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Abstract:
In this note we consider the problem of state feedback stabilization of a class of
nonlinear discrete-time delay systems. From an appropriate Lyapunov function and
judicious mathematical manipulations, we deduce a simple LMI condition (that may
be checked easily) to ensure asymptotic stabilization. On the other hand, we provide
two explicit state feedback laws that may be seen as a generalization of the existing
results on the stabilization of nonlinear systems. The approach developed in this note
is simple (without state augmentation) and efficient. Copyright c©2005 IFAC
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1. INTRODUCTION

Over the last two decades, tremendous research
activities were focused on analysis and synthe-
sis of control design for time delay systems,
we may refer the reader to (Mahmoud, 1999),
(Fridman, 2001), (Fridman and Shaked, 2002),
(Li and de Souza, 1997), (Dugard and Verriest,
1997), (Richard, 2003), (Trinh and Aldeen, 1997),
(Boutayeb and Darouach, 2001) and the refer-
ences therein.

This interest is due to the great practical and
theoretical importance of such kind of systems.
Indeed, delays are typical in a large range of
industrial processes like chemical or teleoperation
systems. We notice however that, since most phys-
ical processes evolve naturally in continuous-time,
the major results were developed for continuous-
time systems. Little attention has been drawn to
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the discrete-time case and even less to nonlinear
models.

For linear discrete-time delay systems, one of the
pioneering work on control design has been estab-
lished by Aström and Wittenmark (Aström and
Wittenmark, 1984). This approach transforms the
delay difference system to a higher-order one with-
out delays. However for systems with large delays,
the proposed scheme will invariably lead to large
scale systems. Furthermore, for systems with un-
known or time-varying delays the proposed tech-
nique can not be applied.

An alternative approach was proposed in (Verriest
and Ivanov, 1995), where a Riccati equation is
developed, for analyzing the stability of discrete-
time systems with arbitrary unknown delay. An
extention of these results was proposed in (Kapila
and Haddad, 1998), where sufficient conditions
for H∞ state feedback control of discrete-time
systems with state delay was provided.



Several Riccati equations giving sufficient stability
conditions have been formulated in (Kolmanovski
et al., 1999). The various matrix Riccati equations
have the same dimension as the state vector. This
is an advantage for high order systems.

In (Fridman and Shaked, 2003) a delay-dependent
and independent conditions have been derived for
determining the asymptotic stability of discrete-
time systems with uncertain delay, time-varying
delay and norm-bounded uncertainties.

Most of the works presented below are for linear
systems. In the case of nonlinear systems, the
problem of state feedback stabilization for delay
systems remains poorly studied and challenging
(e.g. (Mao, 1996), (Guay and Li, 2002), (Jankovic,
2001), (Fu et al., 2003), (Fridman, 2003) and the
references therein).

This paper is devoted to the problem of state feed-
back and bounded state feedback stabilization of
a class of nonlinear discrete-time systems with de-
lays. We provide two explicit state feedback con-
trol laws that may be seen as a generalization of
the Jurdjevic-Quinn controller and passive theory
results in the nonlinear field ((Lin, 1995), (Lin and
Byrnes, 1994), (Boutayeb et al., 2002), (Bouazza
et al., 2004b) and (Bouazza et al., 2004a)).

From an appropriate Lyapunov function and suf-
ficient conditions, expressed in terms of a simple
LMI, an asymptotic stabilization of a class of non-
linear discrete-time delay systems was achieved
through two different controllers; a state feed-
back controller and a bounded state feedback con-
troller.

2. PROBLEM FORMULATION

Consider the following discrete-time delay system

xk+1 = Axk + Adxk−h + g(xk, xk−h)uk (1)

where xk ∈ Rn and uk ∈ Rm denote the state
and input vectors respectively at time instant k.
A and Ad are constant matrices of appropriate
dimensions. g(xk, xk−h) is a nonlinear map of
appropriate dimension and h is a known positive
number representing the delay. For simplicity of
notations, we replace g(xk, xk−h) by gk in the
sequel.

Our goal in this paper is to provide a control law
that ensures the asymptotic stabilization of the
system (1).

The unforced dynamics are governed by

xk+1 = Axk + Adxk−h (2)

We assume that, possibly after using a smooth
feedback, the unforced dynamic system (2) is
Lyapunov stable.

Lemma 1. (Bouazza et al., 2004a) A sufficient
condition for (2) to be Lyapunov stable is that
there exists an n × n positive-definite matrix P
and an n×n nonnegative-definite matrix Q, such
that

H1)
[

P −AT PA−Q AT PAd

AT
d PA M

]
≥ 0

where
M = Q−AT

d PAd > 0.

�

Before proceeding, let us define the sets

Ω = {xk ∈ Rn : xT
k

(
AT PA− P + Q + AT P

× AdM
−1AT

d PA
)
xk = 0, k = 0, 1, . . .}

S1 = {xk ∈ Rn : gT (xk, xk−h)
× PAxk = 0, k = 0, 1, . . .}

S2 = {xk ∈ Rn : gT (xk, xk−h)
PAdxk−h = 0, k = h, h+1, . . .}

H ={xk ∈ Rn : AT
d PAxk

−(Q−AT
d PAd)xk−h = 0, k = h, h+1, . . .}

3. STATE FEEDBACK STABILISATION

Theorem 2. Suppose that there exists an
n × n positive-definite matrix P and an
n × n nonnegative-definite matrix Q, such that
H1) holds.

If Ω ∩ S1 ∩ S2 ∩ H = {0}, then the nonlinear
discrete-time delay system (1) is globally asymp-
totically stabilized by the following state feedback

u(xk, xk−h) =−K1xk −K2xk−h

=−
[
I + gT

k Pgk

]−1
gT

k PAxk

−
[
I + gT

k Pgk

]−1
gT

k PAdxk−h (3)

�

Proof



To show the stability of the closed-loop system
(1)-(3), we consider the following Lyapunov func-
tion

Vk = xT
k Pxk +

k−1∑
i=k−h

xT
i Qxi (4)

Notice that, since P is positive definite and Q
nonnegative definite, Vk is then positive definite.

The difference of this Lyapunov function along the
trajectory of the closed-loop (1)-(3) is given by

∆Vk = Vk+1 − Vk

= xT
k+1Pxk+1 +

k∑
i=k+1−h

xT
i Qxi

− xT
k Pxk−

k−1∑
i=k−h

xT
i Qxi (5)

or equivalently,

∆Vk = xT
k+1Pxk+1 + xT

k Qxk

− xT
k Pxk − xT

k−hQxk−h (6)

Now, using the equation (1), we have

∆Vk = [Axk + Adxk−h + gkuk]T P

× [Axk + Adxk−h + gkuk] + xT
k Qxk

− xT
k Pxk − xT

k−hQxk−h (7)

which is also

∆Vk = xT
k AT PAxk + 2xT

k AT Pgkuk

+ uT
k gT

k Pgkuk − xT
k Pxk + xT

k Qxk

+ 2xT
k AT PAdxk−h + xT

k−hAT
d PAdxk−h

+ 2xT
k−hAdPgkuk − xT

k−hQxk−h (8)

then

∆Vk = xT
k [AT PA− P + Q]xk + 2xT

k AT PAdxk−h

+ 2xT
k AT Pgkuk + 2xT

k−hAT
d Pgkuk

+ uT
k gT

k Pgkuk − xk−hMxk−h (9)

where M = Q−AT
d PAd.

Since
gT

k Pgk = (I + gT
k Pgk)− I

Then, equation (9) can be written in the following
form

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT PAdxk−h − xk−hMxk−h

+ 2xT
k AT Pgkuk + 2xT

k−hAT
d Pgkuk

+ uT
k (I + gT

k Pgk)uk − uT
k uk (10)

Using the control law (3), we get

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT PAdxk−h − xk−hMxk−h

+ 2xT
k AT Pgkuk + 2xT

k−hAT
d Pgkuk

+ xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

+ 2xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAdxk−h

+ xT
k−hAT

d Pgk(I + gT
k Pgk)−1

× gT
k PAdxk−h − uT

k uk (11)

which is equivalent to

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT PAdxk−h − xk−hMxk−h

− 2xT
kA

TPgk(I + gT
kPgk)−1gT

k PAxk

− 4xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAdxk−h

− 2xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

+ xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

+ 2xT
k ATPgk(I + gT

k Pgk)−1gT
k PAdxk−h

+ xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

− uT
k uk (12)

This, in turn, implies

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT PAdxk−h − xk−hMxk−h

− xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

− 2xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAdxk−h

− xT
k−hAT

d Pgk(I + gT
k Pgk)−1gP

k Adxk−h

− uT
k uk (13)

or equivalently

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT P [Ad − gkK2]xk−h − xk−hMxk−h

− xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

− xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

− uT
k uk (14)

Let Ã = Ad − gkK2, then equation (14) becomes

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT PÃxk−h − xk−hMxk−h

− xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

− xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

− uT
k uk (15)

Next, adding and subtracting xT
kA

TPÃM−1ÃTPAxk

to and from the equation (15), we have



∆Vk = xT
k [AT PA− P + Q + AT PÃ

×M−1ÃT PA]xk + 2xT
k AT PÃxk−h

− xkAT PÃM−1ÃT PAxk − xk−hMxk−h

− xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

− xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

− uT
k uk (16)

Thus, a simple manipulation yields

∆Vk = xT
k [AT PA− P + Q + AT PÃM−1ÃT

× PA]xk − [M− 1
2 ÃT PAxk −M

1
2 xk−h]T

× [M− 1
2 ÃT PAxk −M

1
2 xk−h]

− xT
k AT Pgk(I + gT

k Pgk)−1gT
k PAxk

− xT
k−hAT

d Pgk(I + gT
k Pgk)−1gT

k PAdxk−h

− uT
k uk (17)

A sufficient condition to have ∆Vk ≤ 0, is that

AT PA−P +Q+AT PÃM−1ÃT PA ≤ 0 (18)

Note that

Ã = Ad − gkK2

Ã = Ad − gk(I + gT
k Pgk)−1gT

k PAd

Ã =
(
I − gk(I + gT

k Pgk)−1gT
k P

)
Ad

Ã = P−1
(
P − Pgk(I + gT

k Pgk)−1gT
k P

)
Ad

Since Pgk(I + gT
k Pgk)−1gT

k P is positive definite,
we have

P − Pgk(I + gT
k Pgk)−1gT

k P ≤ P

and then, we can deduce that

AT PA− P + Q + AT PÃM−1ÃT PA

≤ AT PA− P + Q + AT PAdM
−1AT

d PA (19)

Trough the hypothesis H1) we have, using the
Schur complement,

P −AT PA−Q−AT PAdM
−1AT

d PA ≥ 0

or equivalently,

AT PA− P + Q + AT PAdM
−1AT

d PA ≤ 0

and therefore
∆Vk ≤ 0

Thus, the Lyapunov stability of the closed-loop
(1)-(3) is proved.

To show the asymptotic stability of the origin, it
suffices to show that the largest subset of ∆Vk = 0
invariant under closed-loop dynamics is {0}.

Setting ∆Vk = 0, it follows from (17) that

xT
k [ATPA−P +Q+ÃTPAdM

−1AT
dPÃ]xk =0(20)

gT (xk, xk−h)PAxk = 0 (21)

gT (xk, xk−h)PAdxk−h = 0 (22)

M−1/2AT
d PÃxk−M1/2xk−h = 0 (23)

u(xk) = 0 (24)

using (24), equations (20), (21), (22) and (23)
becomes

xT
k [ATPA−P +Q+ATPAdM

−1AT
dPA]xk =0(25)

gT (xk, xk−h)PAxk = 0 (26)

gT (xk, xk−h)PAdxk−h = 0 (27)

AT
d PAxk− (Q−AT

d PAd)xk−h = 0 (28)

Thus, we can conclude from the assumption Ω ∩
S1 ∩ S2 ∩ H = {0} that ∆V (xk) = 0, for
k = 0, 1, . . . implies xk ≡ 0. We can conclude
that the asymptotic stability is proved because
all the conditions of LaSalle’s invariance principle
are verified.

Therefore, the origin is an asymptotically stable
equilibrium of the closed loop-system (1)-(3) since
V (xk) →∞ as ‖xk‖ → ∞. �

4. BOUNDED STATE FEEDBACK
STABILISATION

Now we present the second result of this paper; it
concerns the stabilization of systems of the form
of (1) using a bounded state feedback.

The interest of this second result is that, for this
class of systems, it is useful to have a bounded
control to design observers or observer-based con-
trollers (Lin, 1995; Bouazza et al., 2004a).

Theorem 3. Suppose that there exists an
n × n positive-definite matrix P and an
n × n nonnegative-definite matrix Q, such that
H1) holds.



If Ω ∩ S1 ∩ S2 ∩ H = {0}, then the nonlinear
discrete-time delay system (1) is globally asymp-
totically stabilized by the following bounded state
feedback

uα(xk, xk−h) =−L1xk − L2xk−h

=−α1

[
I+gT

k Pgk

]−1 gT
kPAxk

1 + ‖gT
k PAxk‖

−α2

[
I+gT

kPgk

]−1 gT
kPAdxk−h

1+‖gT
kPAdxk−h‖

(29)

(for any 0< α1 <1 and 0< α2 <1)

�

Proof

Set
γ1 =

α1

1 + ‖gT
k PAxk‖

and
γ2 =

α2

1 + ‖gT
k PAdxk−h‖

,

then the control bounded state feedback can also
be written

uα(xk) = −γ1K1xk − γ2K2xk−h (30)

where K1 and K2 are defined as in (3).

Using the same Lyapunov-Krasovskii function (4),
the control law (29) and after some matrix manip-
ulations, we get

∆Vk = xT
k [AT PA− P + Q]xk

+ 2xT
k AT P [Ad − γ2gkK2]xk−h − xk−hMxk−h

− 2γ1x
T
k AT PgkK1xk + γ2

1xT
k APgkK1xk

− 2γ1x
T
k−hAT

d PgK1xk + γ1γ2x
T
k−hAT

d PgkK1xk

− 2γ2x
T
k−hAT

d PgK2xk−h + γ2
2xT

k−hAd

× PgkK2xk−h − uT
k uk (31)

with M = Q−AT
d PAd.

From the equation (31), since 0 < α1 < 1 and
0 < α2 < 1, we obtain the following inequality

∆Vk ≤ xT
k [AT PA− P + Q]xk

+ 2xT
k AT PÂxk−h − xk−hMxk−h (32)

where Â = Ad − γ2gkK2.

Adding and subtracting xT
k AT PÂM−1ÂT PAxk

to and from the inequality (32), we have

∆Vk ≤ xT
k [AT PA−P +Q+AT PÂM−1ÂT PA]xk

+ 2xT
k AT PÂxk−h − xk−hMxk−h

− xT
k AT PÂM−1ÂT PAxk (33)

then

∆Vk ≤ xT
k [AT PA−P +Q+AT PÂM−1ÂT PA]xk

− [M− 1
2 ÂT PAxk −M

1
2 xk−h]T

× [M− 1
2 ÂT PAxk −M

1
2 xk−h] (34)

We deduce that

∆Vk ≤ xT
k [AT PA− P + Q

+ AT PÂM−1ÂT PA]xk (35)

A sufficient condition to have ∆Vk ≤ 0 is

AT PA− P + Q + AT PÂM−1ÂT PA ≤ 0 (36)

Let us compute Â.

Â = Ad − γ2gkK2

Â = Ad − γ2gk(I + gT
k Pgk)−1gT

k PAd

Â =
(
I − γ2gk(I + gT

k Pgk)−1gT
k P

)
Ad

Â = P−1
(
P − Pγ2gk(I + gT

k Pgk)−1gT
k P

)
Ad

Since P − Pγ2gk(I + gT
k Pgk)−1gT

k P ≤ P we
conclude that

AT PA− P + Q + AT PÂM−1ÂT PA

≤ AT PA− P + Q + AT PAdM
−1AT

d PA (37)

So, if H1) is verified, then

∆Vk = Vk+1 − Vk ≤ 0

This prove that the closed loop system is Lya-
punov stable.

We obtain the asymptotic stability using the hy-
pothesis Ω ∩ S1 ∩ S2 ∩ H = {0}, as in the proof
of Theorem 2.

Therefore, the origin is an asymptotically stable
equilibrium of the closed loop-system (1)-(29)
since V (xk) is proper. �

Remark 4. The condition

Ω ∩ S1 ∩ S2 ∩H = {0}

seems to be a controllability-like rank condi-
tion in the stabilization of nonlinear systems.
For standard systems, this statement is proved
using the passivity theory approach (Byrnes et
al., 1991)(Byrnes et al., 1993). We have not extend
this point to the delay systems yet.

5. CONCLUSION

The problem of state feedback stabilization of
a class of nonlinear discrete-time systems with



delays has been studied. A state feedback and a
bounded state feedback control laws, based on a
LMI sufficient conditions, have been developed.
This control laws ensure the stability of the re-
sulting closed-loop systems.

These results are an extension to delay systems of
the well known Jurdjevic-Quinn approach and the
passivity theory approach established for nonlin-
ear systems.

The approach developed in this note is simple
(without state augmentation) and efficient. The
use of this approach in the design of an observer
based controller for such kind of systems is under
study.
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