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Abstract: The genetic algorithms are powerful for optimization, and have been 
successfully applied to controller design. However, most existing works are based 
on simulations and little works are available in the literature on on-line control 
applications. In this paper, a special feature in selecting the population of the genes 
is proposed, such that the genetic based algorithms can be modified for on-line 
applications. The modified algorithms are applied successfully to control on-line the 
temperature of an electric oven. Better performance results than the PID and 
Dynamic Matrix Control are obtained, illustrating the modified genetic algorithms 
are suitable for on-line applications. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Genetic algorithm (GA) was first proposed by John 
Holland (1975) for solving optimization problems by 
imitating the evolution process. It is shown to be a 
robust and global search method, and has been used 
widely to design controllers for systems that are 
difficult to analyse and solve analytically (Fleming 
and Purshouse, 2002). The general procedure is that 
the controller parameters are encoded and integrated 
as a GA chromosome, and then adjusted genetically 
to achieve satisfactory results. 
 
To obtain better results, it is often required that both 
controller structure and its parameters are optimized 
simultaneously, which is difficult to achieve by GA. 
Two approaches: the Hierarchical GA (HGA) (Man 
et al., 1997) and the Genetic Programming (GP) 
(Koza, 1992) are proposed to tackle this problem. 
The main difference between HGA and GA is that in 
HGA, the structure of its chromosome is organised 
hierarchically. As some genes dominate others in the 
same chromosome, it is suitable to optimize 
simultaneously both the structure and the parameters 
of the controller (Ke, et al., 1998; Man, et al., 1997; 
Tang, et al., 2000; Zhou, et al., 2002). 
 
However, as fixed-length representation is still used 
in HGA, the search is restricted in a bounded area. 

By employing the tree-like program representation in 
GP approach, this limitation is overcome. Since a 
controller or any other function can be expressed in a 
more general form by a tree, there is little limitation 
on its structure, as long the syntax is satisfied. 
Following this approach, the controller structure and 
parameters can be obtained simultaneously (Koza, et 
al. 1999; Yu, et al. 2000). 
 
Although the GA has been used successfully in 
controller design, most applications are based on 
simulated experiments using off-line optimizations. 
Very few on-line applications involving real 
processes are available in the literature. There are 
two main difficulties in applying methods derived 
from the GA in practice. First, genetic approaches 
require a large amount of computation, making on-
line application difficult (Fleming and Purshouse, 
2002). Second, the system model used in genetic 
approaches to guide the searching is very difficult to 
establish precisely in practice. As the models based 
on GA are obtained off-line, any drifting in the 
model parameters cannot be readily compensated.  
 
In this paper, on-line control based on the GA for the 
temperature control of a laboratory-scale oven is 
discussed. Three conventional genetic algorithms: 
GA, HGA and GP are considered. The GA is used to 
tune the parameters of PID controller, and is referred 



     

to as GA-PID, while HGA and GP are used to 
simultaneously optimize both the controller structure 
and the parameters. To guarantee efficient searching, 
a new population formation method with special 
adjustments is proposed in the evolution process. It is 
shown that better results are obtained from genetic 
approaches with special adjustments than the PID 
and Dynamic Matrix Control (DMC). 
 
The paper is organized as follows. In Section 2, a 
brief review of GA, HGA and GP for controller 
design are presented. In Section 3, the laboratory-
scale oven is presented. Special adjustments in the 
evolution process for on-line applications are also 
presented. Experimental results, and comparison of 
these control algorithms are given in Section 4, and 
the conclusion is presented in Section 5. 
 
 

2. GENETIC APPROACHES FOR ON-LINE 
CONTROLLER DESIGN 

 
 
2.1 System framework 
 
The traditional methodology is followed to construct 
the framework of the on-line control system based on 
genetic approaches. It consists of two main parts, one 
for modeling and another for searching controller. As 
shown in Fig. 1, in every sample-control period, the 
real-time model is identified by an on-line 
identification method, for example the Recurrent 
Least-squares method used in this paper, and updated 
if it is convergent and physically reasonable. Then a 
genetic approach is called to design a controller for 
the new model.  
 
Among numerous genetic approaches (Fleming and 
Purshouse, 2002), three typical ones that represent 
different levels are employed to design controller 
separately. In GA-PID, GA that belongs to the 
parameter-optimization level is used to tune the 
parameters of PID controller. Then HGA is 
employed to determine the configuration among 
some predefined optional controller blocks and 
optimize their corresponding parameters. Since HGA 
can optimize the controller structure in a limited 
space, it is in the semi-structure-optimization level. 
At last, GP is used to automatically create a 
controller, both the structure and parameters. 
Undoubtedly, it belongs to the structure-optimization 
level. 
  
 
2.2 Genetic algorithm PID 
 
It is well known that, PID control is the most popular 
technique in industrial process systems. Many 
optimization algorithms have been used to tune its 
parameters for better performance, including GA 
(Porter and Jones, 1992; Vlachos et al, 1999; Wang 
et al, 2002).  
 
In this paper, the discrete PID controller is used: 
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Fig. 1.  System framework 
 
where, ST is the sample-control period, and PK , IK  
and DK  are parameters, which are tuned by GA with 
float number representation. 
  
Given a candidate controller, the coming control and 
response sequences can be predicted with on-line 
model from historical data. In this paper, the 
quadratic objective is proposed as, 
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where, τ , M  and α stand for pure delay, prediction 
horizon and weight. Easily, the fitness function for 
maximization can be obtained: 
 1Fitness Obj=  (3) 

The objective and fitness function above are also 
used in latter approaches. 
 
 
2.3  Hierarchical genetic algorithm 
 
As described previously, HGA uses different genetic 
structure of the chromosome. From the biological 
knowledge, the genes are arranged in a hierarchical 
manner. There are two types of genes, control genes 
and parametric genes. The control genes determine 
the parametric genes that should be utilized during 
the evolution process.  
 
The following discrete controllers are used, 
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Fig. 2.  The structure of the HGA chromosome 
 
It contains a gain coefficient and four blocks, which 
can be represented by the HGA chromosome shown 
in Fig. 2. In this representation, symbols “c1” to “c4” 
are control genes, which determine the activity of 
corresponding blocks. Symbols “a1” to “a3”, “b1” to 
“b3” are parametric genes, whose activities are 



     

determined by the corresponding control genes.  And 
“g” is a parametric gene too, but it is always active. 
The stability of the controller is also guaranteed by 
limiting the parameters in a feasible domain. For 
example, the controller: 
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can be represented as the HGA gene string, {0,1,1,0,   
*,4,4,1.5,*,*,2}, where “0”, “1” and symbol “*” 
stand for inactivity, activity and the value of inactive 
parametric gene. 
 
Although chromosomes are interpreted hierarchically, 
both kinds of genes are integrated in the same 
chromosome from the view of genotype. As they can 
evolve simultaneously, the structure and the 
parameters of the controller can be optimized at the 
same time. Furthermore, its genetic operators are the 
same as those of GA and do not require any extra 
modifications.  However, the genetic operations that 
affect the high-level genes can result in changes 
within the active genes that eventually lead to 
multiple changes in the lower level genes (Man, et al., 
1997). 
 
Although HGA is more flexible, its searching space 
is still bounded. It also limits the solution from HGA 
to be within its boundaries, even they are much better. 
Fortunately, this disadvantage is overcome by GP. 
 
 
2.4  Genetic programming 
 
In GP, the chromosome is represented by a program, 
which is often in the form of a binary-tree. In general, 
any function can be considered as a program and 
expressed by a tree, e.g., 2( ) 2 1f x x x= + +  can be 
described by a tree shown in Fig. 3. The nodes below 
the line are “terminal nodes”, which are variables or 
constants, and are the input of the function. Other 
nodes are “functional nodes”, which could be any 
functions. The uppermost node is the root that 
outputs the final value of entire function. 
 
To accompany this representation, particular genetic 
operators are designed. The crossover exchanges the 
sub-trees of the parents, while mutation replaces the 
old sub-tree with a randomly created one. It’s worthy 
to note that there is no limitation on the size of the 
individual as long as it satisfies the syntax. From this 
approach, the structure and parameters of the 
function can be optimized simultaneously. 
 
If 1( )N z−  is monic, (4) can be rewritten as, 
 1 1( ) ( ) ( 1) ( ) ( )u k A z u k B z e k− −∆ = ∆ − +  (5) 
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Fig. 3.   The tree-like representation 

where, 1 1( ) ( )B z M z− −= , 1 1( ) (1 ( ))A z N z z− −= − . 
Equation (5) can be naturally describes by the tree 
shown in Fig. 4. 
 
Two parts separately stand for 1( ) ( 1)A z u k− ∆ −  and 

1( ) ( )B z e k− . The crossover is only allowed to 
perform on the sub-trees of the same type. Without 
losing generality, we can simply select the functional 
and the terminal node sets as 1{ , , ,1 , }x z−+ − ×  and 
{ ( 1), ( ), }u k e k C∆ − , where 1 x , 1z−  and C  denote 
reciprocal operator, backward shift operator and 
constant respectively. For example, the controller 
used in 2.3 can be rewritten as: 
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and further represented as Fig. 5. 
 
The depth-fair crossover is used to enhance searching 
efficiency (Kessler and Haynes, 1999). Due to the 
node-bloating phenomenon (Soule and Hechendorn, 
2002), the individual size is restricted below 50. 
 
 

3. BASIC IMPLEMENTATION ISSUES 
 
To investigate the real-time performance of the 
genetic algorithms described above, they are applied 
to control the heating and preservation process of an 
electrical oven. In this section, a brief description of 
the oven control system is given first. 
 
 
3.1 Physical features of the plant 
 
This experimental oven has a width of 45cm, a depth 
of 30cm and a height of 30cm. The temperature 
inside the oven is measured by a platinum resistance 
thermometer PT100, which is converted to an 
electrical signal of 1 to 5V. This output voltage is 
digitalized and the control is computed on a 233MHz 
PC. The control computed from the PC is a 4-20mA 
current signal, which is used to switch on or off the 
two electrical heaters by Solid State Relay (SSR). 
The control configuration is shown in Fig. 6. 
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Fig. 5. The GP individual of the controller 
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Fig. 6. The physical structure of the computer-

controlled system 
 

 
Fig. 7.  The piecewise step response. X and Y axes 

are time and temperature, with units 10 seconds 
and 1 centigrade separately.  

 
To obtain an approximation of the plant, a step input 
is applied to the heaters, and the temperature in the 
oven is shown in Fig. 7, from which the following 
first order model is obtained, 
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Clearly, the time constant is large with a relatively 
short pure delay, and these parameters are dependant 
on the operating point. 
 
 
3.2 Special adjustments for practical applications 
 
As discussed previously, there are two problems in 
applying genetic algorithms for on-line applications. 
The first one is the computing load, and the second is 
the time-varying model. To overcome these problems 
and to obtain good on-line performance, it is 
necessary to adjust the evolution process such that it 
can utilize prior information, and simultaneously 
maintain the population diversity.  
 
In engineering, it is reasonable to assume that the 
plant changes continuously under normal conditions. 
Therefore, the prior information can be utilized to 
make the search more efficient. On the other hand, to 
avoid being trapped in a local optimum when 
environment changes acutely and is in conflict with 
past information, population diversity must be 
maintained through out the evolution process. 
Therefore, a special population formation method is 
proposed here.  
 

The initial population, which is created at the start of 
the genetic-based searching program, consists of 
three parts. The first one consists of the superior 
individuals obtained in the last time interval. The 
second one recodes the best individuals in the history 
of evolution process, and the third one is some 
randomly created individuals. Therefore, the 
population starts searching at a relatively high level 
if the model changes mildly. A new search in a new 
direction can also be launched, if the model changes 
acutely. Additionally, large population size, small 
generation number and selective pressure are used to 
maintain the diversity.  
 
Further, because of the model uncertainty, over-
computation cannot in general achieve better 
performance, but make the controller less robust. 
Therefore, the terminal criteria have to design 
specially. Once the highest fitness by now exceeds a 
threshold, saying 1.2 times of the highest of last time, 
which is used in this paper, or the pre-defined 
generation is exhausted, the search will stop. Fig. 8 
illustrates the entire flow, and Fig. 9 gives a 
simulated comparison between the proposed 
population formation method and the traditional one 
in solving an on-line controller design problem for a 
time variant system. 
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Fig. 9.  A simulated comparison between: (1) the 

proposed population formation method, (2) the 
traditional one, in solving an on-line controller 
design problem for a time variant system. 

 
 
 



     

4. EXPERIMENTAL RESULTS 
 
In this experiment, all sampling interval is set at 10 
seconds. The results obtained from the three genetic 
algorithms are shown in Figs. 10 to 12. Normally, all 
genetic approaches can finish the computation in 2 
seconds. For comparison, the results of the traditional 
PID and DMC are shown in Figs. 13 and 14. DMC is 
a model predictive control algorithm, which is 
widely used in industrial processes because of its 
robustness and simplicity in implementation (Cutler 
and Perry, 1980).  In DMC, the predictive model is 
obtained first from step response. Based on this 
model, further optimization of a quadratic function is 
performed to drive the output to approach a reference 
trajectory. 
 
Comparing with well tuned PID and DMC, the 
genetic approaches can achieve better temperature 
control with smaller settling time, overshoot and 
undershoot, and zero steady error, as illustrated in 
Table 1. However, the control changes more 
frequently and with larger magnitude. The main 
reason is that the genetic algorithms are stochastic in 
nature. For this reason, it is difficult to obtain 
smoother control when the process is time-varying.  
 

Table 1 Comparisons between different methods 
 

 Overshoot Undershoot Settling 
Time (s) 

GA-PID 0% 0% 650 
HGA 2.2% 2.0% 730 
GP 2.3% 2.0% 720 
PID 3.8% 2.0% 1160 

DMC 1.3% 0% 940 
 
The following common features can be found in the 
genetic algorithms considered in this paper. The 
control can be roughly divided into four stages. At 
the initial stage, the genetic searching program is set 
to standby manually and the lower boundary of 4mA 
is used until the model converges and approaches to 
the real system from the initial settings. During the 
heating stage, the plant is completely controlled by 
genetic algorithms. And the upper boundary 20mA is 
set to speed up the process in all genetic approaches. 
When the temperature is close to the set point, the 
control computed from the genetic algorithms 
decreases rapidly. However, there are larger 
fluctuations in the control computed from the genetic 
algorithms, as the stability of genetic search is 
weakened. Also, all genetic algorithms can eliminate 
steady errors. 
  
Furthermore, it is interesting to note that the 
performance of GA-PID is even better than that 
obtained from HGA and GP, although the latter is 
somehow superior to GA in the sense of optimization 
ability. The main reason is that the selected structure 
of the PID controller is extracted from the domain of 
expert knowledge and is therefore suitable for 
process control. This structure is difficult to obtain 
from numerical computation, and it is, therefore, 
important to include the domain knowledge into the 
evolution process to obtain better performance.  

5. CONCLUSIONS 
 
A special formation of the population with other 
adjustments is proposed in this paper for the on-line 
implementation of GA, HGA and GP. It is shown 
that these algorithms are implemented successfully 
for the on-line control of an electrical oven. Better 
performance than the PID and DMC is obtained from 
these modified genetic approaches, and in particular, 
the GA-PID performs much better because it is able 
to include the domain knowledge into the evolution 
process. The results indicate that genetic approaches 
are efficient for on-line control of the electric oven. 
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Fig. 10. The performance of GA-PID. The main 

settings are: float coded, population size 400, 
selective probability 0.7, crossover probability 1, 
mutation probability 0.05, generation number 50. 

 

 
Fig. 11. The performance of HGA. The main settings 

are: control genes binary coded, parametric genes 
float coded, population size 400, selective 
probability 0.7, crossover probability 1, mutation 
probability 0.05, generation number 50. 

 

 
Fig. 12. The performance of GP. The main settings 

are: maximal individual node number 50, 
population size 200, depth-fair crossover, 
selective probability 0.7, crossover probability 1, 
mutation probability 0.05, generation number 50. 

 

 
Fig. 13. The performance of PID controller in the 

form of formula (1), whose parameters are: 
0.33PK = , 0.5IK =  and 1DK = . 

 

 
Fig. 14. The performance of DMC. Several critical 

parameters are: predictive horizon 15, control 
horizon 2, soft factor 0.975. 


