

INTEROPERABLE TRANSACTIONS FOR E-BUSINESS

Sergei Artishchev, Hans Weigand

S.Artyshchev@uvt.nl, H.Weigand@uvt.nl
Infolab, Tilburg University

The Netherlands

Abstract: For enterprise systems to interoperate, as in an e-business transaction, some
kind of transaction management is crucial. Current standard transaction protocols do not
meet important requirements for e-business transactions. In this paper, a new transaction
model is introduced that meets those requirements and for which well-defined business
semantics can be given. Copyright © 2005 IFAC

Keywords: transactions, logic

1. INTRODUCTION

Interoperability has been defined as “the ability for a
system or a product to work with other systems or
products without special effort of the part of the
user”, or alternatively as “the ability of Enterprise
Software and Applications to interact”. Increasingly,
enterprises are cooperating with other enterprises.
Not only large organizations set up cooperation
agreements with other enterprises, but also SMEs are
combining forces to compete jointly in the market.
Nowadays, an enterprise's competitiveness is largely
determined by its ability to seamlessly interoperate
with others. A crucial interoperability element at the
application level is the management of interoperable
transactions.

Initially transactions were developed for database
functionality. Further research advances made them
applicable to other architectures, e.g. workflows,
messaging systems, etc. With the emergence of
Internet and, more importantly, its becoming an e-
business infrastructure, transaction concepts were
applied to Web Services architectures. To achieve
such flexibility a concept underwent several rounds
or evolution, each of them brought new models
developed and applications implemented.

To execute successfully, transactions utilize various
mechanisms one of which has a resource reservation
application – locking. Locking is used extensively in
so-called blocking protocols - protocols that require
exclusive access to the resource for completion.
Despite early E-Business protocols attempts to avoid
locking for an extensive time period, locking as a
form of resource reservation can and should still be
applied as a mechanism to establish a mutual
commitment leading to contract fulfillment.
Together with other non-obligatory preparatory
mechanisms, locking precedes transaction execution
and is part of a pre-transaction phase.
Database locks are applied for the whole duration of
transaction. Advanced transaction models (ATM)
represent distributed business processes. The
following characteristics differentiate them from
simpler transaction models thus leading to increased
complexity:
a) Business processes are composed activities –

topologically distributed, arranged as multilevel
nested trees, and addressing various processes
with their own internal functionality
characteristics. This complexity creates issues of
correctness criteria selection (traditional ACID
is relaxed) and how to preserve them using
locking or other mechanisms;

b) Execution duration is time-extended
(transactions are long-running activities),
creating a requirement to minimize lock
duration and/or use alternative correctness-
preservation mechanisms;

c) As ATM execution addresses distributed
business entities, locking gets a different
semantics. A lock not only affects the access
status of the resource, but also imposes an
obligation on a locked participant to function in
a predefined expected way;

d) The changes caused by the execution of ATM
activities might not be reversible to the exact
previous state

Those characteristics were addressed by ATM (Saga,
ACTA, etc.) with the following solutions:
a) Realizing that intermediate states of participants

could be observable by other participants,
Atomicity and Isolation criteria are relaxed:
resources’ locking for the whole duration of
global transaction isn’t performed and
intermediate results of execution steps might be
visible.

b) Because strict locking is not applicable, two
approaches were developed: 1) a global
transaction is divided into fine-grained sub-
transactions (if their local atomicity can be
preserved) in such a way that locking at this
level might be possible; or 2) transactions are
realized to be non-atomic and executed without
locking of their participants. Rather,
compensations (as introduced in SAGA) are
used to undo results of completed execution
units if the global transaction is aborted.

Other ATMs (flexible transactions (Elmagarmid,
1995), interoperable transactions (Weigand and Ngu,
1998)) brought a notion of alternative execution
paths and preferences, attempting to minimize the
quantity of compensations, for performance reasons.

In this paper, we first summarize the requirements on
interoperable transactions posed by e-business
applications, and discuss briefly the most important
current standards. Then we introduce our e-business
transaction model and discuss how it meets the
requirements. Section 3 describes the basic
semantics of the locking in Deontic Dynamic Logic.

2. E-BUSINESS TRANSACTIONS

E-business transaction is a persistent change of
participants’ state aimed to achieve a certain
(predefined) business goal using Internet-based
architectures and technologies (Lewis, et al., 2001;
Papazoglou, 2002; Tygar, 1998). E-business
transactions ultimately address goods/services vs.
payment exchange (transactions in the economic
sense) and their execution is typically governed by
some legal framework.

2.1 E-business transaction requirements

The following requirements of e-business
transactions distinguish them from ATMs:
- Participants are dynamic (volatile);
- while initially advertising their functionality in

UDDI-type registry, they might change as a
whole or some of its characteristics only;

- therefore locks should address actual
functionality, not assumed or initial;

- Participants are autonomous entities, sometimes
executing opportunistic behavior. Locks could
be removed not only by Requestor, but also by
Provider itself;

- The transactions’ technical infrastructure
(media, protocols, etc.) might be unreliable,
creating issues of recovery and preservation of
locks;

- Rather then being focused on execution speed,
e-business transactions use schedules and
timeouts (specified duration); being contract-
governed execution duration is predefined.
While almost insignificant for traditional
transaction models, process execution isn’t
instantaneous and is subject to coordination and
scheduling. Minimizing execution time of
certain steps is a responsibility of the Provider;

- Participants have functional and capacity
restrictions on their operations. Functional
restrictions reflect internal business capabilities
of the participants, which are hard to change,
capacity restrictions address participants’
characteristics at the execution time.

The principal difference between database and e-
business transactions is based on the resource
behavior. For a database transaction, a resource is an
entry in a database system (passive entity) and the
owner is reactive only. For business transactions the
resources are dynamic and owners are active agents
that can decide whether and how they will execute a
certain request. In complex scenarios, there might be
even a negotiation about the behavior of the locked
resource (e.g. rules on unlock and self-unlock)
before lock application is attempted.

2.2 Current standards

The most significant recent developments on e-
business transactions include BTP, BPEL, and WS-
CAF that we discuss briefly.
BTP (BTP, 2002) – represents e-business execution
as a nested transaction governed by two-phase
outcome protocol. The protocol performs outcome
determination; each sub-transaction has provisional
and final effects. Lock-alike behavior is achieved
through confirmations of effects. However,
achieving of provisional effect already requires
performing of some activity, and, in case it can’t
complete successfully, compensation is necessary.
All reservations are performed as part of the
execution: a notion of pre-transaction resource
capability verification is absent due to an optimistic
bias towards participants’ functionality.

BPEL (WS-T (WST, 2002)) - has two major
advantages: extensibility and a well-developed flow
control language. Transaction aspects are addressed
in WS-T as part of the protocol, separately covering
atomic transactions and business agreements.
Transaction properties of the former are ACID while
the emphasis of business agreements is on outcome
determination avoiding the notion of locks.
WS-CAF (WS-TXM (WSTXM, 2003)) is a recently
proposed specification addressing transactions
designed specifically for web services. While a
notion of preparation is introduced as a mechanism
to determine participants’ readiness, it isn’t explicitly
bound to context-derived obligations. The notion of
locking is vague due to the fact that the protocol
draws on context-based coordination and outcome
determination as operational mechanisms.
Roughly speaking, we can say that the current
standards do support typical advanced transaction
solutions, in a flexible way, but do not meet
important requirements imposed by e-business
transactions. Sometimes this is an intentional choice.
According to (Little and Freund, 2003), letting
business logic affect the transaction flow “blurs the
distinction between what you would expect from a
transaction protocol (guarantees of consistency,
isolation) which are essentially non-functional
aspects of a business “transaction”, with the
functional aspects”. Apart from the fact that the
“expected” (consistency, isolation) is precisely not
guaranteed in the relaxed variants of WS-TXM, the
consequence of this choice is that the e-business
transaction logic is now to be hidden in the
application code or process models, which is not
desirable either. We would say that the business
logic as such (the costs of self-unlock, how to
compensate etc) is something that is neither in the
transaction model itself, nor in the application but is
specified in between (the contract, cf. (Weigand and
Van den Heuvel, 2002)) – but the transaction layer
can contribute by providing well-defined primitives
for locking, preparing, etc. This is worked out in the
next section.

2.3 E-business transaction model

In order to cope with the requirements above, e-
business transactions should be modified compared
to those of ATM. Transaction, following common
business rationale, is divided into three phases
(Figure 1). Each phase includes certain common
business steps that lead to achievement of a business
goal.. Issues of transaction goal determination,
establishing business criteria, composition, etc.
precede transaction execution and are beyond the
scope of the proposed model. Similarly, performance
analysis, functionality adjustment etc. are also not a
part of a transaction.
The first phase is a transaction execution preparation
or pre-transaction. It is split into two sub-phases:
prepare and locking. Prepare is a verification
(confirmation) of prospective participants’
functionality while locking indicates agreement of a
Web Service to participate is a transaction.

Technically, both prepare (check) and e-business
locking are (a)synchronous message exchanges
between prospective participants and a change of
Provider’s state (and a context). Each step is
followed by verification – checking if a transaction
can be executed with available participants
functionality. A phase (or each step) could be
followed by saving context, which could be retrieved
later or even used for another transaction.

Begin

Check a Web
Service

Is Transaction
Committable

Determine
Outcome of

Global
Transaction

Place a Lock
on Operations

Abort

Is Transaction
Committable

Execute (with
commit

protocol)

Compensate
(ebCluster

level)

Yes

Yes

Success

Fail

No

No

Commit

Fail

End

Compensate
(Global level)Fail

Success

Try another alternative

Transaction
Execution

Monitor
Transaction

Post-transaction
Monitoring

Complete
transaction

Pre-transaction

Fig.1.Transaction execution flow.

Execution is a phase addressed by other execution
protocols and designated to execute transaction
prepared at previous step. Execution itself might be
single protocol-based (like BTP) or flexible (WS-T),
where several protocols could be utilized. Only one
execution protocol is invoked, it must be supported
by all participants. In a proposed protocol execution
protocol is negotiated at pre-transaction phase
between prospective participants. An outcome of
each execution step is determined upon its

completion and, in case of failure, a (local)
compensation is executed. Unlike in other protocols,
an outcome determination is also included into the
execution phase, because, if execution outcome is
determined to be negative, a global compensation
might be executed. Each participant is informed
about outcome and unlocks its resources. Upon
execution completion of main transaction results
(context) are saved again.

The final protocol phase is post-transaction
monitoring. The phase is included because even
thought global transaction execution might succeed,
the whole transaction still could fail due to un-
fulfillment of post-transactional obligations which
are results of transaction execution (e.g. warranties,
maintenance, etc.). In essence it is a monitoring of
contract clauses against failure for an extended (pre-
defined) period of time. Global transaction is
completed only when post-transaction monitoring is
completed successfully.

The proposed model provides the following
advantages:
- the proposed protocol is contract-governed,

while for other protocols business logic is
implemented in the execution flow;

- separation into phases to better meet business
and technical issues and that could be addressed
by different protocols thus enabling flexibility;

- checking and locking are mechanisms to ensure
correct execution through establishing
obligation-based relationships between
participants at pre-transaction phase, eliminating
uncertainty during execution (risk management)
and eventually minimizing transaction cost (due
to possible decrease in sub-transaction failures);

- post-transaction monitoring allows fulfillment of
extended post transaction obligations without it
being part of the main transaction, thus enabling
externalization of the transaction’s results as
soon as they could be determined and used.

Although the distinction between a prepare and a
locking step is made in several e-business transaction
models, the exact meaning of “preparing” and
“locking” is not always clear. For example, in their
discussion of WS-Transaction, Alonso et al (2003)
state that for web services it is “difficult to
characterize the notion of resources, locks and
rollback” (p.226). In this paper, we suggest the
following characterization:
Prepare phase – at this phase we propose
functionality verification of prospective participants.
Being part of the pre-transaction, it precedes both
locking and execution. Other preparatory
mechanisms (protocol-specific) might involve
application of holds, initialisations, soft locks, etc.
We assume this phase’s activities verify
functionality of prospective participants and don’t
impose any definite reservation, neither they form an
obligation (therefore, the terms lock and hold are
misleading). In case of completion or execution
failure the preparation doesn’t require compensation.

Because participant’s profile, initially published in a
registry might reflect actual functionality incorrectly
(being outdated) or incompletely (containing
insufficient information to invoke provider’s
functionality), the requesting party might want to
check this information. Checking (or verification) is
performed either at the provider itself (if it is trusted
party) or at a third party.
While functionality restrictions are quite rigid,
capacity restrictions vary due to resources’
utilization by other parties. Exact capacity value (or,
rather, available capacity) is correct only at lock
application, however, any estimate performed before
invocation also contributes to the efficiency of the
execution scenario because it allows excluding
(potentially) unavailable participants from the
scenario without the need of a lock.
Querying a registry is an optional part of the pre-
transaction phase not to be confused with checking,
typically preceding it. To perform a query a
Requestor should know the location of the required
registry and the API to manipulate it (or have its
access brokered) and should have rights to access it.
A Registry itself is of UDDI, ebXML or any other
standard (supported type), is itself an independent
entity, and is known before the transaction begins.

Locking Phase – some protocols employ explicit
locking to ensure prospective participants’
enlistment. A lock creates obligations. This phase
follows the prepare phase and assumes the existence
of a contract or similar agreement specifying the
type of locks to be applied and their characteristics.
The lock type should be supported both by
requesting party and by resource owners.

The model can be further refined by noticing that the
preparing applies either to a participant or the
participant functionality. The same is true for the
locking (Fig. 2).

 Participant Functionality

Prepare Prepare
Participant

Prepare
Functionality

Lock Lock
Participant

Lock
Functionality

Fig.2. Phase/object orthogonal representation

Participant lock serves as a gateway to functionality
(or in case of web-services, operation) locks. It
allows the use of functionality of the locked
participant limited by arrangements specified at the
time of locking. The basic semantics is that of
authorization: it provides the Requestor with a right
or capability to lock an operation, or, equivalently, it
obliges the Provider to grant locking requests (under
certain arrangements). This type of lock might be the
only one needed if the participant provides only one
operation or if it can receive all necessary
information to apply operations locks transitively.

Functionality (operations) lock is an actual
locking, it creates mutual obligation between
participants. This lock is used as an execution
correctness preservation mechanism. Given the
participants’ autonomy, it might be up to the
provider to designate an actual operation to be
executed, depending on request characteristics.

This orthogonal architecture provides the following
benefits:

Firstly, it allows transitivity of properties and
functionality from Provider to Resources it controls,
thus optimising speed of locking (no need to provide
additional information for every operation);
Secondly, execution costs of a transaction are
minimized due to the following optimizations: early
actual functionality detection and late locking. Early
actual functionality detection (registry querying and
preparation) allows to decide if a participant could
be enlisted for a transaction and to establish a correct
contract, but also allows the locking to be postponed
as long as possible. This is an important advantage
over models in which these functions are combined
in one operation.
Both prepare and locking phase precede transaction
execution and should not be included in the
execution phase, as (Little, 2003) seems to do, but
their impact is quite different. While prepare verifies
functionality and requests additional information,
lock is applied upon known functionality; in the case
of locking, compensations might follow for
unlocking, while prepare is a request for information
with no compensations defined or needed. The
provider is considered to be a prospective one before
lock application and actual after.

3. LOCKING SEMANTICS

In this section, we provide formal semantics for the
locking and unlocking operations in terms of
Dynamic Deontic Logic (Wieringa et al, 1989). This
logic allows for the specification of actions (locking,
unlocking, requesting, compensating etc) and for the
specification of obligations (which we need to model
the commitment aspect of e-business locks). We
start with some general “common-sense” semantics
of locking and requesting.
Let L be a first-order language. DDL is L extended
with deontic operators (see below) and a dynamic
operator. That is, if � is a wff in DDL and � is an
action, then [�]� is a wff in DDL, with the intuitive
meaning: � holds after action � has been performed.
The action can also be composite: �1;�2 stands for
sequential, and �1&&�2 stands for parallel execution.
¬� stands for not-doing �.
In this case, we have at least the action lock(r,id,t)
and unlock(id), where r is a resource, id a lock
identifier and t a lock type (worked out below). The
following minimal axioms hold:

Definition 1 (general semantics of lock and unlock)
 ∀r,id,t [lock(r,id,t)] lock-ed(r,id,t)
 ∀r,id,t lock-ed(r,id,t) � [¬unlock(id)]

lock-ed(r,id,t)

 ∀r,id,t lock-ed(r,id,t) � [unlock(id)]

¬lock-ed(r,id,t)

These axioms just state that a resource is locked by a
lock action, and remains locked until an unlock
action is performed. We identify a lock by some
unique identifier rather than by the resource as
sometimes multiple locks on the same resource are
allowed. Note that for simplicity we omit here any
variable typing.
The lock operation is performed by the Provider
(this agent is not included as a parameter, as we deal
here only with one Provider at a time). If a Requestor
wants a lock, he has to send a request message to the
Provider. The Provider either accepts or rejects this
request (negotiations are not in the scope of this
paper). In the case of an accept, the Provider gets an
obligation to perform the lock. In fact, this
communication logic holds not only for lock but also
for unlock and any other operation that the Provider
could perform.

Definition 2 (semantics of request)
 ∀R,P,m,� [request(R,P,�,m); accept(P,R,m)]

Obl(P,R,�)

 ∀R,P,m,� ¬Obl(P,R,�) � [request(R,P,�,m);

 reject(P,R,m)] ¬Obl(P,R,�)

In this case, the m acts as identifier of the request.
Obl is the deontic operator for obligation. The most
important property of Obl is expressed in the
following axiom:

Obl(P,R,�) � [¬�] Violated

which says that if P is obliged to R to perform some
action, not doing that action leads to a violation.

The operational semantics of locking are explored
here by considering the intended lock properties one
by one. Exclusiveness indicates if a locked resource
is available for utilization by several parties. If
exclusive lock is applied, other attempts to apply
exclusive lock are denied.

Definition 3a (exclusive lock excludes other locks)
 ∀r,id,id2,t lock-ed(r,id,exclusive) �

[lock(r,id2,t)] false

Saying that an action leads to false is equivalent to
saying that the action is not possible in the modal
sense. So this axiom says that a resource locked
exclusively, cannot be locked again (whatever the
lock type). What is even more important is that it
also cannot be used. In our formal model, this can be
expressed in two ways: either by defining r to be
impossible if it is done for any other requestor, or by
defining it forbidden for the Provider to grant
requests for others. We choose the second solution
that has the advantage that it fully preserves the
autonomy of the Provider as far as the execution of
the service is concerned.
We still should be able to distinguish legitimate
requestors (the one that set the exclusive lock) and
others. We can solve this by assuming that the lock
id is a kind of ticket, or secret key, and the request is

not legitimate when the requestor does not connect
this id to the request.

Definition 3b (exclusive lock excludes providing the
service)
 ∀r,id,P,R,m lock-ed(r,id,exclusive) �

 [request(R,P,do(r),m) && ¬ pass(R,P,id)]

 For(P,accept(P,R,m))

Definitions 3 incorporate the semantics of
“exclusive”, but they do not say anything yet about
what happens when the legitimate requestor appears,
with the right id. Does it mean that in that case the P
is obliged to accept? That would mean that R would
be able to charge P if for some reason, P does not
grant the request (perhaps because the resource is no
longer available). If P wants a firm commitment
from R that the resource is and remains available for
him, this is something that is independent from the
exclusiveness property. For this purpose, we
introduce the notion of reserve lock as a conditional
obligation.

Definition 4 (reserve lock)
∀r,id,P,R,m lock-ed(r,id,reserve) �

 [request(R,P,r,m) && pass(R,P,id)]

 Obl(P,accept(P,R,m))

∀r,id,P,R,m lock-ed(r,id,reserve) �

 [request(R,P,r,m); do(r)]

Perm(P,unlock(id))

The first rule says that P becomes obliged to accept
the service request. P could still for some reason fail
to accept the request, but then this leads to a
violation, and makes him liable for sanctions or
compensations to be specified separately.
The second rule says that when the Provider has
performed the requested operation, he is permitted to
unlock and thereby lift the obligation. This is the
normal situation: the obligation is fulfilled when the
service has been performed. However, the abnormal
situations are also relevant and need to be specified.
For reasons of space, the logic of these specifications
is not included in this paper.

3. CONCLUSION

The proposed protocol addresses e-business
transactions from an integrated technical and
business perspective. Business semantics are
important and need to be explicated. Unlike other e-
business protocols our protocol separates the
transaction into three major phases thus enabling
utilization and combination of various mechanism at
each phase. The notions of checking (prepare) and
locking operations are introduced explicitly for the
first time as well as requirements operations are
provided. None of the current protocols support
those mechanisms in the scope defined. Furthermore
contract-originated (obligation-based) locking is a
new concept that addresses reliability of execution
environment by excluding potentially unreliable

participants at an early (pre-transaction) phase. None
of the current web service standards supports post-
transaction monitoring. The proposed architecture
addresses it by introducing a separate phase with
provision to use various monitoring protocols.

Acknowledgement
This work is partially supported by the Commission
of the European Communities under the 6th
framework programme (INTEROP Network of
Excellence, Contract N° 508011). See
http://www.interop-noe.org .

REFERENCES
Alonso, G., Casati, F., Kuno, H., Machiraju, V.

(2004). Web services – Concepts, Architectures
and Applications. Springer Verlag.

Lewis, P.M., Bernstein, A., Kifer, M.(2001).
Databases and Transaction Processing: An
Application Oriented Approach, Addison-Wesley.

Elmagarmid, A. (Editor) (1995).Database
transaction models for advanced applications,
Morgan Kaufmann, San Mateo.

Litte, M. (2003). Transactions and Web Services.
CACM, 46(10): pp.9-54.

Little, M., Th.J.Freund (2003). A comparison of web
services transaction protocols – a comparative
analysis of WS-C/WS-Tx and OASIS BTP.
Dowloaded 31-08-04 from http://www-
128.ibm.com/developerworks/webservices/library
/ws-comproto/

Papazoglou M.P.(2002). The world of e-business :
web services, workflows, and business
transactions. Notes from Keynote Speech, at
CAISE2002, Toronto, May 2002.

Tygar, J.D.(1998). Atomicity in Electronic
Commerce, ACM-Mixed Media.

Weigand, H., A.H.H. Ngu, (1998). Flexible
Specification of Interoperable Transactions. Data
& Knowledge Engineering. 25(3): pp.327-345.

Weigand, H., W.J.A.M. van den Heuvel (2002).
Cross-organizational workflow integration using
contracts. Decision Support Systems, 33(3), 247-
265.

Wieringa, R.J., J.-J.Ch.Meyer, and H. Weigand,
"Specifying dynamic and deontic integrity
constraints", Data & Knowledge Engineering
4(2), 1989, pp.157-191.

Business Transaction Protocol (BTP). An OASIS
Committee specification V.1.0 June 2002;
http://www.oasis-
open.org/committees/download.php/1184/200206
03.BTP_cttee_spec_1.0.pdf

Web Services Transactions (WS-T). Joint spec by
IBM, Microsoft, and BEA, August 2002;
http://www-
106.ibm.com/developerworks/library/ws-
transpec/

Web Service Transaction Management (WS-TXM).
Joint Specification by Arjuna, Fujitsu, IONA,
Oracle, and Sun V1.0 July 2003
http://developers.sun.com/techtopics/webservices/
wscaf/wstxm.pdf

