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Abstract: This paper, the first of a series of two, deals with the determination
of optimal steady-state jacket fluid temperature profiles for dispersive tubular
chemical reactors, ranging from plug flow to perfectly mixed reactors. According
to Pontryagin’s minimum principle, the optimal control is of the bang-bang type
for the proposed terminal cost criterion. The bang-bang switching position is
numerically optimised, by means of a weighted shooting-type procedure for the
determination of the reactor profiles, ensuring the Danckwerts boundary conditions
are satisfied. Following this procedure the impact of dispersion on the optimised
profiles is illustrated. In the second paper, the performance of the obtained optimal
control laws will be compared with that of practically more feasible controls.
Furthermore, the transient behaviour will be assessed. Copyright c©2005 IFAC
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1. INTRODUCTION

An intriguing and persistent challenge for chem-
ical process control engineers is to master the
problem of optimal control of (nonlinear) chemical
processes. Over the past decades optimisation of
chemical reactors has indeed received considerable
attention in the published literature. However,
only a very limited number of analytical opti-
mal control profiles has been reported, and this
merely for either (i) plug flow reactors (PFR) (see,
e.g., Chou et al. (1967) and Smets et al. (2002)),
or (ii) continuous stirred tank reactors (CSTR)
(see, e.g., Ray (1981)). The influence of axial
dispersion, introducing a certain degree of back-
mixing, on optimal tubular reactor performance
is almost never taken into account. This lack does
not come as a surprise since the axial dispersion
model with Danckwerts boundary conditions, in-
troduces second-order terms in the mass and en-
ergy balance equations, which already encompass

highly nonlinear reaction terms. Hence, sophisti-
cated techniques for steady-state simulation of the
reactor behaviour become indispensable.

Several techniques to solve second-order nonlinear
boundary value problems are mentioned in litera-
ture (Kub́ıček and Hlaváček, 1983).

A first option is converting the set of differen-
tial equations and boundary conditions into a set
of nonlinear algebraic equations by rewriting all
derivatives as finite differences. Since most often
a large number of grid points are required for an
accurate simulation, this method becomes compu-
tationally quite expensive when the resulting large
set of nonlinear equations has to be solved.

A second technique, called the false transient
method, assumes the steady-state problem to be
solved whenever all transient features have dis-
appeared from the transient simulation of the
dynamic mass and heat balances. Hereto, the



solution of a set of parabolic partial differential
equations (PDEs) is required, for which most
simulation methods are primarily based on the
approximation of the set of partial differential
equations by a set of ordinary differential equa-
tions (Hundsdorfer and Verwer, 2003). Although
this approach is generally applicable, it is again
rather time consuming.

A third alternative are shooting methods, which
are iterative procedures based on the solution of
a corresponding initial value problem. This type
of method is attractive because of the availability
of powerful routines for numerical integration of
initial value problems and it can often successfully
be applied to boundary value problems of any
complexity as long as the corresponding initial
value problem is stable and a good set of starting
values is available. A procedure of this last type
is implemented in this paper, enabling the simu-
lation and optimisation of the dispersive tubular
reactor, while the (false) transient behaviour is
studied in Part II (Logist et al., 2005).

The organisation of the paper is as follows. Sec-
tion 2 introduces the mathematical model. Sec-
tion 3 states the optimal control problem and de-
rives the analytical control law. Section 4 outlines
the weighted shooting-type procedure, which is
applied in Section 5. In this section, the influence
of dispersion on the optimal control profiles and
the sensitivity of the optimal control with respect
to the trade-off parameter in the cost criterion,
are illustrated. Finally, Section 6 summarises the
main conclusions.

2. THE AXIAL DISPERSION MODEL

The reactor under study is a classical tubu-
lar reactor in which an irreversible, exothermic,
first-order reaction takes place. A surrounding
heating/cooling jacket is used to control the reac-
tor temperature, as depicted in Figure 1. Describ-
ing the reactor under steady-state conditions by
a 1D-model with axial mass and heat dispersion
results in the following system of two second-order
differential equations with respect to the spatial
coordinate z and four Danckwerts boundary con-
ditions (Danckwerts, 1953):

Fig. 1. Tubular reactor with surrounding heat-
ing/cooling jacket.
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where T [K] and C [mole/L] are the temperature
and the reactant concentration, respectively, D1

[m2/s] and D2 [m2/s] are the energy and mass
dispersion coefficients, respectively, v [m/s] is the
fluid superficial velocity, ∆H [cal/mole] is the
heat of reaction (∆H < 0 for an exothermic
reaction), ρ [kg/m3], Cp [cal/kg/K], k0 [1/s], E
[cal/mole], R [cal/mole/K], h [cal/s/m2/K], d [m]
and Tw [K] are the density, the specific heat, the
kinetic constant, the activation energy, the ideal
gas constant, the heat transfer coefficient, the re-
actor diameter, and the jacket fluid temperature,
respectively. Tin and Cin are the respective feed
temperature and concentration (at z = 0−).

The dispersion parameters D1 and D2 take de-
viations from the plug flow behaviour, caused by
(i) turbulence, (ii) a nonuniform velocity profile
over the cross-section and (iii) molecular diffu-
sion, into account and introduce a certain amount
of back-mixing (i.e., upstream material and heat
transport) (Kramers and Westerterp, 1963). In-
terestingly, these parameters can also be used to
describe an entire range of reactors. When no
dispersion is present, the model reduces to the ide-
alised plug flow model, while an infinite amount of
dispersion induces infinite back-mixing, yielding
perfectly mixed continuous reactor behaviour, en-
countered in an idealised continuous stirred tank
reactor. Observe that in literature, dimensionless
Peclet numbers Pe (Pe

4
= v ·L/D), indicating the

relative importance of convective over dispersive
transport, are often used to describe the reactor
behaviour instead of the dispersion coefficients
themselves.

3. THE OPTIMAL CONTROL PROBLEM

The ingredients for developing a model-based,
optimal control strategy are (i) a mathematical
model that captures the main process characteris-
tics, (ii) the determination of constraints imposed
on the states and/or controls and (iii) the specifi-
cation of a cost criterion that has to be minimised
(Kirk, 1970). For the studied system, these ele-
ments are elaborated in the following subsections.



3.1 Mathematical model

Before optimal control theory is applied, the ax-
ial dispersion model is adapted in two ways. To
compensate for the large differences in order of
magnitude between the temperature and the con-
centration (possibly resulting in numerical simu-
lation inaccuracies), the dimensionless states x1

and x2, the dimensionless control input u, and the
constants α, β, γ and δ are first introduced.
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Secondly, since optimal control theory is prefer-
ably applied to systems of first-order differential
equations, the system of two second-order differ-
ential equations is transformed by the introduc-
tion of two new variables x3 and x4, representing
the respective gradients,
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into a system of four first-order differential equa-
tions and four boundary conditions.
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D1x3 − vx1 = 0 at z = 0 (2)

D2x4 − vx2 = 0 at z = 0 (3)

x3 = 0 at z = L
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These equations will form the basis for the deriva-
tion of optimal jacket temperature profiles.

3.2 Cost criterion

In this study the following terminal cost criterion
is proposed:

J [u] = (1−A′) (1− x2(L))︸ ︷︷ ︸
J1[u]

+A′
x2

1(L)
K ′

1︸ ︷︷ ︸
J2[u]

or equivalently:

J [u] = (1−A)C(L)︸ ︷︷ ︸
J1[u]

+A
(T (L)− Tin)2

K1︸ ︷︷ ︸
J2[u]

(4)

with A′ (or equivalently A) the trade-off coeffi-
cient between the conversion cost J1 and the en-
ergy consumption cost J2, and K ′

1 (or equivalently
K1) a user defined weighting factor to equalise the
order of magnitude of both costs.

The conversion cost part is a measure for the
process efficiency (reactor outlet concentration),
while the energy consumption cost part penalises
for excessive heating or cooling.

3.3 Constraints

Constraints on the state variables are imposed for
physical reasons: T (z) > 0, 0 < C(z) < Cin and
dC
dz (z) ≤ 0, which induce x1(z) > −1, 0 < x2(z) <
1 and x4(z) ≥ 0. Furthermore, an upper and a
lower limit are taken into account for the jacket
fluid temperature: Tw,min ≤ Tw ≤ Tw,max which
induces umin ≤ u(z) ≤ umax.

3.4 Solution

The optimal control problem statement is the
following. Find an admissible control which causes
the given reactor system to follow an admissi-
ble trajectory while at the same time minimising
the performance criterion (Kirk, 1970). It has
been shown by the authors that for the above
mentioned optimal control problem, the extremal
control law is of the bang-bang type (Logist
et al., 2004). Intuitively, a maximum-minimum
(max-min) step profile is proposed to first favour
the reaction and then lower the temperature to
decrease the energy cost.

4. NUMERICAL SIMULATION TECHNIQUE

As already mentioned, the steady-state reactor
profiles are calculated by means of a weighted
shooting-type procedure. Since both at the re-
actor inlet and outlet only two boundary condi-
tions are specified, the boundary value problem
under study is of order two. The shooting-type
procedure consists of selecting two missing values,
both either at the inlet or at the outlet and then
integrating the system of first-order differential
equations. At the other boundary the boundary
conditions have to be checked and as long as they
are not satisfied, the choice of the missing values
has to be adapted.



To avoid numerical instabilities, often encoun-
tered with forward integration of the system under
study (Kub́ıček and Hlaváček, 1983), the problem
formulation is reversed with respect to previous
work (Logist et al., 2004): the two missing con-
ditions at reactor outlet (x1(L) and x2(L)) have
to be chosen in such a way that after backward
integration of the system of first-order differential
equations (1), the resulting inlet values satisfy
boundary conditions (2) and (3). This problem
is formulated as a minimisation problem of an
objective function G, which is a weighted sum
of the squared inlet boundary conditions. K is a
strictly positive scaling factor in order to bring
both parts in the same order of magnitude, here
equal to 100.

G = K(D1x3(0)− vx1(0))2 + (D2x4(0)− vx2(0))2

Evidently, the correct outlet boundary values are
found when G reaches its minimum value of 0. The
integration of the ODE system is performed with
the ode15s routine while the optimisation routine
is the e04jaf routine from the NAG-toolbox, both
in Matlab c© (The Mathworks Inc., Natick).

5. NUMERICAL SIMULATIONS

In this section, the reactor performance under the
analytically derived bang-bang control is numeri-
cally investigated. The calculations are performed
for tubular reactors ranging from nearly plug flow
reactors (Pe = 108) to almost perfectly mixed
continuous stirred tank reactors (Pe = 0.01),
using the weighted shooting-type procedure. It
should be noted here, that for the simulations
both mass and heat dispersion are assumed to
have the same importance, reflected by equal val-
ues for the heat and mass dispersion coefficients
D1 and D2 (and consequently also the same heat
and mass Peclet numbers). In addition, the opti-
mal values for the idealised, limit cases, i.e., the
PFR and the CSTR, are computed. Afterwards
the sensitivity of the optimised control profile on
the trade-off coefficient A is studied.

The (fixed) process parameters values used for the
numerical simulations originate from Smets et al.
(2002) and are summarised in Table 1.

5.1 Max-min control law

The practical implementation of the max-min con-
trol profile involves a sequence of two heat ex-
changers, a first one with a constant temperature
Tw,max from the inlet to a switching position z1,
followed by a second one with a constant temper-
ature Tw,min from z1 to the reactor outlet.

Table 1. Parameter values.

Parameter Value Units

v = 0.1 m/s
L = 1 m
δ = 0.25 [-]
E = 11250 cal/mole
k0 = 106 1/s
β = 0.2 1/s
Cin = 0.02 mole/L
R = 1.986 cal/(mole · K)
Tin = 340 K
Tw,min = 280 K
Tw,max = 400 K
K1 = 250000 [-]

In this section, the optimal switching positions
are numerically determined. For 101 equally dis-
tributed switching positions z1 and for 15 differ-
ent Peclet values (108, 107, 106, 105, 104, 103,
200, 100, 20, 10, 2, 1, 0.5, 0.1 and 0.01), the
exact initial conditions are calculated and used
to compute the corresponding reactor profiles and
the value of the cost criterion J (Equation (4)).
Figure 2 illustrates the evolution of this cost and
its constituting parts (i.e., the conversion cost J1

and the energy cost J2), as a function of the
switching position z1. Without loss of generality,
only the results for five Peclet numbers (0.1, 1, 2,
10 and 20) and for the PFR and CSTR cases, are
depicted, to avoid overloading the plots. Figure 3
displays the resulting optimal reactor profiles. The
following observations can be made.

• A first important observation is that in all
plots, for increasing Peclet numbers, the re-
sults for the axial dispersion model converge
towards the plug flow values, while for de-
creasing Peclet numbers, a convergence to-
wards the CSTR results is visible. Broadly
speaking, the transition from a more or less
perfectly mixed behaviour to a more or less
plug flow regime is observed within a narrow
range of Peclet numbers (Pe = 0.1 to 10).

• The conversion cost J1 always reaches its
minimum at a switching position z1 equal to
1 m, which means that the optimal temper-
ature profile is Tw(z) = Tw,max for all values
of z. This is not surprising because higher
(reactor) temperatures favour the conversion.

• The energy consumption cost J2 first de-
creases with increasing switching position z1,
then reaches almost zero and finally increases
again. This tendency reflects the fact that
both too high and too low reactor (and hence
jacket fluid) temperatures are penalised.

• When both the conversion cost J1 and
the energy consumption cost J2 are equally
weighted (A = 0.5) in the total cost crite-
rion J , an intermediate optimal switching
position results. Increasing Peclet numbers
give rise to a lower optimal cost and a lower
switching position.
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Fig. 2. Total terminal cost J (top), conversion
cost J1 (middle) and energy cost J2 (bottom)
as a function of the switching position z1 for
various Peclet numbers Pe.

This observation is more elaborated in Figure 4,
where the minimal cost value and the optimal
switching positions are shown as a function of the
Peclet number. Two conclusions can be deduced.

• For very high Peclet numbers the results con-
verge towards the plug flow results described
by Smets et al. (2002). The very low cost
value, encountered for high Peclet numbers
can be explained by the more plug flow like
behaviour of the tubular reactor if dispersion
is not well pronounced. The conversion in a
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Fig. 3. Optimal concentration (top) and temper-
ature (bottom) profiles for different Peclet
numbers Pe.

plug flow reactor is known to be higher than
in a perfectly mixed configuration for a reac-
tion with monotonically increasing kinetics,
e.g., an irreversible first-order reaction.

• An important practical feature is the fact
that dispersion has almost no effect on the
optimal switching position z∗1 . This is a very
useful conclusion for tubular reactor design
because the dispersion coefficients D1 and D2

are hard to measure or predict accurately.

5.2 The influence of the trade-off coefficient A

In this section, the influence of the trade-off co-
efficient A is assessed. It is clear that for higher
values of A (e.g., A=0.7), more attention is paid
to a low energy cost, while for lower A values (e.g.,
A=0.3), a low outlet concentration is emphasised.

Similar to Figure 4 the influence of dispersion
on the minimal cost and the optimised control
variables is depicted in Figure 5, but here for two
additional values of A (i.e., 0.3 and 0.7). It can
easily be seen that, for the bang-bang control,
increasing the value of A causes a decrease in the
optimal switching position and the minimal cost,
but only for low Peclet numbers (Pe < 10).



10
−2

10
0

10
2

10
4

10
6

10
8

0

0.0025

0.005

0.0075

0.01
Reactor with max−min control

Peclet number [−]

M
in

im
al

 c
os

t [
−

]

10
−2

10
0

10
2

10
4

10
6

10
8
0

0.25

0.5

0.75

1

O
pt

im
al

 s
w

itc
hi

ng
 p

os
iti

on
 [m

]

Fig. 4. Minimal cost value (- - -) and optimal
switching position (—) as a function of the
Peclet number Pe.
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Fig. 5. Minimal cost value (- - -) and optimal
switching position (—) as a function of the
Peclet number Pe for various trade-off coef-
ficient A (A=0.3 (♦), 0.5 (x) and 0.7 (2)) in
the reactor with max-min control.

6. CONCLUSIONS

In the context of optimal control of chemical reac-
tors, this paper, being the first paper of a series of
two, focusses on optimal jacket fluid temperature
profiles for exothermic tubular chemical reactors
with axial mass and heat dispersion. By apply-
ing Pontryagin’s minimum principle, the optimal
control law for the system under steady-state, i.e.,
a bang-bang control was previously determined.
Since the minimum principle provides only the
type of extremal control sequences and not the
exact switching positions, the latter have to be
found by numerical optimisation. Hereto, an ef-
ficient shooting-type procedure is developed to
obtain the temperature and concentration profiles
which satisfy the Danckwerts boundary condi-
tions. Based on this procedure, simulations are
performed to determine the optimal switching po-
sition for a max-min jacket fluid temperature for
whole family of tubular reactors, i.e, from almost
perfectly mixed reactors with a CSTR behaviour
to nearly plug flow reactors. The results show
only a weak influence of dispersion on the op-

timal switching position, which is an extremely
useful conclusion for practical reactor design. In
addition, the influence of the trade-off coefficient
A in the cost criterion is investigated. Here, an
increased emphasis on the energy cost results in
a decrease of the optimal switching position and
the minimal cost. In the second paper (Logist et
al., 2005), the performance of the here introduced
optimal control solutions will be compared with
that of practically more feasible control inputs and
the transient behaviour will be assessed.
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