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Abstract: This paper describes a MATLAB-based software package for estimation
of dynamic systems. A wide range of standard estimation approaches are sup-
ported. These include the use of non-parametric, subspace-based and prediction-
error algorithms coupled (in the latter case) with either MIMO state space
or MISO polynomial model structures. A key feature of the software is the
implementation of several new techniques that have been investigated by the
authors. These include the estimation of non-linear models, the use of non-standard
model parametrizations, and the employment of Expectation Maximisation (EM)
methods. Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper describes the “University of Newcastle
Identification Toolbox” (UNIT). This is software,
usable as a MATLAB (Mathworks, 2004) toolbox,
that implements a wide variety of algorithms for
estimation of dynamic system models on the basis
of observed operating records.

The essential features of this toolbox are as fol-
lows:

• It was developed by the authors in order
to provide a unified platform to compare,
contrast and profile various estimation ap-
proaches, both old and new;

• The authors believe that it has developed to
a point where it may be useful to a wider
group of researchers;

1 This work was supported by the Australian Research
Council.

• In aid of the above, it is freely available
under the GNU Public Licence (GPL) (GNU,
2004) which allows for further open source
development by other interested parties;

• The work is inspired by the success, in allied
research communities (numerical optimisa-
tion, numerical linear algebra), of promul-
gating research outcomes via non-proprietary
software releases (Netlib, 2004).

Key features of the work as it stands are that the
toolbox currently supports:

• Full multivariable system estimation via state
space model structures;

• MISO estimation via both state space and
polynomial form (ARMA,ARMAX, Output-
Error, Box–Jenkins) model structures;

• State Space and Polynomial MISO estima-
tion from frequency domain data via both
state space and polynomial model structures;

• Recursive estimation of FIR and ARX model
structures;



• Subspace based estimation methods;
• Computation of error bounds both in pa-

rameter space and on associated frequency
response estimates;

• Non-parametric estimation;
• Model validation;
• Kalman prediction, filtering and smoothing.

While these features would be considered ‘stan-
dard’, the toolbox also features certain non-
standard embellishments which have arisen from
the authors research activities, such as:

• The estimation of non-linear model struc-
tures including:
(1) Bilinear systems;
(2) MISO Hammerstein, Wiener and Wiener–

Hammerstein systems.
• The use of non-standard optimisation meth-

ods including:
(1) Expectation-Maximisation (EM) based

methods;
(2) Embellishments of standard gradient based

search methods which hybridise recently
developed Data Driven Local Co-Ordinate
(DDLC) techniques (Wills and Ninness,
2004).

• The use of non-standard bases for model
structures including:
(1) Delta operators as an alternative to more

standard shift q operators;
(2) Rational orthonormal bases as an alter-

native to more standard FIR stuctures.

As already mentioned, it was the evaluation of
these new techniques relative to more established
methods that was the impetus for developing this
first release of the toolbox.

We would welcome wider collaboration with other
researchers to include further embellishments
within the common framework established by this
first release.

2. STANDARD UNDERLYING METHODS

We begin the description of the approach and
algorithms underlying UNIT by considering the
case of multiple-input ut ∈ Rm, single-output
yt ∈ R1 (MISO) data in which case, by default,
the following polynomial form model structure is
used,

yt = G(q, θ)ut + H(q, θ)et (1)

where et is an i.i.d. zero mean noise sequence with
variance E

{
e2

t

}
= σ2, G(q, θ) is 1 × m vector of

scalar rational transfer functions {Gi(q, θ)} and
H(q, θ) is also rational according to

Gi(q, θ) = q−ki
Bi(q, θ)

Ai(q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
(2)

where

Ai(q, θ) = 1 + a1q
−1 + a2q

−1 + · · · + ama
q−mi

a ,

Bi(q, θ) = b0 + b1q
−1 + b2q

−1 + · · · + bmb
q−mi

b ,

D(q, θ) = 1 + d1q
−1 + d2q

−1 + · · · + dmd
q−md ,

C(q, θ) = 1 + c1q
−1 + c2q

−1 + · · · + cmc
q−mc ,

and ki is a specified delay acting on the i’th input.

Since any of the orders mi
a, mi

b, mc, md may be
set to zero, then UNIT can implement any of the
common FIR, ARX, ARMAX, ARMA, Output-
Error and Box–Jenkins model structures(Ljung,
1999).

In all of these situations, the mean-square optimal
one-step ahead predictor ŷt(θ) based on the model
structure (1) is (Ljung, 1999)

ŷt(θ) = H−1(q, θ)G(q, θ)ut +
[
1 − H−1(q, θ)

]
yt

with associated prediction error

εt(θ) , yt − ŷt(θ) = H−1(q, θ) [yt − G(q, θn)ut] (3)

Using this, assuming that N samples of ut and
yt are available, a quadratic estimation criterion
may be defined as

VN (θ) =
1

2N

N∑

t=1

‖εt(θ)‖
2 (4)

and then used to construct the prediction error

estimate θ̂N of θ as

θ̂N , argmin
θ∈Rn

VN (θ). (5)

This estimate is computed in UNIT via an iter-
ative ‘damped’ Gauss–Newton strategy in which,
at the k+1’st iteration, a new approximation θk+1

for θ̂N is found according to

θk+1 = θk + µ p. (6)

Here, µ ∈ (0, 1] is a damping parameter (step
length), and p is a search direction defined as a
solution of

V ′′
N (θk)p = V ′

N (θk) (7)

(·′ denotes differentiation with respect to θ). If
no initial estimate is provided, then in the MISO
case UNIT uses a modified Steiglitz–McBride
method to initialise G(q, θ), and uses the Hannan-
Rissanen method to initialise H(q, θ). In the
MIMO case, the N4SID (van Overschee and
de Moor, 1994) subspace based variant is em-
ployed for initialisation purposes.

Analysis of estimation error is performed by as-
suming that N is large enough that, with θ◦ de-
noting the true underlying parameters

θ̂N ∼ N
(
θ◦, σ̂

2[V ′′
N (θ̂N )]−1

)
, σ̂2 =

1

N

N∑

t=1

ε2
t (θ̂N )



is a good approximation.

Finally, in this MISO situation, recursive (in time)
estimation may be performed for FIR and ARX
model structures. This amounts to the update
equation (6) being used. With µ = 1 and p chosen
via (7), an RLS scheme is achieved, while with
V ′′

N (θk) set to I and µ freely chosen, an LMS
scheme is implemented. A Kalman-Filter based
update is also possible by similar modifications.

In the case of multivariable data, state space
model structures of the form

[
xt+1

yt

]
=

[
A B
C D

] [
xt

ut

]
+

[
K
I

]
et (8)

are employed. The parameters in this structure
may then be estimated by a subspace based
method, via any of the N4SID (van Overschee
and de Moor, 1994), MOESP (Verhaegen, 1994)
or CVA (Larimore, 1990) variants.

Alternatively, the model structure (8) may be es-
timated via the afore-mentioned prediction error
methods, by defining the parameter vector as

θT ,

[
vec {A}T

, · · · , vec {K}T
]

(9)

in which case the predictor can be expressed
according to

x̂t+1|t = (A − KC)x̂t|t−1 + (B − KD)ut + Kyt

ŷt|t−1(θ) = Cx̂t|t−1 + Dut.

A potential difficulty in employing the Gauss–
Newton search direction (7) is that, since (9) is an

over-parametrization, V ′′
N (θ̂N ) is singular(McKelvey

et al., 2004). The standard method, implemented
in UNIT, for handling this situation is to switch to
a new DDLC parametrization β defined as (McKelvey
et al., 2004; Bergboer et al., 2002)

θ(β) = θ + Pβ (10)

where, using the indicated singular value decom-
position

P = V1, V ′′
N (θ) = [V1, V2]

[
S1 ∅

∅ ∅

] [
V T

1

V T
2

]
.

However, certain new techniques described in (Wills
and Ninness, 2004) which build on this idea in
order to deliver enhanced performance are also
available in UNIT.

In the case of frequency domain data, only SISO
structures are supported, which may be described
in either state space or polynomial form. In the
latter case, denoting by Y (ωk) the measured fre-
quency response at frequency ωk the model struc-
ture becomes

Y (ωk) = G(γk, θ) + H(γk, θ)E(ωk) (11)

where G(γk, θ), H(γk, θ) are rational in γk, E(ωk)
is a complex i.i.dżero mean random process, and
γk is either ejωk or jωk depending on whether
a discrete time or continuous time estimate is
sought.

In this case, UNIT finds an estimate θ̂N again via
(5) and the Gauss–Newton method (6),(7), but
now with respect to the cost function

VN (θ) =
1

N

N∑

k=1

|Y (ωk) − G(γk , θ)|2 |H(γk, θ)|2. (12)

In fact, when estimating from frequency domain
data, UNIT supports only the Output-Error case
of C(γ, θ) = D(γ, θ) = 1 or the ARX case of
C(γ, θ) = 1, D(γ, θ) = A(γ, θ). Furthermore, if
a continuous time model is requested, then the
polynomials in γ = jω that are implied by the
rational form are re-parametrised in terms of other
polynomials (of more limited dynamic range) in
order to improve numerical robustness.

When a state-space structure is employed with
respect to frequency domain data, the model
structure implemented by UNIT becomes

Y (ωk) = G(γk, θ) + E(ωk) (13)

G(γ, θ) = C(γI − A)−1B + D. (14)

This is then estimated by means of the subspace
based methods espoused in (McKelvey et al.,
1996).

Finally, UNIT also supports the computation of
non-parametric estimates via either the Blackman–
Tukey or ETFE methods, and implements ro-
bust square-root versions of Kalman Filtering and
Smoothing using routines that have been hand-
coded in ‘C’ using the ATLAS libraries(Netlib,
2004) in order to deliver maximum performance.

3. EMBELLISHMENTS

As mentioned in the introduction, the motivation
for developing UNIT was to serve as a platform for
testing and evaluating new methods. These new
techniques, once refined and proven, are now also
part of the toolbox.

Perhaps the most significant of these is the option
to replace the gradient-based search (6), (7) with
one based on the Expectation-Maximisation (EM)
algorithm. This applies only to state-space model
structures, and involves the iteration (6) being
replaced with

θk+1 = argmax
θ

Q(θ, θk) (15)

where

Q(θ, θk) , Eθk
{log pθ(X, Y ) | Y }. (16)

Here X = {x1, · · · , xN} and Y = {y1, · · · , yN}
are (respectively) the state and observed output



histories, pθ(X, Y ) is the their joint probability
density for some θ of the form (9), and Eθk

(·) is
expectation with respect to pθk

(X, Y ).

There is not sufficient space to provide more detail
than this here (see (Gibson and Ninness, 2004)
for a fuller development), but suffice to say that
it is straightforward to compute (16) via use of
a Kalman Smoother, and then the maximisation
step involved in the iteration (15) may be solved
simply and robustly in closed form.

While, as argued in (Gibson and Ninness, 2004),
this feature of UNIT offers a robust and efficient
solution for linear model estimation that is an
attractive alternative to the gradient based ap-
proach (6),(7), as argued in the further work (Gibson
et al., 2004) it also provides an effective means
for estimating parameters in the non-linear model
structure

[
xt+1

yt

]
=

[
A F B
C G D

] 


xt

ut ⊗ xt

ut


 +

[
wt

vt

]
(17)

where ⊗ denotes the Kronecker tensor product, so
that (17) represents a bilinear system.

Within this field of non-linear system identifi-
cation, a further embellishment implemented in
UNIT is the ability to handle Hammerstein–
Wiener MISO model structures of the form

yt = Z(α, zt(θ, η)) + H(q, θ)et,

zt(θ, η) = G(q, θ)xt(η), xt(η) = X(η, ut).

Here, Z(α, zt) and X(η, ut) are memoryless non-
linearities parametrized by vectors α and η re-
spectively. In this case, the estimation problem
becomes one of

θ̂N , α̂N , η̂N , arg min
θ,α,η

VN (θ, α, η). (18)

where VN is still of the form given by (4), (3) but
now with

εt(θ, α, η) = H−1(q, θ)[yt − Z(α, zt(θ, η))].

Within UNIT, these memoryless non-linearities
may be chosen as tailored functions such as
deadzones or saturations, or more general ones
described by polynomials of a given order, or
as piecewise linear with an arbitrary number of
nodes. While differentiation of the ensuing cost
VN with respect to the parametrization of these
functions requires some care, it is still straightfor-
ward (Ninness and Gibson, 2002).

With regard to time domain data, the discussion
so far has discussed models such as G(q, θ) which
are expressed with respect to the shift operator
q. However, it has been argued (Middleton and
Goodwin, 1990) that in the interests of improved

numerical conditioning, the Euler difference (or
delta) operator

δ ,
q − 1

∆
(19)

(where ∆ is the sampling period) should be em-
ployed. UNIT transparently supports the use of
this operator for all MISO polynomial structure
estimation. However, the shift operator is used as
a default.

4. SOFTWARE DESCRIPTION

For the purposes of finding a system estimate from
available data, a user of the toolbox need know
only one command:

g=est(z,m,opt);

All arguments, and the returned output g are
structure variables, which (typically) contain in-
dividual elements of mixed type.

To be more specific, the structure z defines the
observed data, and must have element z.y and
z.u which (respectively) are matrices of output
and input data, with each column representing a
different input or output, and each row a different
time sample.

The structure m defines the model structure to be
used. At a minimum, it must contain the entry m.A

which, if an integer, defines a model order, and if a
matrix/vector defines an estimate. There will be
more on this point in a moment. The structure
opt, defines optional specifications pertaining to
the algorithm being used. If there are none the
user wished to dictate, then g=est(z,m) is a legal
command.

To make this concrete, consider the data set shown
in figure 1 which was plotted according to

subplot(211); plot(y);

subplot(212); plot(u);

subplot(211); title(’Output’);

subplot(212); title(’Input’);
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Fig. 1. Observed Input/Output Data.

Then the following sequence of commands will
estimate a fifth order model from the data.



>> z.y=y; z.u=u; m.A=5;

>> g=est(z,m);

As mentioned, g is a structure, and in the above
example it will contain 26 elements. In order
to extract a summary of the properties of the
estimate, the details command provides

>> details(g)
-------------------------------------
Details for Estimated Model Structure
-------------------------------------
Operator used in model = q
Sampling Period = 1.000000 seconds
Estimated Innovations Variance = 5.059506e-03
Model Structure Used = Output Error
Estimation algorithm = Gauss-Newton search
Input #1 block type = linear
Output block type = linear
-------------------------------------

----------------------------------------------------------
Input #1 to Output #1 Estimated T/F model + standard devs:
----------------------------------------------------------

1 q^-1 q^-2 q^-3 q^-4 q^-5
B = 0.0011 -0.0019 0.0031 -0.0005 -0.0029 0.0081
SD= 0.0016 0.0029 0.0029 0.0033 0.0033 0.0024

1 q^-1 q^-2 q^-3 q^-4 q^-5
A = 1.0000 -1.4324 -0.5590 1.4602 -0.3570 -0.1047
SD= 0 0.2955 0.4923 0.1017 0.4801 0.2049

delay = 0 samples

Poles at 0.8372*exp(+-j0.0797), -0.9698, -0.1704, 0.9035.

This illustrates a main point. A philosophy under-
lying UNIT is that, in order to maximise utility
for those inexperienced with the toolbox, defaults
are used as opposed to issuing error messages.
In particular, the above indicates that since only
an order was specified, the operator type (q),
sampling period, and model order type (Output
Error) have all been set as defaults.

In order to assess the quality of this model, a
standard model validation test may be performed
in UNIT according to

validate(z,g);

which provides the sample-correlation of the error
residuals as shown in figure 2(a). Clearly, there
appears to be some undermodelling. In order
to illustrate the specification of a Box–Jenkins
structure, the following commands specify that
a first order noise model should be added to
the model structure (m.D=1), that the progress of
the Gauss–Newton iterations should be displayed
(opt.dsp=1) and that this new model should also
be validated

>> m.D=1;
>> opt.dsp=1;
>> g1=est(z,m,opt);
Finding initial dynamics model via Steiglitz-McBride...
Finding initial noise Model by Hannan-Rissanen...
bisec# = 2,cost = 4.9459e-03,gn norm =4.9212e+00:G-N Direction
bisec# = 6,cost = 4.9448e-03,gn norm =2.2722e+01:G-N Direction
bisec# = 3,cost = 4.9392e-03,gn norm =1.1786e+00:G-N Direction
bisec# = 3,cost = 4.9374e-03,gn norm =7.0141e-02:G-N Direction
bisec# = 1,cost = 4.9361e-03,gn norm =5.4293e-02:G-N Direction
bisec# = 2,cost = 4.9358e-03,gn norm =9.6350e-01:G-N Direction
----------------------------------------------------
Termination due to relative cost decrease < OPT.mdec
----------------------------------------------------
>> validate(z,g1);

The ensuing validation results are shown in fig-
ure 2(b). Of course, in practise, data other than
that used for estimation should be employed for
this validation purpose, but we ignore this in order
to streamline the presentation.
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Fig. 2. Model Validation

To illustrate a more complex example, consider
the MISO data shown in figure 3. This comes
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Fig. 3. Observed MISO Input/Output Data from
Hammerstein System.

from a system with saturation and deadzone non-
linearities on inputs 1 and 2 respectively, that
then pass through linear systems of order 4 and 3
respectively with the output then passing through
a further deadzone non-linearity.

In order to estimate a model structure of this form
we proceed as follows

>> z.y=y; z.u=u;

>> m.A=[4;3]; m.B=[3;2]; m.delay=[1;1];

>> m.in(1).type=’hinge’;

>> m.in(2).type=’deadzone’;

>> m.out.type=’deadzone’;

>> m.out.upper=0.1; m.out.lower=-0.1;

>> g=est(z,m);

Note that now two model orders are specified,
which are different, for the two linear components
associated with the two inputs. It is important
that the different orders are specified as a column
vector. If they had been a row vector, UNIT
would interpret them not as orders, but an initial
estimate of a polynomial denominator and/or
numerator.

In the above, a time delay of one sample is
specified for both of the inputs. Furthermore, it is
specified that a piecewise linear structure should
be used to model the non-linearity on the first
input, while for the second, prior knowledge that



it is of deadzone type is employed. Finally, a
deadzone non-linearity is specified for the output,
with initial estimates for the deadzone region as
[−0.1, 0.1].

As before, the results of this estimation experi-
ment can be summarised via use of the details
command.

>> details(g)
-------------------------------------
Details for Estimated Model Structure
-------------------------------------
Operator used in model = q
Sampling Period = 1.000000 seconds
Estimated Innovations Variance = 1.069568e-04
Model Structure Used = Output Error
Estimation algorithm = Gauss-Newton search
Input #1 block type = hinge
Input #2 block type = deadzone
Output block type = deadzone
-------------------------------------

----------------------------------------------------------
Input #1 to Output #1 Estimated T/F model + standard devs:
----------------------------------------------------------

1 q^-1 q^-2 q^-3
B = 0.0002 0.0001 0.0005 0.0004
SD= 0.0001 0.0001 0.0001 0.0002

1 q^-1 q^-2 q^-3 q^-4
A = 1.0000 -1.4152 -0.3569 1.2182 -0.4318
SD= 0 0.2449 0.5575 0.4215 0.1074

delay = 1 samples

Poles at -0.9274, 0.6689, 0.7719, 0.9018.

----------------------------------------------------------
Input #2 to Output #1 Estimated T/F model + standard devs:
----------------------------------------------------------

1 q^-1 q^-2
B = 0.0033 0.0007 0.0048
SD= 0.0006 0.0013 0.0012

1 q^-1 q^-2 q^-3
A = 1.0000 -2.2436 1.6332 -0.3816
SD= 0 0.0402 0.0718 0.0321

delay = 1 samples

Poles at 0.5064, 0.8365, 0.9008.
----------------------------------------------------------
Input Non-linearity Parameters and standard deviations:
----------------------------------------------------------
Input block #1 of type hinge has estimates and standard dev:

eta =

-6.1438 0.1417 7.5736 -12.8909 6.3845 12.8978
0.1249 0.0875 0.1424 0.1980 0.1265 0.2156

Input block #2 of type deadzone has estimates and standard dev:

upper limit = 0.6064, sd = 0.0058
lower limit = -0.4900, sd = 0.0051

----------------------------------------------------------
Output Non-linearity Parameters and standard deviations:
----------------------------------------------------------
Output block of type deadzone has estimates and standard dev:

upper limit = 0.0618, sd = 0.0014
lower limit = -0.0398, sd = 0.0015

By way of information, the true noise variance was
σ2 = 10−4, the true deadzone region on input
2 was (lower, then upper limit) [−0.5, 0.6]. Fur-
thermore, the above hinge parametrization cor-
responds to a deadzone with limits [−0.49, 0.59]
while the underlying true one was [−0.5, 0.6].
There was no output non-linearity in the true
system, which has essentially also been estimated
in the model, even though it was allowed for.

There are further features of UNIT that have not
been profiled by these brief examples but are still
worth mentioning.

• An estimated model structure g may be used
to specify the model structure m in cascaded
estimation experiments;

• It is not necessary to use the details com-
mand to assess the features of an estimated
model g, since the latter is simply a structure,
whose elements will be echoed to the screen
by typing it at the >> prompt;

• Frequency domain plots, complete with error
bounds may be simply generated via the
showbode(g) and shownyq(g) commands;

• A model structure may be forced by setting
m.type to fir,arx,armax,oe, bj or ss;

• A delta operator parametrization may be
specified by setting m.op=’d’;

• The EM algorithm may be specified by set-
ting opt.alg=’em’. This and m.type=’ss’

will be used as a default if z.y contains
multiple columns (outputs);

• Finally, online help for all functions is avail-
able. In particular help est gives a cata-
logue of all options available.

5. CONCLUSION

The UNIT software profiled here is intended as
an open source platform to support further re-
search developments in the science of system iden-
tification. It will co-exist without conflict in a
MATLAB environment where the propriety sys-
tem identification toolbox available for that prod-
uct (Ljung, 2004) is installed. While there is over-
lap between the functionality offered by these
two software packages, UNIT is intended mainly
for researchers and experienced practitioners. It
does not pretend to offer the same level of on-
line help, error-checking and user guidance (for
example) that are necessary in a package suitable
for widespread industrial use. Having said that,
an extensive GUI is also available for UNIT, but
lack of space preclude a description of it here.
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