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Abstract: Robust pole placement in a LMI region for Takagi-Sugeno (Takagi & 
Sugeno 1985) fuzzy models is presented. The objective is to find a set of Linear Matrix 
Inequalities in order to ensure that the linear models poles remain in a specified region 
of the complex plane, even in presence of model uncertainties. As an illustration, the 
obtained conditions are applied to the spacing policy control of an automated electric 
vehicle. Simulation and real time results are presented.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Takagi Sugeno (TS) models (Takagi & Sugeno 
1985) allow representing exactly a large class of non 
linear systems in a compact set of the state vector. 
They consist of a collection of linear models blended 
by non linear functions. They have been widely used 
for control of non linear systems: stabilization 
(Guerra & al. 2003), (Tanaka & al. 1998), with 
bounded uncertainties (Lauber & al. 2004), (Tong & 
al. 2002) and so on. One way to reach some 
performances was also investigated through pole 
placement in a Linear Matrix Inequality (LMI) 
region for each linear models (Hong & Langari 
2000). 
Note that a pole placement for each linear models of 
a TS model in a LMI region does not allow 
specifying exactly the dynamics of the non linear 
model in closed loop. Nevertheless it is still a very 
interesting way of tuning the close loop dynamics. In 
this paper we present a control scheme in order to 
ensure that the poles of the linear models remain in a 
LMI region even in presence of bounded 
uncertainties.  
The first part of this paper presents some new LMI 
conditions based on a Lyapunov quadratic function 
and model poles placement for uncertain systems. 
The second part describes the spacing control of an 
automated vehicle.  

2. ROBUST CONTROL WITH POLES PLACEMENT IN A 
LMI REGION 

 
We consider the following TS uncertain model 
(Taniguchi & al. 2001): 
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We consider the following Parallel Distributed 
Compensation (PDC) control law (Wang & al. 1996): 

( ) ( )hu t F x t= − ⋅  (3) 
Yields the closed loop:  
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A classical problem is then to find the control gains 
iF  that ensure the closed loop stability of the 

uncertain model (Taniguchi & al. 2001) but the so 
obtained control gains may lead to poor dynamic 
performances.  
For models without uncertainties, pole placement in 
LMI region was studied in the case of linear systems 
(Chilali & al. 1999) and for TS fuzzy models (Hong 
& Langari 2000). Of course specifying the closed 
loop dynamics of each linear model will not ensure a 
property to the TS model as the nonlinear scalar 
membership functions ( )ih t  are not taken into 
account. However, it is still a very interesting way of 
tuning the closed loop, for example it may be used to 
restrict the controller dynamics and to achieve an 
expected transient behavior (Hong & Langari 2000). 
In this paper we propose to address the following 
problem: a LMI region being defined is there any 
PDC law ensuring that each linear model poles lay in 
this region, even in presence of bounded 
uncertainties? 
 
We define the region ℜ , fig. 1, according to three 
parameters λ , ρ  and ϑ . These parameters allow 
defining the transient response dynamics and the 
damping factor. The eigenvalues of a matrix A  lay 
in the LMI region ℜ  of the complex plane if there 
exists a common matrix  such that  
(Chilali & al. 1999): 
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Fig. 1: Considered LMI region  
  
As a minimum requirement, we want to ensure the 
closed loop stability by the mean of a candidate 
quadratic Lyapunov function.  

( )( ) ( ) ( )TV x t x t Px t=  (8) 
0P >  

 

Moreover we also want to constraint the linear 
models poles of the TS model in the half plane 

defined by ( )Re
2

x λ
< − , , so a decay rate x ∈^

0λ >  is used. 
( )( ) ( )( )V x t V x tλ≤ −�  (9) 
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The bounded uncertainties are specified in an usual 
way: ( )h h h h (A Ha a t EaΔ = Δ , )h h h hB Hb b t EbΔ = Δ  
using constant matrices hHa , hHb , ,  and 
uncertain bounded terms  and  such 
that (Taniguchi & al. 2001) (Lauber & al. 2004): 
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Let us recall some classical properties. 
Property n°1 (Xie & De Souza 1992): with X , , 
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Property n°2: Schur’s complement 
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Using properties 1 and 2 and (11) on inequality (10) 
leads to: 

(*) (*)
0

0

T
h hh

h h hh

Y
Ea X a I
Eb M b I

τ
τ

⎡ ⎤
⎢ 0⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

 (14) 

with: 
( )T T T

h h h

T T
hh h h hh h h

Y XA M B

a Ha Ha b Hb Hb Xτ τ λ

+= Σ −

+ + +
 (15) 

 
Using (6) on the closed loop (4), we obtain: 
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Then using properties 1 and 2 twice, (16) is satisfied 
if: 
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Using (7) on the closed loop (4) leads to: 
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Let us note that the expressions used in (20), (21) 
and (22) suppose that hHa  and hHb  are constant 
over . On the contrary, a simple Schur’s 
complement must be applied on each term to ensure 
the equivalence and a LMI description. 
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Theorem 1: The closed loop model  (4) is stable and 
all the linear models closed loop poles are located in 
a specified region  if there exists matrices: 
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correspond to a relaxation scheme due to (Liu & 
Zhang 2003). 
 

2. APPLICATION TO VEHICLE SPACING CONTROL 
 

The considered application is the longitudinal 
fuzzy control law for an electric car which is part of 
the virtual link project (AVIVA) included in the 
AUTORIS2 project and held by the GRAISyHM3. 
The main objective of the AVIVA project is to 
control the vehicle in order to maintain a defined 
distance with respect to the leading vehicle, Fig. 1. 
The vehicle’s linear velocity is measured and the 
distance from the leader is estimated using 
stereovision sensor (Zayed & al. 2003). 
 
Several control laws have been proposed for this 
problem: a PID controller with gain scheduling is 
used in (Ioannou 1994), a second order sliding mode 
controller is used in (Nouvelière 2002), a fuzzy-
sliding mode in (Lee 2002), etc. 
 
 

 
xΔ

dist  
dist : distance to be reached xΔ : actual distance  

Fig. 2: System configuration 
 
2.1 Vehicle modeling  and control 
We consider the classical longitudinal bicycle model 
of the vehicle (Nouvelière 2002): 
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In the AVIVA project, the considered vehicle is 
purely electric, so the gear ratio gR  is constant. We 
will assume that the road surface is horizontal  

( ) 0tΨ =  and that the necessary braking torque is 
provided by the motor. Yields the vehicle model: 

                                                           
2 AUTORIS: AUTOmatique pour la Route 
Intelligente et Sûre 
3 GRAISyHM: Regional Research Group in 
Automation and Man Machine Systems 
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 Table 1: Notations 

 
At last, we assume that the motor has a first order 
dynamics on the torque, with a time constant τ : 
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where  is the torque setting point. ( )u t
The objective is then to ensure that the distance 
between the leader vehicle and the following vehicle 
remains close to a desired distance: 
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(29), (30) and (31) can be written into the form of a 
state space model: 
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The control objective is then to ensure that the output 
 remains close to y x dΔ − . 

 
The model (32) can be written as a Takagi-Sugeno 
model using the sector nonlinearity property (Tanaka 
& al. 1998) (Taniguchi & al. 2001). In our case, the 
non-linearity involves the vehicle speed ( )x t� , which 

is a bounded variable ( ) [0, ]x t ∈� v  and the obtained 

TS model (33) will exactly represents the nonlinear 
model (32).  
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The considered control law must ensure stability but 
also rejection of slow varying disturbances (road 
slope, etc.), therefore a control law with integral 
action is considered (Guerra & Vermeiren 2003): 
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Fig. 3: control law with integral action 
 
Let ( ) ( )I cx y t y t= −� , the system can be written as: 
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Considering the longitudinal model (32) with 
uncertainties on the parameters α ,  and , and the 
control law 
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1 2 0C CΔ = Δ =  and: 0BΔ = . 
 

M  Mass of the vehicle (kg) 
h  Height of the center of the wheel (m) 

rJ  Rear wheel inertias (kg.m²) 

fJ  Front wheel inertias (kg.m²) 

gR  Gear ratio 

eJ  Engine / transmission inertias (kg.m²) 

rrM  Rolling resistance torque (N.m) 

( )tΨ  Road slope angle (deg) 

( )bT t  Brake torque (N.m) 

( )eT t  Engine torque (N.m) 

( )x t��  Longitudinal acceleration of the vehicle (m/s²) 

( )x t�  Linear longitudinal speed of the vehicle (m/s)

( )aF t
 

Aerodynamic drag  (N), related to the center of 
the wheel 
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The vehicles parameters are given table 2. The LMI 
region  was defined by ℜ 5λ = , 50ρ =  and 

2.35 rdϑ = . Considering the following uncertainties 
bounds 5

1 7e−Δ = , 3
2 1e−Δ = , 3

3 4e−Δ =  and 
parameter values defined in table 2, some possible 
linear models poles locations of the TS model are 
shown figure 4. 
 

α  480 kg.m e  1 s 
a  17.45 kg.m/s d  2 m 

b  0.019 kg f  0.02 s²/m 

τ  0.05 s v  30 m/s 

Table 2:  Numerical values for the parameters 

Using the presented LMI conditions, the following 
gain matrices were obtained for the PDC control law: 

4
1 2.57 10 1.98F ⎡ ⎤= ⋅⎣ ⎦ ,  5

1  -1.052 10M = ⋅
4

2 2.67 10 2.15F ⎡ ⎤= ⋅⎣ ⎦ ,  4
2  -8.35 10M = ⋅
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The gains are quite important, this is due to the 
different signals scales (  for the control, 210 110−  for 
the spacing error,  for the speeds). 110
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Fig. 4: closed-loop linear models poles location as a 

function of parameter’s variations. 
 
2.2 Simulation results 
The initial conditions were 5  for both vehicles. 
The wheel torque was limited to  and 

. In order to illustrate the robustness of the 
proposed control, at time , the controlled 

vehicle parameters are changed to 

/m s
600 Nm+

400 Nm−
60t = s

721.19 .kg mα = , 
26.18 . /a kg m s=  and 0.01b kg= .  

 
The leading vehicle speed is not realistic, but it has 
been chosen to emphasize the dynamics of the 
controlled vehicle. Both the leading and the 
following vehicle speeds are shown figure 5.  
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Fig. 5: Vehicles speed (simulation) 
 
The spacing set point is a function of the following 
vehicle speed, figure 6. The initial tracking error is 
due to the initial conditions. During normal operation 
and despite the parameters changes, the spacing error 
does not exceed 5 % . 
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Fig. 6: Spacing error (simulation) 
 
The wheel torque is represented figure 7. The vehicle 
mass and aerodynamic drag being increased at time 

60t s= , the torque required to ensure the same 
vehicle dynamic increases significantly. 
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Fig. 7: Wheel torque (simulation) 
 
2.3 Real time experiments 
The experimental apparatus consists of one electric 
vehicle that follows a virtual leading vehicle. The 
spacing distance between the actual vehicle and the 
simulated one is computed by integrating the speed 
difference between both vehicles. 
The following vehicle was driving on a straight lane 
until time 120t s= . At time , the vehicle 
follows a traffic circle, and therefore important 

120t = s



lateral effects that were not taken into account in the 
model occur. 
The leading vehicle speed profile was similar to the 
simulation one, figure 8. 
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Fig. 8: Vehicle’s speeds (experimental result) 
 
Real time results are quite similar with the 
simulation ones; the tracking error is less than 5 %  
(figure 9). 
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The wheel torque was estimated using motor current 
sensing. The wheel torque evolution is quite similar 
to the simulation results. At time , the 
traffic circle induced disturbances that were rejected. 
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Fig. 10: Wheel torque (experimental result) 

 
4. Conclusion 

LMI conditions for robust pole placement in a LMI 
region for Takagi-Sugeno models were presented. 
Despite the fact that the closed loop dynamics can 
not be exactly specified by such a method, it is still a 
simple way to tune it. 
The obtained conditions were applied to the spacing 
policy of an automated vehicle. Real time results 
were in accordance with simulation data. 
On one hand, future work will be devoted to the 
extension of pole placement in a LMI region for 
PDC control with an observer and on the other hand, 
an experimental sensor will be tested in order to 
control both longitudinal and lateral dynamics with 
two real cars.  
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