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Abstract: This paper presents a nonlinear H∞  state feedback attitude control design 
method for spacecraft large angle maneuvers, which is subject to moment-of-inertia (MOI) 
uncertainty. Moreover, the operation of attitude maneuver is affected by external 
disturbances. The attitude control design thus employs a nonlinear H∞  method to achieve 
stability and robustness so that both MOI uncertainty and external disturbances can be 
accounted for. In the paper, a solution for robust spacecraft attitude control is conjectured 
and shown to satisfy the nonlinear H∞  criterion. This results in a nonlinear H∞  control 
law that is capable of robustly stabilizing the maneuver in the presence of external 
disturbance and spacecraft inertia uncertainty. The simulation results are presented to 
demonstrate the effectiveness of the proposed design method.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The development of a robust controller for 

satellite attitude control has become an important 
engineering issue, especially for large angle 
maneuver cases. Two major problems encountered 
during spacecraft attitude control are the disturbances 
from space environment and the perturbation of its 
moment-of-inertia (MOI) variation. For example, it 
is quite often to confront the variation of MOI in a 
thruster-based control system. The center of gravity 
will change while the amount of propellant is 
decreasing. This results in the change of MOI. In this 
paper, the model of a rigid spacecraft, with 
disturbance inputs and MOI uncertainty, controlled 
by three control torques is considered.  
The large angle attitude control of spacecraft has 
received extensive attention in recent decades. One 
characteristic to this kind of attitude control problem 
is that nonlinear attitude dynamics is involved, 
restricting the use of linearized control design 
methods. Existing nonlinear control design methods 
for spacecraft attitude control include the use of 

sliding mode control (Cavallo, et al., 1996), mode 
reference adaptive control (Singh, 1987), quaternion 
feedback (Joshi, et al., 1995; Wie, et al., 1985), 
linear matrix inequality (LMI)( Show, et al., 2003), 
etc. Recently, nonlinear ∞H  control methods have 
also been proposed (Dalsmo, et al., 1997; Kang, 
1995; Wu, et al., 1999; Yang, et al., 2000) to address 
the attitude control problem. This paper proposes a 
more general Lyapunov (or Hamilton-Jacobi) 
function to account for the stability and robustness of 
the attitude control problems. Unlike the results in 
(Dalsmo, et al., 1997; Wu, et al., 1999), the ∞H  
controller based on the proposed approach is 
nonlinear. 
 
 
2. REVIEW OF NONLINEAR ∞H  CONTROL 

THEORY 
 
In this section, results in nonlinear ∞H  control are 
briefly reviewed. Consider a nonlinear system of the 
form 



     

( ) ( )x f x g x d= +�           (1a) 

( )z h x=                                                 (1b) 

where nRx ∈  is the state vector, d  is the exogenous 
disturbance, and z  is the performance output signal. 
Assume that ( )f x , ( )g x , and ( )h x are smooth 
functions and 0  x x=  is the equilibrium point of the 
system, i.e., 
              ( )0 0f x =                                       (2a) 

               ( )0 0h x = .                                               (2b) 

The nonlinear system is said to have an 2L  gain less 
than γ  if the following relationship holds 

 ( ) ( ) ( ) ( )2

0 0

T Tz t z t dt d t d t dtγ
∞ ∞

<∫ ∫      (2c) 

for any input [ )2 0,d L∈ ∞ . The 2L  gain 
characterizes the relation between the disturbance 
input energy and performance output energy. A small 
γ  can be interpreted to have a disturbance 
attenuation property. The following lemma provides 
a test criterion for the disturbance attenuation 
property (Isidori,  et al., 1992; Van der Schaft,1992). 
 
LEMMA 1 The nonlinear system has an 2L  gain 
less than γ  if there exists a 1C  function 

+→ RRV n:  with ( )0 0V x =  such that 
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The analysis results can be extended for 
controller synthesis. Consider the nonlinear control 
design problem in which the system is described by 

( ) ( ) ( )
( )

1 2

1

x f x g x d g x u

h x
z

uρ

= + +

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

�
                 (3) 

where u  is the control signal and ρ  is a weighting 
scalar for the control signal. It is desired to 
synthesize a control law, such that the resulting 
closed-loop system is asymptotically stable and the 

2L  gain from d  to z  is less than γ .  The following 
celebrated lemma  (Isidori,  et al., 1992) provides a 
nonlinear ∞H  control law design method. 
 
LEMMA 2 The closed-loop system has   an 2L  gain   
less  than  γ  if there exists a positive 1C  function 
with ( )0 0V x = satisfying the following Hamilton-
Jacobi partial differential inequality (HJPDI) 
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Furthermore, when the system is zero-state 
detectable, the closed-loop system is    asymptotically 
stable and indeed a stabilizing feedback control can 
be constructed 

( )22

1 T Vu g x
xρ

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

 

to satisfy the 2L  gain requirement.  
    It is clear that the construction of the Hamilton-
Jacobi function ( )V x  constitutes a crucial step in 
control performance and control law synthesis. 
 
 
3. SPACECRAFT DYNAMICS AND DESIGN 

FORMULATION 
 

The equations of motion of the spacecraft are 
described as follows ( Show, et al., 2003; Dalsmo, et 
al., 1997; Kang, 1995; Wu, et al., 1999)  

 [ ]J J u dω ω ω= − × + +�   

[ ]1 1
2 2

ε ηω ε ω= + ×�                               (5) 

1
2

Tη ε ω= −�    

where J is the MOI matrix, ω  is the angular velocity 
of the spacecraft, u is the control torque , d  is the 

environmental disturbance torque, and TTε η⎡ ⎤⎣ ⎦  

constitutes the quaternion. Note that the dynamical 
equation has two equilibrium points 0ω = , 0ε = , 
and 1η = ± . These two equilibrium points, however, 
correspond to the same attitude as the quaternion is a 
redundant representation. Indeed, it is known that the 
quaternion satisfies 
  2 1Tε ε η+ =  
In the following, the notation [ ]ω ×  is used to 
represent the 3  3×  skew symmetric matrix formed 
from the vector ω . More precisely, let 
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Likewise, 
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Let [ ]Tx ω ε η= , (5) can be written in the matrix 
form of  

( ) ( ) ( )1 2x f x g x d g x u= + +�                       (6) 
where 
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.  

The true spacecraft inertia is denoted by  
     
 ( )o JJ J δ= +  
where oJ  is the measured value of spacecraft inertia, 
and Jδ  is the measurement error. Rewrite (5) to 
obtain the equations of motion of the spacecraft with 
uncertainty error as 

[ ]( ) ( )o J o JJ J u dδ ω ω δ ω+ = − × + + +�                                         

[ ]1 1
2 2

ε ηω ε ω= + ×�                           (7)  

1
2

Tη ε ω= −�                                                

or in the matrix form of  
1 1( ) ( ) [ ( ) ( )]x f x f x g x g x dδ δ= + + +�     

2 2[ ( ) ( )]g x g x uδ+ +                                         (8) 
The perturbation terms ( )f xδ , ( )1g xδ , and 

( )2g xδ  are derived as follows: 
 Assume Jδ  is sufficiently small such that 
the zeroth-order term from the binominal expansion 
of 1)( −+ JoJ δ  is valid. Moreover, assume the scalar 

J∆  is the largest variation percentage of MOI, and 
then we can obtain following approximations: 

J J oJδ ≤ ∆                                            (9a) 
1 1 1(1 ) ( ) (1 )o J o J o JJ J Jδ− − −− ∆ ≤ + ≤ + ∆            (9b) 

use the following expressions to denote (9b): 
1 1( ) (1 )o J o JJ Jδ − −+ ≤ ± ∆                       (10) 

Then, the uncertainty terms in (8) can be bounded by 
the following relations: 

( )21 11 [ ] [ ]
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12 [ ]
0
0

J o oJ Jω ω−⎡ ⎤∆ ×
⎢ ⎥≈ ⎢ ⎥
⎢ ⎥⎣ ⎦

∓
                           (11a) 

 
1 1Jg gδ ≤ ±∆                                    (11b) 

2 2Jg gδ ≤ ±∆                                   (11c) 
In the attitude control design, it is desired that 

the system is stable and the excursions of angular 
rate and control input are minimized. This motivates 
the use of the following performance output signal to 
be minimized 

  ( )1h x
z

uρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                      (12a) 

where ρ  is a weighting scalar for the control signal. 
The function ( )1h x  is assumed to be of the following 
form 

  ( ) 1
1

2

h x
ρ ω

ρ ε

⎡ ⎤
= ⎢ ⎥
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                      (12b) 

for some positive scalars 1ρ  and 2ρ . Clearly, it is 
desired to have ( )1h x or z  small so that the three-
axis attitude control performance as characterized by 
the angular rate and attitude error can be kept as 
small as possible. Also, the control energy is 
accounted for in the problem formulation. 

In summary, the equations (8), (12a) and (12b) 
can be used to formulate the attitude control problem 
with following relations: 
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                                    (13c) 
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1 1Jg g∆ = ±∆                                        (13f) 

2 2Jg g∆ = ±∆                                       (13g) 
The design objective is to find a control u  under 

uncertainty and disturbance such that the system is 
stable and the 2L  gain from d  to z  is less than γ . 
 
 
4. NONLINEAR H∞  CONTROLLER SYNTHESIS 

 
Based on the analysis of above section, we will 

proceed to solve the design problem for the uncertain 
plant (8). The objective of control design is to find a 
smooth control law for u  such that the system is 
stable and 

2 2
z d γ≤ . From Lemma 2, it suffices 

to find a ( ) 0≥xV  satisfying (4). 
Consider the following candidate function 

( ) ( )1 22T T
o oV x a J b b Jω ω η ε ω= + +    

( )( )1 22 1 c cη η+ − +                                  (14) 

for some positive constant a, 1b , 2b , 1c  and 2c . Note 

that     [ ] [ ]0 0 1T Tω ε η =  ⇒  ( )0 0V x = . 



     

It is seen that the equilibrium point 
[ ] [ ]0 0 1T Tω ε η =  corresponds to 0x  in 
Lemma 1. In what follows, we will show that the 
candidate function (14) will satisfy the H∞  criterion 
described in Lemma 2.  Moreover, the condition of 

0η ≥  will be imposed to ensure that the candidate 
function will always converge to ( )0 0V x = . Using 

the identity ( ) ( )22 1 1Tη ε ε η− = + − , the candidate 
function can be rewritten as 

( ) 1T TV x ω ε η⎡ ⎤= − ×⎣ ⎦  
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where I denotes the identity matrix with appropriate 
dimension. The function ( )V x  is positive definite 
when 0a >  and 

( ) ( )2
1 2 1 2

1 0oc c I b b J
a

η η+ − + >                   (15) 

for all 0η ≥ . 
The nonlinear ∞H  control design involves (4). 

Note that  
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This then gives 
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T T
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and 
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ω η ε ω⎛ ⎞∂
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In the above derivation, the following equality is 
used 
 [ ] [ ]T TJ Jω ε ω ε ω ω× = − ×                      (18) 

The HJPDI corresponding to (4) is obtained by 
replacing 1, ,f g and 2g  with f f+ ∆ , 1 1g g+ ∆ , and 

2 2g g+ ∆ , respectively. 
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The following identity has been used to simplify 
the inequality: 
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where the weighting coefficients iσ  are used to tune 

ig∆ . 

Thus, by selecting 1c  and 2c  such that 
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(21a) and (21b) imply that (15) can be written as 
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⎛ ⎞

− + + −⎜ ⎟
⎝ ⎠

    

( )2
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and the function Hγ  becomes 
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                                                                                (23) 
Note that the matrix [ ]Iη ε+ × and [ ]ε ×  has a norm 
less than or equal to 1. Thus, 

( ) [ ]( ){ 1 2 2
T T
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}1 24( ) [ ]J ob b Jη ε ω± + ∆ ×  

( )1 2 1 24( ) T
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Substituting this inequality into Hγ , a sufficient 
condition for the system to have an 2L  gain less than 
γ  can then be established: 
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THEOREM  There exists a controller such that the 

2L  gain from d  to z  is less than γ  if there exist a, 

1b , and 2b  such that 
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where 
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(1 )(1 ), (1 )(1 )J JA Bσ σ
σ σ
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= + + = − −  

for all 0η ≥ . Furthermore, the controller 

( )1 22

2u a b bω ε ηε
ρ

= − + +                             (27) 

solves the state feedback nonlinear ∞H  control 
problem given by system (7a), (7b) and (8), with 

[ ] [ ]0 0 0 1T Tx ω ε η= = . 
   The tests in the above theorem involve the 
quaternion variable η . By applying the worst-case 
analysis, another sufficient condition can be obtained. 
 
COROLLARY A sufficient condition for the 
existence of the ∞H  controller of the form (27) is the 

existence of a, 1b , and 2b  such that 
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With some modifications, it can be shown that 
the proposed method and criteria generalize the 
results in (Dalsmo, et al., 1997). Indeed, suppose we 
set 2b , 2c  and J∆  as zeros, the conditions in 
(Dalsmo, et al., 1997) can be recovered using the 
criteria in the corollary. 
 
 
5. SIMULATION RESULTS 
 
To substantiate the performance of the controller 
design, experimental simulations on the ROCSAT-3 
spacecraft were carried out, which is motivated by 
the one given in (Show, et al., 2003). During the 
operation of orbit transfer, the thruster control system 
of ROCSAT-3 spacecraft is required to perform large 
angle reorientation maneuvers. Gravity gradient 
torque is the dominant environmental disturbance at 
its 450 km parking orbit. Figure 1 depicts this 
external disturbance (in the body frame) which was 
generated by simulation  as follows. Table 1 contains 
the inertia matrix and parameters of controller. The 
initial conditions for the simulation cases are given in 
Table 2 using the 3-2-1 Euler angles. In this paper, 
we assume the nominal inertia matrix is perturbed by 
20%. 
Simulation 

To illustrate the robust capability of MOI 
uncertainty and external disturbance attenuation, two 
simulation cases with large angle maneuvers were 
performed. According to the derivation in the 
previous section, if the inertia uncertainty is 
sufficiently small, then the sufficient condition for 
the existence of the nonlinear H∞

 controller is 
assured. This is demonstrated by deviating all 
elements of the inertia matrix by 20% from nominal 
case in the simulation. Figs. 2 and 3 show the 

trajectories of the components of quaternion. Except 
the deviations of MOI, each simulation also 
considers the external torque. The simulation result 
shows that the nonlinear H∞  controller results in a 
fast decay response and has a robust ability to 
attenuate the effects of external disturbance and MOI 
uncertainty. 
 
Table 1  Parameters of the satellite system and the 
controller 
Control gain of Simulation: 

155,200,500,20 21 ==== bbaρ  
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∆
≤

∆
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Table 2  Initial conditions of three cases  
 Simulation 

Case 1 
Simulation 

Case 2 
1ε -0.2906 -0.6403 

2ε -0.6100 -0.0560 

3ε 0.4138 0.7631 
η 0.6100 0.0668 
φ -84 deg -44 deg 
θ  -30 deg 75 deg 
ϕ 96 deg 137 deg 

 
 
 

 
Fig. 1.  Gravity gradient disturbance in simulation 
 
 
 



     

 
Fig. 2 Time response of four components of 

quaternion for Simulation(case 1), dashdot: 
0.2J oJδ = − ; solid: 0Jδ = ; dotted: 0.2J oJδ = +  

 

 
Fig. 3 Time response of four components of 

quaternion for Simulation  (case 2), dashdot: 
0.2J oJδ = − ; solid: 0Jδ = ; dotted: 
0.2J oJδ = +  

 
 
6.CONCLUSION 
 
This paper presents a nonlinear H∞  state-feedback 
attitude control technique for spacecraft under large 
angle maneuvers. An additional freedom in the 
candidate Lyapunov function has identified and 
explored to solve the nonlinear H∞  control problem. 
The sufficient condition for the existence of the 
nonlinear H∞

 controller has derived for the case of 
spacecraft inertia uncertainty. It was shown that if 
the uncertainty is within an appropriate amount of 
uncertainty, the existence of the nonlinear H∞

 
controller is assured. Moreover, we have shown that 
the nonlinear term in the proposed controller brings 
quicker decay response when the spacecraft is 
performing large maneuver. The simulation results 
achieve the desired stability and robustness of 
attitude control design for a satellite which is subject 
to moment-of-inertia uncertainty and external 
disturbance and hence verify the effectiveness of the 
proposed method. 
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