3)

In the sequel, iG̃
0(z, u) := AdφiG

0(x, u), while
ηG̃

0
k(z) := Adφ ηG

0
k(x), ∀k ≥ 1, η = i1, · · · ik,

will denote the vector fields under study in the
coordinates z = φ(x).

In the multi ouput case, a first problem concerns
the introduction of a suitable set of observability
indices.

Definition 1. The observability index ki, associ-
ated with the i-th output hi is the first integer
such that

d(hi ◦ F ki
0 ) ∈ span{dh, · · ·d(h ◦ F ki−1

0 )} (4)

while for 1 ≤ j ≤ ki − 1,

d(hi ◦ F j
0 ) 6∈ span{dh, · · ·d(h ◦ F j−1

0 )}. (5)



From (4–5) the observability indices can be com-
puted from the codistributions

Ωi = span{dh · · ·d(h ◦ F i
0)}, i ≥ 0.

In the following we will assume without any loss of
generality k1 ≥ · · · ≥ kp, since this can be easily
achieved by reordering the output functions.

We will denote by Oi = (dhT
i , · · · , d(hi◦F ki−1

0 )T )T

and by O = (OT
1 , · · · , OT

p )T . Finally

O = {dhi, · · · , d(hi ◦ F ki−1
0 ), i = 1, · · · , p}

Oi = O − {d(hi ◦ F ki−1
0 )}.

Definition 2. The autonomous system

x(k + 1) =F0(x(k))

y(k) = h(x(k))

is said to be locally strongly observable if there ex-

ist p observability indices k1, · · · , kp with
p∑

i=1
ki =

n such that for any x ∈ X0, rank O = n.

Definition 3. A smooth vector field, f , defined on
a manifold N is complete if the corresponding flow
is defined on the whole Cartesian product IR×N .

2.1 The single output case

Let r1(x) be the solution of

d(h ◦ F i−1
0 )r1 = δin for i = 1, · · · n, (6)

with δ1n the kronecker index, and denote by

ri := AdF0ri−1 = Adi−1
F0

r1, i = 2, · · · , n,

its iterated transport along F0(x).

Let us note that, under the strong observability
condition, the vector fields (r1, · · · , rn) exist and
are linearly independent since by construction
they verify the equality



dh
...

d(h ◦ Fn−2
0 )

d(h ◦ Fn−1
0 )


 (r1 · · ·rn)=




0 · · · 0 1
... ·· · ·· · ∗

0 ·· · ·· ·
...

1 ∗ · · · ∗


 .

Analogously, let ri+1(·, u) be the transport of ri(·)
along the complete dynamics F (·, u) given by (3),
with ri+1(·, 0) = ri+1(·) := AdF0ri. The following
results hold true [Califano et al., 2003].

Theorem 1. The problem of the equivalence to the
generalized observer form (2) is locally solvable if
and only if on X0

A1) rank O(·) = n
A2) [r1(·), ri+1(·)] = 0 for i = (1, · · · , n− 1)

A3) ∀u ∈ U0, [rj(·), ri+1(·, u)] ≡ 0 for i =
(1, · · · , n− 1), j = (1, · · · , n).

The coordinates change is such that

[Jφ(x)]−1 = (r1(x) · · ·rn(x)). (7)

Moreover in (2), A(u) := A(0) = A if and only if

A4) ri+1(·, u) = ri+1(·).

3. THE MULTI OUTPUT CASE

In the present section we will start to point out
the main differences with respect to the single
output case which do not allow a straightforward
generalization of the single output case.

Once the observability indices are defined, let us
consider for i = 1, · · · , p, the vector fields ri,1

(associated with the i–th output) which satisfy
the following condition:

< d(hl ◦ F (j−1)
0 ), ri,1 >= δliδjki , (8)

where 1 ≤ l ≤ p, 1 ≤ j ≤ ki, and denote
by rj,l := AdF0rj,l−1 = Adl−1

F0
rj1 its iterated

transport along F0.

Unlike the single output case, the vector fields
r1,1 · · ·rp,1 thus defined are not univocally deter-
mined. In fact for a given set of observability
indices k1 ≥ · · · ≥ kp, while r1,1 is univocally
defined by the n independent conditions in (8), the
same holds trueonly if all the observability indices
are equal to k1. In such a case a unique set of so-
lutions can be computed from (8). The nilpotency
of the associated distribution makes it possible
to define the desired coordinates change. In the
general case (k1 ≥ k2 ≥ · · · ≥ kp) several solutions
to (8) can be computed: as a matter of fact in the
z–coordinates the set of all possible solutions to

(8) is given by rj,1 = ∂
∂zj,1

+
j−1∑
i=1

ki−kj∑
l=1

aj,l(z)rj,l

where the coefficients aj,l are generic functions of
z; only suitable properties of the fucntions aj,l

ensure the necessary nilpotency property. It can
be easily understood that if the aj,l’s are constant
nilpotency is achieved. With this in mind we stress
that the costant coefficients aj,l can be computed
arguing as follows.

Compute r11 solution to (8) and accordingly r1,s,
s = 2, · · ·k1. For j = 2, · · · , p, iteratively consider
z = φ(x) such that in the new coordinates r̃il(z) =

∂
∂zil

, l = 1, · · · , ki i = 1, · · · , j − 1. In the set of all
possible solutions

aj
il(z) =

∫
< r̃i,l, [r̃j1, r̃1,1] > dz11 + aj

il(0)

choose, for i = 1, · · · , j − 1, l = 1 · · ·kj − ki

aj
il(z)=

∫
<r̃i,l,[̃rj1,r̃1,1]> dz11+a

j
il(0)=cost. (9)



In conclusion, while (8) can be considered a gen-
eralization of (6), the additional property (9) is
peculiar to the multi output case.

It is now possible to extend to the multi output
case the results stated in the previous section.

Theorem 2. The problem of the equivalence to the
generalized observer form (2) is locally solvable
if and only if there exist observability indices
(k1, · · · , kp) such that on X0

B1) rank O(·) = n
B2) spanOi(·) = span {Oi(·) ∩O(·)}
B3) [ri,1(·), rj,l(·)] = 0 i, j ∈ [1, p], 1 ≤ l ≤ kj

B4) ∀u ∈ U0, [ri,s(·), rl,j+1(·, u)] = 0, s =
1, · · · , ki, j = 1 · · ·kl − 1, i, j ∈ [1, p]

The coordinates change is such that

[Jφ(x)]−1= (r1,1 · · ·r1,k1, · · · , rp,1 · · ·rp,kp)(x).(10)

Moreover in (2), A(u) := A(0) = A if and only if

B5) rj,i+1(·, u) = rj,i+1(·) for i = 1, · · ·ki − 1 and
j = 1, · · · , p.

Proof Necessity. Assume that the system is in the
observer form (2), then conditions B1) and B2) are
satisfied. By construction the vector fields rij =

∂
∂zij

satisfy B3) and (8). Since F (·, u) = A(u)z +
Ψ(y, u), then for j = 1, · · · , kl − 1, l = 1, · · · , p,

∂F (·, u)
∂zl,j

= rl,j+1(·, u)|F (·,u)A(u)
∂

∂zl,j

= Al,j(u).

It follows that, for j = (1, · · · , kl − 1), l =
(1, · · · , p), and s = (1, · · · , ki), i = (1, · · · , p),
u ∈ U0, [ri,s(·), rl,j+1(·, u)] = 0 which proves B4).

Finally if A(u) := A(0) = A then

i1G
0(·, u) = i1G

0(z11, · · · , zp1, u),

so that ∀k > 1 and ∀j ∈ [1, p]

[rj,i+1, ηG
0
k] = 0, i ∈ [1, kj − 1], ∀η = i1 · · · ik

i.e., according to (3), B4) is verified. These con-
ditions are invariant under coordinates change, so
that the result follows.

Sufficiency. Condition B1) and B2) ensure the
existence of p vector fields r1,1, · · ·rp,1 satisfy-
ing the set of algebraic equations (8). Moreover
the n vector fields ri,1 · · · ri,ki for i = 1, · · · , p,
are linearly independent. In fact denoting by
R(x) = (r1,1 · · ·r1,k1 · · ·rp,1 · · ·rp,kp), it is suffi-
cient to note that

O(x)R(x) =

=




0 · · · · · · 0 1 0 · · · · · · 0
... ·· · · · · ∗

... · ·· 0
... ·· · ·· · · · ·

... · · · · ·· ∗

0 ·· · ·· ·
... 0 · · · · ·· ∗

1 ∗ · · · · · · ∗ 0 ∗ ∗ ∗

0 · · · · · · 0 0 0 · · · 0 1
... ·· · · · · ∗

... · · · · ·· ∗
... ·· · ·· · · · · ∗ 0 · · · ∗

...
0 0 ∗ ∗ ∗ 1 ∗ · · · ∗

. . .




According to B3) the distribution R(x) is nilpon-
tent at the first order since for any two vector
fields rl,s, ri,j, assuming s ≤ j we have [rl,s, ri,j] =
Ads−1

F0
[rl,1, ri,j−s+1] = 0. Consequently, there ex-

ists a coordinates change z = φ(x) satisfying (10).
In the new coordinates r̃i,j(·) = Adφri,j(·) and
R̃(·) = AdφR(·) = In×n. Let us now consider
the output functions which in the new coordinates
read yi = (hi ◦ φ−1(z)), i = 1, · · ·p.

∂(hi ◦ φ−1)
∂zl,j

=

[
∂h(x)
∂x

∂φ−1

∂zl,j

∣∣∣∣
φ

]

φ−1

=
[
∂hi(x)
∂x

rl,j

]

φ−1

which, on the basis of (8), implies that yi = zi,ki.
Let us now consider the drift term F̃0(z) = φ ◦
F0 ◦ φ−1. Standard computations show that

∂F̃0(z)
∂zl,j

=
[
∂φ

∂x
rl,j+1

]

F0◦φ−1

= r̃l,j+1(·)|F̃0

which proves that

F̃0(z) =




ψ1
1(z1,k1 · · ·zp,kp )

z1,1 + ψ1
2(z1,k1 · · · zp,kp)

...
z1,k1−1 + ψ1

k1
(z1,k1 · · ·zp,kp )
...

ψp
1(z1,k1 · · ·zp,kp )

zp,1 + ψp
2(z1,k1 · · ·zp,kp )

...
zp,kp−1 + ψp

kp
(z1,k1 · · ·zp,kp)




(11)
=Az + ψ0(y)

In the new coordinates, since B4) is invariant un-
der coordinates change, one verifies that for l, i =
(1, · · · , p) and s = (1, · · · , ki), j = (1, · · · , kl − 1),

[r̃i,s, r̃l,j+1(·, u)] =
∂r̃l,j+1(·, u)

∂zi,s

= 0,

i.e. r̃l,j+1(·, u) := Al,j(u). Moreover, by definition,
for j = (1, · · · , kl − 1), l = 1, · · · , p,

∂F̃ (·, u)
∂z

r̃l,j(·) = r̃l,j+1(F̃ (·, u), u) = Al,j (u) (12)



so that F̃ (·, u) = A(u)z+ Ψ(y, u), with A(u) such
that A(u) ∂

∂zi,s
= Ai,s(u), for s = (1, · · · , ki − 1),

i = 1, · · · , p.

Finally if B5) is verified then according to (12),
l = 1 · · ·p and j = 2, · · · , kl, we have that

[
∂F̃ (·, u)
∂z

r̃l,j(·)

]

F̃−1(·,u)

= r̃l,j+1(·) = Al,j

which ends the proof. /

3.1 A global result

In the present section we will state the equivalent
global version of Theorem 2. To this end let us
preliminarily note that assuming local Lipschitz
continuity leads to the following result.

Lemma 1. Let r1,1(·) and r1,2(·) := AdF0r1,1(·)
be locally Lipschitz continuous vector fields. Then
r1,2(·) is complete if and only if r1,1(·) is complete.

Proof From [Angeli et al., 1999] r1,1(·) is forward
complete if and only if there exists a proper
and smooth positive definite function V1(x), such

that ∀x, ∂V1(x)
∂x

r1,1(x) < V1(x). Due to the
invertibility of the drift, ∀x we have

∂V1(x)
∂x

r1,1(x) =
∂V1(F−1

0 ◦ F0)
∂x

r1,1(x)

=
(
∂V1(F−1

0 )
∂x

r1,2(x)
)∣∣∣∣

F0

< V1(x)

i.e. ∂V1(F−1
0 )

∂x
r1,2(x) < V1(F−1

0 ). Since V1(F−1
0 )

is still a proper and smooth positive definite func-
tion, the forward completeness of r1,1·) implies
the forward completeness of r1,2(·). The same
arguments prove that r1,2(·) is also backward com-
plete. Conversely, suppose that r1,2(·) is complete
while r1,1(·) is not. Then there would exist a

function V2(x) such that ∂V2(x)
∂x

r1,2(x) < V2(x),

∀x, i.e. ∂V2(F0)
∂x

r1,1(x) < V2(F0) ∀x, where

V2(F0) is still proper and smooth positive definite,
so that r1,1(·) is necessarily forward complete.
Since the same arguments prove the backward
completeness, r1,1(·) must be complete. /

Based on the previous result we have,

Theorem 3. Assume that for i = 1, · · · , p the
vector fields ri,1(x) are locally Lipschitz contin-
uous. Then the problem of the equivalence to the
generalized observer form (2) is globally solvable
if and only if there exist observability indices
(k1, · · · , kp), such that

i) Conditions B1), B2), B3) and B4) hold for
all x ∈ IRn

ii) The vector fields r1,1(x) · · ·rp,1(x) are com-
plete.

Proof We will prove only the sufficiency since the
necessity is straightforward. Since B1) and B2)
hold for all x, the vector fields ri,j(x), i = 1, · · · , p,
j = 1, · · ·ki are defined for all x. Moreover ac-
cording to Lemma 1 condition ii) together with
the assumption of local Lipschitz continuity im-
plies that the vector fields ri,j(x), i = 1, · · · , p,
j = 1, · · ·ki are complete and since B3) holds
for all x, (10) is a global diffeomorphism [Isidori,
1995]. Using the same arguments as in Theorem
2 we can then show that F0(z) = Az + ψ0(y) and
for j = 1, · · · , p, yj = zj,kj . As for the control
dependent part, since B4) holds for all x, and
due to the analyticity of F (·, u), we have that for

j = 1, · · · , p, i = 1 · · ·kj − 1, ∂F̃ (·, u)
∂zj,i

= Aj,i(u) a
nonlinear analytic function in u. As a consequence

F̃ (·, u) =

z1,1∫

0

∂F̃ (·, u)
∂z1,1

dz1,1 + F̃ (0, z1,2 · · · , zp,kp , u)

=
p∑

j=1

kj−1∑

i=1

zj,i∫

0

Aj,i(u)dzj,i

+F̃ (0, · · · , z1,k1, · · · , 0, · · · , zp,kp , u)

=A(u)z + ψ(y, u)

Finally if B5) holds for all x then reasoning as in
the proof of Theorem 2 we have that Aj,i(u) =
Aj,i and the result follows immediately. /

Remark. It is straightforward to understand that
the condition

ii)’ the vector fields r1,1, · · · , r1,k1, rp,1, · · · , rp,kp

are complete,

can take the place of ii) in Theorem 3 if the
assumption of Lipschitz continuity is removed. /

CONCLUSIONS

In the present paper we have given necessary and
sufficient conditions for the equivalence under co-
ordinates change to observer canonical forms. The
proposed approach allows to take into account
nonlinear output transformations also as shown in
[Califano et al., 2003] for the single output case.
This concerns future work.
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