

ON-LINE TEMPERATURE CONTROL OF AN OVEN BASED ON GENETIC ALGORITHMS

Z. Y. Yang1, 2, C. W. Chan1, M. S. Xue2, G. J. Luo2

1 Dept. of Mech. Eng., Univ. of Hong Kong, Pokfulam Road, Hong Kong
2 Dept. of Automation, Univ. of Sci. & Tech. of China, Hefei, P. R. C.

Abstract: The genetic algorithms are powerful for optimization, and have been
successfully applied to controller design. However, most existing works are based
on simulations and little works are available in the literature on on-line control
applications. In this paper, a special feature in selecting the population of the genes
is proposed, such that the genetic based algorithms can be modified for on-line
applications. The modified algorithms are applied successfully to control on-line the
temperature of an electric oven. Better performance results than the PID and
Dynamic Matrix Control are obtained, illustrating the modified genetic algorithms
are suitable for on-line applications. Copyright © 2005 IFAC

Keywords: genetic algorithms, on-line control, least-squares method, PID control,
predictive control

1. INTRODUCTION

Genetic algorithm (GA) was first proposed by John
Holland (1975) for solving optimization problems by
imitating the evolution process. It is shown to be a
robust and global search method, and has been used
widely to design controllers for systems that are
difficult to analyse and solve analytically (Fleming
and Purshouse, 2002). The general procedure is that
the controller parameters are encoded and integrated
as a GA chromosome, and then adjusted genetically
to achieve satisfactory results.

To obtain better results, it is often required that both
controller structure and its parameters are optimized
simultaneously, which is difficult to achieve by GA.
Two approaches: the Hierarchical GA (HGA) (Man
et al., 1997) and the Genetic Programming (GP)
(Koza, 1992) are proposed to tackle this problem.
The main difference between HGA and GA is that in
HGA, the structure of its chromosome is organised
hierarchically. As some genes dominate others in the
same chromosome, it is suitable to optimize
simultaneously both the structure and the parameters
of the controller (Ke, et al., 1998; Man, et al., 1997;
Tang, et al., 2000; Zhou, et al., 2002).

However, as fixed-length representation is still used
in HGA, the search is restricted in a bounded area.

By employing the tree-like program representation in
GP approach, this limitation is overcome. Since a
controller or any other function can be expressed in a
more general form by a tree, there is little limitation
on its structure, as long the syntax is satisfied.
Following this approach, the controller structure and
parameters can be obtained simultaneously (Koza, et
al. 1999; Yu, et al. 2000).

Although the GA has been used successfully in
controller design, most applications are based on
simulated experiments using off-line optimizations.
Very few on-line applications involving real
processes are available in the literature. There are
two main difficulties in applying methods derived
from the GA in practice. First, genetic approaches
require a large amount of computation, making on-
line application difficult (Fleming and Purshouse,
2002). Second, the system model used in genetic
approaches to guide the searching is very difficult to
establish precisely in practice. As the models based
on GA are obtained off-line, any drifting in the
model parameters cannot be readily compensated.

In this paper, on-line control based on the GA for the
temperature control of a laboratory-scale oven is
discussed. Three conventional genetic algorithms:
GA, HGA and GP are considered. The GA is used to
tune the parameters of PID controller, and is referred

to as GA-PID, while HGA and GP are used to
simultaneously optimize both the controller structure
and the parameters. To guarantee efficient searching,
a new population formation method with special
adjustments is proposed in the evolution process. It is
shown that better results are obtained from genetic
approaches with special adjustments than the PID
and Dynamic Matrix Control (DMC).

The paper is organized as follows. In Section 2, a
brief review of GA, HGA and GP for controller
design are presented. In Section 3, the laboratory-
scale oven is presented. Special adjustments in the
evolution process for on-line applications are also
presented. Experimental results, and comparison of
these control algorithms are given in Section 4, and
the conclusion is presented in Section 5.

2. GENETIC APPROACHES FOR ON-LINE
CONTROLLER DESIGN

2.1 System framework

The traditional methodology is followed to construct
the framework of the on-line control system based on
genetic approaches. It consists of two main parts, one
for modeling and another for searching controller. As
shown in Fig. 1, in every sample-control period, the
real-time model is identified by an on-line
identification method, for example the Recurrent
Least-squares method used in this paper, and updated
if it is convergent and physically reasonable. Then a
genetic approach is called to design a controller for
the new model.

Among numerous genetic approaches (Fleming and
Purshouse, 2002), three typical ones that represent
different levels are employed to design controller
separately. In GA-PID, GA that belongs to the
parameter-optimization level is used to tune the
parameters of PID controller. Then HGA is
employed to determine the configuration among
some predefined optional controller blocks and
optimize their corresponding parameters. Since HGA
can optimize the controller structure in a limited
space, it is in the semi-structure-optimization level.
At last, GP is used to automatically create a
controller, both the structure and parameters.
Undoubtedly, it belongs to the structure-optimization
level.

2.2 Genetic algorithm PID

It is well known that, PID control is the most popular
technique in industrial process systems. Many
optimization algorithms have been used to tune its
parameters for better performance, including GA
(Porter and Jones, 1992; Vlachos et al, 1999; Wang
et al, 2002).

In this paper, the discrete PID controller is used:

 () () () (())D
P I S

S

K
u k K e k K T e k e k

T
∆ = ∆ + + ∆ ∆ (1)

Plant

Identification

Controller

GAs

R

+

UE Y

_

Fig. 1. System framework

where, ST is the sample-control period, and PK , IK
and DK are parameters, which are tuned by GA with
float number representation.

Given a candidate controller, the coming control and
response sequences can be predicted with on-line
model from historical data. In this paper, the
quadratic objective is proposed as,

 2 2

1 1

() ()
M M

l m

Obj e l u m
τ

τ

α
+

= + =

= + ∆∑ ∑ (2)

where, τ , M and α stand for pure delay, prediction
horizon and weight. Easily, the fitness function for
maximization can be obtained:
 1Fitness Obj= (3)

The objective and fitness function above are also
used in latter approaches.

2.3 Hierarchical genetic algorithm

As described previously, HGA uses different genetic
structure of the chromosome. From the biological
knowledge, the genes are arranged in a hierarchical
manner. There are two types of genes, control genes
and parametric genes. The control genes determine
the parametric genes that should be utilized during
the evolution process.

The following discrete controllers are used,

1
1

1

1 2 1
1 2 3

1 2 1
1 2 3

() ()()
() ()
()()
()()

u k M zC z
e k N z

z b z b z b
g

z a z a z a

−
−

−

− − −

− − −

∆
= =

+ + +
=

+ + +

 (4)

c1 c4c3c2 a1

Z(-1)+a1

Z(-1)+b1

Z(-2)+a2*Z(-1)+a3

Z(-2)+b2*Z(-1)+b3

Poles

Zeros

Control genes Parametric genes

gb3b2b1a3a2

Fig. 2. The structure of the HGA chromosome

It contains a gain coefficient and four blocks, which
can be represented by the HGA chromosome shown
in Fig. 2. In this representation, symbols “c1” to “c4”
are control genes, which determine the activity of
corresponding blocks. Symbols “a1” to “a3”, “b1” to
“b3” are parametric genes, whose activities are

determined by the corresponding control genes. And
“g” is a parametric gene too, but it is always active.
The stability of the controller is also guaranteed by
limiting the parameters in a feasible domain. For
example, the controller:

1

1
2 1

1.5() 2
4 4

zC z
z z

−
−

− −

+
=

+ +

can be represented as the HGA gene string, {0,1,1,0,
,4,4,1.5,,*,2}, where “0”, “1” and symbol “*”
stand for inactivity, activity and the value of inactive
parametric gene.

Although chromosomes are interpreted hierarchically,
both kinds of genes are integrated in the same
chromosome from the view of genotype. As they can
evolve simultaneously, the structure and the
parameters of the controller can be optimized at the
same time. Furthermore, its genetic operators are the
same as those of GA and do not require any extra
modifications. However, the genetic operations that
affect the high-level genes can result in changes
within the active genes that eventually lead to
multiple changes in the lower level genes (Man, et al.,
1997).

Although HGA is more flexible, its searching space
is still bounded. It also limits the solution from HGA
to be within its boundaries, even they are much better.
Fortunately, this disadvantage is overcome by GP.

2.4 Genetic programming

In GP, the chromosome is represented by a program,
which is often in the form of a binary-tree. In general,
any function can be considered as a program and
expressed by a tree, e.g., 2() 2 1f x x x= + + can be
described by a tree shown in Fig. 3. The nodes below
the line are “terminal nodes”, which are variables or
constants, and are the input of the function. Other
nodes are “functional nodes”, which could be any
functions. The uppermost node is the root that
outputs the final value of entire function.

To accompany this representation, particular genetic
operators are designed. The crossover exchanges the
sub-trees of the parents, while mutation replaces the
old sub-tree with a randomly created one. It’s worthy
to note that there is no limitation on the size of the
individual as long as it satisfies the syntax. From this
approach, the structure and parameters of the
function can be optimized simultaneously.

If 1()N z− is monic, (4) can be rewritten as,
 1 1() () (1) () ()u k A z u k B z e k− −∆ = ∆ − + (5)

+

x

+

x2x 1

Functional
nodes

Terminal
nodes

Fig. 3. The tree-like representation

where, 1 1() ()B z M z− −= , 1 1() (1 ())A z N z z− −= − .
Equation (5) can be naturally describes by the tree
shown in Fig. 4.

Two parts separately stand for 1() (1)A z u k− ∆ − and

1() ()B z e k− . The crossover is only allowed to
perform on the sub-trees of the same type. Without
losing generality, we can simply select the functional
and the terminal node sets as 1{ , , ,1 , }x z−+ − × and
{ (1), (), }u k e k C∆ − , where 1 x , 1z− and C denote
reciprocal operator, backward shift operator and
constant respectively. For example, the controller
used in 2.3 can be rewritten as:

()

(1) 0.25 (2) 0.75 () 0.5 (1)
u k

u k u k e k e k
∆ =
−∆ − − ∆ − + + −

and further represented as Fig. 5.

The depth-fair crossover is used to enhance searching
efficiency (Kessler and Haynes, 1999). Due to the
node-bloating phenomenon (Soule and Hechendorn,
2002), the individual size is restricted below 50.

3. BASIC IMPLEMENTATION ISSUES

To investigate the real-time performance of the
genetic algorithms described above, they are applied
to control the heating and preservation process of an
electrical oven. In this section, a brief description of
the oven control system is given first.

3.1 Physical features of the plant

This experimental oven has a width of 45cm, a depth
of 30cm and a height of 30cm. The temperature
inside the oven is measured by a platinum resistance
thermometer PT100, which is converted to an
electrical signal of 1 to 5V. This output voltage is
digitalized and the control is computed on a 233MHz
PC. The control computed from the PC is a 4-20mA
current signal, which is used to switch on or off the
two electrical heaters by Solid State Relay (SSR).
The control configuration is shown in Fig. 6.

+

e
branches

root

u
branches

Fig. 4. The controller described in GP form

0

-

0.25

-
*

u(k-1) z(-1)

*

0.5

+

*

e(k)

z(-1)

u(k-1)

e(k)0.75

+

Fig. 5. The GP individual of the controller

PC

A/D

D/A

transformer

amplifier

thermometer

heater

Fig. 6. The physical structure of the computer-

controlled system

Fig. 7. The piecewise step response. X and Y axes

are time and temperature, with units 10 seconds
and 1 centigrade separately.

To obtain an approximation of the plant, a step input
is applied to the heaters, and the temperature in the
oven is shown in Fig. 7, from which the following
first order model is obtained,

70

70

27.8() [4,6] [25,81]
850 1
22.7() [6,8] [81,126]
700 1

s

s

eG s U mA Y C
s
eG s U mA Y C
s

−

−

⎧
= ∈ ∈ °⎪⎪ +

⎨
⎪ = ∈ ∈ °⎪ +⎩

(6)

Clearly, the time constant is large with a relatively
short pure delay, and these parameters are dependant
on the operating point.

3.2 Special adjustments for practical applications

As discussed previously, there are two problems in
applying genetic algorithms for on-line applications.
The first one is the computing load, and the second is
the time-varying model. To overcome these problems
and to obtain good on-line performance, it is
necessary to adjust the evolution process such that it
can utilize prior information, and simultaneously
maintain the population diversity.

In engineering, it is reasonable to assume that the
plant changes continuously under normal conditions.
Therefore, the prior information can be utilized to
make the search more efficient. On the other hand, to
avoid being trapped in a local optimum when
environment changes acutely and is in conflict with
past information, population diversity must be
maintained through out the evolution process.
Therefore, a special population formation method is
proposed here.

The initial population, which is created at the start of
the genetic-based searching program, consists of
three parts. The first one consists of the superior
individuals obtained in the last time interval. The
second one recodes the best individuals in the history
of evolution process, and the third one is some
randomly created individuals. Therefore, the
population starts searching at a relatively high level
if the model changes mildly. A new search in a new
direction can also be launched, if the model changes
acutely. Additionally, large population size, small
generation number and selective pressure are used to
maintain the diversity.

Further, because of the model uncertainty, over-
computation cannot in general achieve better
performance, but make the controller less robust.
Therefore, the terminal criteria have to design
specially. Once the highest fitness by now exceeds a
threshold, saying 1.2 times of the highest of last time,
which is used in this paper, or the pre-defined
generation is exhausted, the search will stop. Fig. 8
illustrates the entire flow, and Fig. 9 gives a
simulated comparison between the proposed
population formation method and the traditional one
in solving an on-line controller design problem for a
time variant system.

Initial population

Evaluation

Genetic operations

Termination?

Insert the best
individuals of
every recent
process and

the randomly
created ones

Plant

Identification

Sample

Converge and
reasonable?

Control
value

Predictive
model

yes

yes

no

Controller
update

Output

Identification
program

Genetic
program

Fig. 8. The system flowchart.

Fig. 9. A simulated comparison between: (1) the

proposed population formation method, (2) the
traditional one, in solving an on-line controller
design problem for a time variant system.

4. EXPERIMENTAL RESULTS

In this experiment, all sampling interval is set at 10
seconds. The results obtained from the three genetic
algorithms are shown in Figs. 10 to 12. Normally, all
genetic approaches can finish the computation in 2
seconds. For comparison, the results of the traditional
PID and DMC are shown in Figs. 13 and 14. DMC is
a model predictive control algorithm, which is
widely used in industrial processes because of its
robustness and simplicity in implementation (Cutler
and Perry, 1980). In DMC, the predictive model is
obtained first from step response. Based on this
model, further optimization of a quadratic function is
performed to drive the output to approach a reference
trajectory.

Comparing with well tuned PID and DMC, the
genetic approaches can achieve better temperature
control with smaller settling time, overshoot and
undershoot, and zero steady error, as illustrated in
Table 1. However, the control changes more
frequently and with larger magnitude. The main
reason is that the genetic algorithms are stochastic in
nature. For this reason, it is difficult to obtain
smoother control when the process is time-varying.

Table 1 Comparisons between different methods

 Overshoot Undershoot Settling
Time (s)

GA-PID 0% 0% 650
HGA 2.2% 2.0% 730
GP 2.3% 2.0% 720
PID 3.8% 2.0% 1160

DMC 1.3% 0% 940

The following common features can be found in the
genetic algorithms considered in this paper. The
control can be roughly divided into four stages. At
the initial stage, the genetic searching program is set
to standby manually and the lower boundary of 4mA
is used until the model converges and approaches to
the real system from the initial settings. During the
heating stage, the plant is completely controlled by
genetic algorithms. And the upper boundary 20mA is
set to speed up the process in all genetic approaches.
When the temperature is close to the set point, the
control computed from the genetic algorithms
decreases rapidly. However, there are larger
fluctuations in the control computed from the genetic
algorithms, as the stability of genetic search is
weakened. Also, all genetic algorithms can eliminate
steady errors.

Furthermore, it is interesting to note that the
performance of GA-PID is even better than that
obtained from HGA and GP, although the latter is
somehow superior to GA in the sense of optimization
ability. The main reason is that the selected structure
of the PID controller is extracted from the domain of
expert knowledge and is therefore suitable for
process control. This structure is difficult to obtain
from numerical computation, and it is, therefore,
important to include the domain knowledge into the
evolution process to obtain better performance.

5. CONCLUSIONS

A special formation of the population with other
adjustments is proposed in this paper for the on-line
implementation of GA, HGA and GP. It is shown
that these algorithms are implemented successfully
for the on-line control of an electrical oven. Better
performance than the PID and DMC is obtained from
these modified genetic approaches, and in particular,
the GA-PID performs much better because it is able
to include the domain knowledge into the evolution
process. The results indicate that genetic approaches
are efficient for on-line control of the electric oven.

REFERENCES

Cutler C. R., T. Perry (1980). Dynamic matrix

control: a computer control. Proc. of the Joint
Automatic Control Conference, San Francisco,
WP5-B

Fleming, P. J., R. C. Purshouse (2002). Evolutionary
algorithms in control systems engineering: a
survey. Control Engineering Practice, Vol. 10,
1223-1241.

Holland, J. (1975). Adaptation in Natural and
Artificial Intelligence. University of Michigan
Press, Michigan.

Ke, J. Y., K. S. Tang, and K. F. Man, et al. (1998).
Hierarchical genetic fuzzy controller for a solar
power plant. IEEE International Symposium on
Industrial Electronics, Vol. 2, 584-588.

Kessler, M., T. Haynes (1999). Depth-fair crossover
in genetic programming. Proc. of the 1999 ACM
Symposium on Applied Computing, 319-323.

Koza, J. (1992). Genetic programming: on the
programming of computers by means of natural
selection. MIT Press, Massachusetts.

Koza, J., M. A. Keane, and J. Yu et al. (1999).
Automatic synthesis of both the topology and
parameters for a robust controller for a non-
minimal phase and a three-lag plant by means of
genetic programming. Proc. of the 38th
Conference on Decision and Control, 5292-
5300.

Man, K. F., K. S. Tang and S. Kwong, et al. (1997).
Genetic algorithms for control and signal
processing. Springer, London.

Porter, B., & A. H. Jones (1992). Genetic tuning of
digital PID controllers. Electronics Letters, Vol.
28, 843–844.

Soule, T., R. B. Hechendorn (2002). An analysis of
the causes of code growth in genetic
programming. Genetic Programming and
Evolvable machine, Vol. 3, 283-309.

Tang, K. S., K.F. Man, and S. Kwong, et al. (1998).
Design and optimization of IIR filter structure
using hierarchical genetic algorithms. IEEE
Trans. Industrial Electronics, Vol. 45, 481-487.

Tang, K. S., K. F. Man, and R. S. H. Istepanian
(2000). Teleoperation controller design using
hierarchical genetic algorithm. Proc. of IEEE
International Conference on Industrial
Technology, Vol. 1, 707-711.

Vlachos, C., D. Williams, & J. B. Gomm (1999).
Genetic approach to decentralised PI controller

tuning for multivariable processes. IEE Proc.,
Control Theory and Applications, Vol. 146, 58–
64.

Wang, Y. P., N. R. Watson and H. H. Chong (2002).
Modified genetic algorithm approach to design
of an optimal PID controller for AC–DC
transmission systems. International Journal of
Electric Power & Energy Systems, Vol. 24, 59-
69.

Yu, J., M. A. Keane, and J. Koza. (2000). Automatic
design of both topology and tuning of a common
parameterized controller. Proc. of IEEE
International Symposium on Computer-Aided
Control System Design, 234-242.

Zhou, X., Y. Zhou, D. Gong (2002). Optimization of
fuzzy sets of fuzzy control system based on
hierarchical genetic algorithms. IEEE Region 10
Conference on Computers, Communications,
Control and Power Engineering, Vol. 3, 1463-
1466.

Fig. 10. The performance of GA-PID. The main

settings are: float coded, population size 400,
selective probability 0.7, crossover probability 1,
mutation probability 0.05, generation number 50.

Fig. 11. The performance of HGA. The main settings

are: control genes binary coded, parametric genes
float coded, population size 400, selective
probability 0.7, crossover probability 1, mutation
probability 0.05, generation number 50.

Fig. 12. The performance of GP. The main settings

are: maximal individual node number 50,
population size 200, depth-fair crossover,
selective probability 0.7, crossover probability 1,
mutation probability 0.05, generation number 50.

Fig. 13. The performance of PID controller in the

form of formula (1), whose parameters are:
0.33PK = , 0.5IK = and 1DK = .

Fig. 14. The performance of DMC. Several critical

parameters are: predictive horizon 15, control
horizon 2, soft factor 0.975.

