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Abstract: The aim of this paper is to present the development and validation of a 
neural network model for on-line prediction of coagulant dosage from raw water 
characteristics.  The main parameters influencing the coagulant dosage are firstly 
determined via a PCA.  A brief description of the methodology used for the 
synthesis of neural models is given and experimental results are included.  The 
training of the neural network is performed using the Weight Decay regularization 
in combination with Levenberg-Marquardt method.  The simulation results of 
neural model compared to a linear regression model are illustrated with real data.  
Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

The use of artificial neural networks for process 
modelling and control in the drinking water 
treatment is currently on the rise and is considered to 
be a key area of research.  The coagulation process 
which requires the addition of chemical coagulant is 
the critical process in the drinking water treatment.  
The control of a good coagulation is essential for 
maintenance of satisfactory treated water quality and 
economic plant operation.  Basically, coagulant 
dosage is chosen empirically by operators based on 
their past experience, laboratory jar-testing and 
various information on water quality parameters.  
The jar-test apparatus simulates mixing, flocculation, 
setting, and a single test may take about one hour to 
be performed.  Disadvantages associated with jar-
testing are that regular samples have to be taken 
requiring manual intervention and operators can 
make manually in raw water quality.  There is no 

mechanistic model describing the coagulant dosage 
related to the different variables affecting the 
process.  Consequently, there is a need for a fast and 
reliable method for determining the required 
coagulant rate which can be used instead of the jar-
test analysis. 
 
The purpose of this paper is to highlight the utility 
of artificial neural networks in drinking water 
treatment in particular coagulation modelling and 
control.  Process data can be used directly to 
represent input-output process relationships. Neural 
networks proved to be extremely flexible in 
representing complex non-linear relationships 
between many different process variables (Cybenko, 
1989).  They do not require any a priori precise 
knowledge on the relationships of the process 
variables.  Various applications of these models 
have been recently 



reported in the drinking water treatment industry (as 
examples:  the forecasting of drinking water (Canu et 
al., (1990, 1997)), the prediction of the coagulant 
dosing (Gagnon et al., 1997; Agdar et al., 1996; 
Evans et al., 1997)). 
 
This investigation aims to develop a neural model for 
the on-line prediction of optimal coagulant dosage 
from raw water characteristics.  Previous researchs 
show the efficiency of a such approach using neural 
networks (Gagnon et al., 1997; Agdar et al., 1996). 
 
This paper is organised as follows. First, the drinking 
water treatment process is described .  Then a brief 
description of neural network is presented.  In the 
subsequent section, the neural model for the on line 
prediction of the coagulant dosage is developed. 
Finally, experimental results are presented. 
 
 

2. WATER TREATMENT PLANT 
DESCRIPTION 

 
The plant of drinking water treatment concerned by 
this study is the drinking water treatment plant 
Rocade located in Marrakech. It provides water to 
more than 1,5 millions inhabitants.  Raw water is 
extracted from the channel Rocade.  In case of 
resource failure (raw, pollution...), the treatment 
plant takes the raw water from a pumping plant 
Takerkoust.  60% of city needs are assured by the 
treatment plant, the complement is brought by the 
underground resources (well, drilling…).  It has a 
nominal capacity to process 1400 l/sec of water.  The 
treated water is stored in two tanks and transported 
toward the water supply network.  
 
The drinking treatment plant involves physical and 
chemical processes.  Figure 1 presents a schematic 
overview of the various operations necessary to treat 
the raw water at the Rocade water treatment plant of 
Marrakech.  The treatment consists in essentially of 
preliminary disinfection,, coagulation-flocculation, 
settling, filtration and final disinfection. 

Fig. 1. Simplified synopsis of Rocade water 
treatment plant 

 
 

3. OVERVIEW OF ARTIFICIAL NEURAL 
NETWORKS 

Neural networks are known to be able to successfully 
represent complex functions in various fields.  There 
are a wide variety of artificial neural networks 
existing in the literature, of which the feedforward 
structure is one of the most commonly used in 
modelling and control.  Feedforward neural 
networks, such as the multilayer perceptron, consist 
usually of many simple processing elements arranged 
in layers as shown in Figure 2.  Each element takes 
its input from the weighted sum of the outputs of the 
elements of the previous layer.  This input is then 
passed through a nonlinear function, often called the 
activation function, to form the element’s output 
(Hertz, 1991).  In this study, a three layer 
feedforward neural network has been adopted: it has 
been shown that is a network with a single hidden 
layer (as shown in figure 2) can simulate any 
continuous function. 
 
 

 
 
 
 

 
 

 
Fig. 2. Feedforward neural network 

 
The neural network models consist of the following 
set of equations: 
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where kO denotes the network outputs, H j the 

hidden neurons outputs, Ii  the network inputs, 
wij the weights between the input layer and the 

hidden layer and w jk  the weights between the 
hidden layer and the output layer. 

 
Training of the neural network involves adjusting the 
weights wij and w jk by using the backpropagation 
learning algorithm (Rumelhart & McClelland, 1986), 
so that the network emulates the non-linear function 
underlying the training data set.  The network 
weights are adjusted by minimising the following 
criteria derived from the difference between real and 
neural outputs respectively t and O .  
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4. PREDICTION OF COAGULANT DOSAGE 
 
The coagulation process involves many complex 
physical and chemical phenomena which are difficult 
to model using mechanistic and chemical phenomena 
traditional description.  The coagulant dose ensuring 
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optimal treatment efficiency has been shown 
experimentally to be non-linearly correlated to raw 
water characteristics which are usually available on 
line. 
 
In the sequel, a neural software sensor for the  
prediction of coagulant dosage is developed in too 
stages.  The Factorial Analysis in Principal 
Component method is firstly applied to determine the 
main parameters affecting the prediction of the 
optimal coagulant dosage.  These parameters will be 
then considered as the input variables of the neural 
model for which the training algorithm will be 
performed. 
 
 
4.1 Factorial Analysis in Principal Component 
 
As far as the dimensional analysis is concerned, 9 
describers of the raw water quality (temperature, pH, 
turbidity, Total carbonates, total suspend solid (TSS), 
oxydability, dissolved oxygen, conductivity and the 
coagulant dosage (passive parameter)) are used. A 
number of 89 samples have been used like 
individuals.  Every sample underwent different 
physical and chemical analysis as well as to the jar-
testing to determine the coagulant rate.  In order to 
show the various relationships between variables and 
principal components, It is interesting to visualize 
this variables in the relationship circle.  This 
representation allows to compare the behavior of a 
variable beside the other variable set ( It is the case 
of turbidity (3) – TSS (4)).  On the other hand, the 
following variables have an inverse behavior 
(diametrically opposite in the circle): turbidity and 
TSS with dissolved oxygen (5), oxydability (7) with 
dissolved oxygen.The total carbonates (8), situated to 
the center of the interrelationship circle, seems to 
have no effect on the system. it cannot be interpreted.  
The temperature (2) presents an independent 
behavior with to other variables. It wouldn't have to 
be eliminated in order to perfectly explain variations 
of the system.  The same thing for conductivity and 
pH variable.  The process of simplification would 
allowed to extract the following variables: 
temperature, pH, TSS, oxydability, dissolved oxygen 
and conductivity.  Given that the survey consists to 
predict the coagulant dosage related to describers 
easily measurable on-line, we have keep solely the 
following variables: temperature, pH, TSS, dissolved 
oxygen and conductivity.  The oxydability variable is 
eliminated because it is not yet measurable on-line.  
 

  
 
Fig. 3. Relationship circle. 

 
 
4.2 Neural model training 
 
The neural network used for modelling of the 
coagulant dosage is a MLP type.  Note that the 
network inputs are the observed values of the 
retained raw water quality parameters. 
 
For the determination of the architecture network, the 
pruning approach "Weight Decay" is used, starting 
from a relatively large network then removing 
connections in order to arrive at a suitable network 
architecture (Hinton, 1987; Cibas & Gallinari, 1999).  
This approach, allowing to eliminate the weak 
weights, consists in adjusting the weights using the 
new performance function instead of C defined in 
(2): 
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n  is the number of weight network,α is a parameter 
that determines the importance of the two terms in 
the new performance function )(' wC . Using this 
performance functions will cause the network to have 
smaller weights and biases, and this will force the 
network response to be smoother and less likely to 
overfit.  This method presents the advantage to be 
simple to implement, since the gradient of 'C  can be 
very easily calculated from the gradient of C  and 
from network weights.  It is sufficient to add the 
quantity wα  to the gradient vector C∇ calculated 
by the Back-propagation algorithm:    
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5. RESULTS AND DISCUSSION 
 
The experimental data of four years (2511 samples, 
from January 2000 to July 2003) have been used to 
establish the neural model as the basis of a coagulant 
dosing estimation software.  For the conductivity and 
the oxygen dissolved, invalid data have been 
removed and missing ones have been replaced.  
Figure 4 shows the wide range of raw water quality 
describers that exist on the drinking treatment plant.  
 



 
 
Fig. 4. Raw water characteristics. 
 
75% of the global data is used for the network 
training and the remainder (25%) for validating the 
neural model.  The obtained networks consist of five 
inputs, a single hidden layer with 18 sigmoidal 
neurones and one linear output.  The neural model 
have been built using the regularisation method in 
combination with Levenberg-Marquardt training 
algorithm.  It has 127 connections in the beginning 
of training.  The advantage of this algorithm is that it 
provides a measure of how many weights of the 
network are efficiently used by the network.  In our 
case, the final qualified network uses approximately 
82 weights, out of the 127 total weights in the 5-18-1 
network.  
 
Figure 5 shows the validation of the neural model.  
We notice that the coagulant dosage computed with 
the neural network model is very smoothed to the 
real data.  Consequently, the neural network 
generalizes well to new data.  The obtained sum of 
the squared error is 0.007.  Figure 6 shows the 
correlation between neural output and real data.  The 
correlation coefficient computed on the validation set 
is equal to 0.94. 
 

 
 
Fig. 5. Neural coagulant dosing rate with respect to 

the reel data on the validation data. 
 

 
 

Fig. 6. Correlation between neural coagulant dosing 
rate and real data. 

 
A linear regression model for the coagulant dosing 
rate has been also developed for the comparison with 
neural network results.  The correlation coefficient 
between linear model and real data on the validation 
set is equal to 0.48.  It is much smaller than the one 
obtained with to the neural network (0.94).  Figure 7 
shows the output of the linear model on the 
validation data.  We clearly see that the prediction 
accuracy is inferior to the one of neural network 
model.  Furthermore, as is shown in the same figure, 
we can deduce that the linear model also computed 
erroneous values (a negative rate).. 
 

 
 
Fig. 7. Comparison of the regression and the real 

output on the validation data. 
 
 

6. CONCLUSION 
 
This paper has addressed the development of neural 
networks model for the prediction of the coagulation 
dosage for the Rocade water treatment plant.  A large 
data bank, obtained over many years of operation, 
has been used to develop this model.  In conclusion, 
we showed in this paper that the coagulant dosing is 
non-linearly correlated to the raw water 
characteristics such as TSS, temperature, pH, 
conductivity and dissolved oxygen.  Experimental 
results using the data raw water plant showed the 
efficiency and soundness of this approach.  The 
performance of the network depends on the quality 
and the completeness of data provided for training 
the system. 
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