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1. INTRODUCTION

Networked control systems are systems where the
feedback loop is closed through a communica-
tion network in which information from source
to destination is transmitted in finite packets.
More often than not, packet based communica-
tion network protocols cannot guarantee that the
transmit delay between source and destination is
fixed or overbounded by a known limit nor can it
be guaranteed that each packet will reach its desti-
nation. Indeed, most packet based communication
networks work on a best effort basis, with very few
performance guarantees. The performance and
stability of such systems has received a great deal
of attention in the recent control literature (see
Walsh et al. (2002), Zhang et al. (2001), Tipsuwan
and Chow (2003) and the references therein).

Motivated by this observation, we first consider
the stability of a simple feedback situation mod-
eled as follows

xk+1 = αkfg(xk) + (1− αk)fs(xk) (1)

Here αk is either 1, which corresponds to the situa-
tion that the feedback loop is closed (communica-
tion network delivering the packets regularly); or
0 which corresponds to the situation that the feed-
back loop is not closed (communication network
dropping packets). When αk = 1 the system state
xk progresses as xk+1 = fg(xk), a well behaved
system for which it is assumed that the origin
is (globally) asymptotically stable. If αk = 0 the
system state progresses as xk+1 = fs(xk), which
is assumed to be the uncontrolled, not so well
behaved system, for which the origin is still an
equilibrium, but perhaps not a stable one.

In the sequel, the sequence αk is modeled as a
stochastic ergodic process. Its mean ᾱ is a measure
for the average performance of the communication
network. The larger ᾱ is, the better the commu-
nication network performs. Modeling a commu-
nication network in this manner is acceptable,
and indeed most studies of IP based networks
characterize network quality of service in a similar
manner. In many ways this is a minimal model, as
no other assumptions or knowledge about the αk

sequence will be required other than assuming it



is an ergodic sequence and that its mean is known
(or a bound for its mean is known). The first
main result provides sufficient conditions under
which almost any state sequence convergences to
the trivial state.

Our work can be interpreted as a stochastic varia-
tion of the model exhibited in Hassibi et al. (1999),
that could also be used to describe a networked
control situation (as done in Zhang et al. (2001)).
The present model only considers two possible
states for the communication network unlike the
work in Hassibi et al. (1999) which allows for
a more comprehensive set of events, but it will
transpire that the ideas presented here can easily
be extended to the case where the system’s tran-
sition dynamics are switched by a (finite state)
Markov process. In fact, Theorem 1 recovers the
result of Hassibi et al. (1999), but in a stochastic
framework. Unfortunately, the result of Hassibi
et al. (1999) provides no information on the tran-
sient behavior of trajectories. Theorem 2 provides
a probabilistic statement related to the transient
behavior of solutions of (1).

As a further extension of the stability consider-
ation, we are also interested in studying systems
that are subject to disturbances. Considering this
situation gives us a better handle on performance
issues in the control loop. Networked control sys-
tems subject to disturbances have been studied
by Nešić and Teel (2003). To account for random
data loss, we consider the system

xk+1 = αkfg(xk, dk) + (1− αk)fs(xk, dk), (2)

where we use the same conventions as before for
the αk process. The sequence dk is a bounded
sequence representing the disturbance acting on
the system. As before, we assume fg(0, 0) =
fs(0, 0) = 0. Theorem 3 provides a probabilistic
statement on satisfying an input to state stability
bound.

The paper is organized as follows: in Section 2 we
present the specifics of our results. Sections 3, 4,
and 5 contain the proofs of the main results.

2. RESULTS

We will denote the nonnegative integers by Z≥0.
We will denote solutions of (1) from initial condi-
tion x ∈ Rn at time k ∈ Z≥0 by φ(k, x). Similarly,
solutions of (2) from an initial condition x ∈ Rn at
time k ∈ Z≥0, subject to the disturbance sequence
{dj}k−1

j=0 will be denoted by φ(k, x, d).

We recall that a function ρ : R≥0 → R≥0 is of
class-K (ρ ∈ K) if it is continuous, zero at zero,
and strictly increasing. We say that ρ ∈ K∞ if,
in addition to belonging to class-K, the function
is unbounded. A function ϕ : R≥0 → R≥0 is

of class-L if it is continuous, nonincreasing, and
limt→∞ ϕ(t) = 0. Finally, a function β : R≥0 ×
R≥0 → R≥0 is of class-KL if it is of class-K in
its first argument and of class-L in its second
argument.

Assumption 1. (1) There exist functions ρ1, ρ2 ∈
K∞, V : Rn → R≥0, and a constant λ ∈ [0, 1)
such that, for all x ∈ Rn

ρ1(|x|) ≤ V (x) ≤ ρ2(|x|), and (3)

V (fg(x)) ≤ λV (x). (4)

(2) There exists a constant L > 1 such that, for
all x ∈ Rn

V (fs(x)) ≤ LV (x). (5)

(3) The sequence {αk} is ergodic. Let ᾱ ∈ R
satisfy, almost surely,

ᾱ = lim
T→∞

1
T

T∑
k=0

αk. (6)

Note that with αk ergodic and taking values in
{0, 1}, we necessarily have that ᾱ ∈ (0, 1). (In
particular, ᾱ 6= 1 and ᾱ 6= 0.)

Remark 1. We see that the function V (·) is a Lya-
punov function demonstrating global asymptotic
stability of the origin for the equation xk+1 =
fg(xk). In fact, the existence of a smooth function
V (·) satisfying (3) and (4) follows from global
asymptotic stability of the origin for xk+1 =
fg(xk) and continuity of fg(·) (see Kellett and Teel
(2004)).

We also see that an L > 1 satisying (5) exists so
long as fs(x) is defined for all x ∈ Rn. 2

Theorem 1. Suppose Assumption 1 holds and

λᾱL1−ᾱ < 1. (7)

Then almost every solution of (1) converges to the
origin as k →∞.

Remark 2. We observe that (7) is identical to
the condition in Hassibi et al. (1999). Restricting
Hassibi et al. (1999) to two subsystems, they
consider two systems

xk+1 = fg(xk), and xk+1 = fs(xk)

which govern the overall system behaviour with a
certain amount of time rg in the good system and
a certain amount of time rs in the other. Their
requirement is then that there exist a function V
and constants αg, αs > 0 such that

V (fg(xk))≤ α−2
g V (xk), and

V (fs(xk))≤ α−2
s V (xk)



and α
rg
g αrs

s > 1. That these conditions yield the
same result follows from taking

α−2
g = λ, α−2

s = L, rs = 1−rg, and rg = ᾱ.

Note that the restriction to two subsystems is
simply for the sake of an easy comparison. 2

In addition to the convergence acheived in The-
orem 1, by slightly restricting (7), we obtain a
probability bound on the instantaneous behaviour
of the solutions to (1).

Theorem 2. Suppose Assumption 1 holds and
that there exists a constant δ > 0 such that

λᾱL1−ᾱ < e−δ. (8)

Then there exists a constant η > 0 such that, for
every ε > 0 there exists a function βε ∈ KL such
that, for all k ∈ Z≥0

Pr {|φ(k, x)| > βε(|x|, k)} ≤ min
{
ε, e−ηk

}
. (9)

The characterization of global asymptotic stabil-
ity via KL bounds has become increasingly com-
mon in the literature. The result of Theorem 2
then states that the probability of exceeding aKL-
bound, under appropriate conditions, is vanish-
ingly small as time goes to infinity. Alternatively,
the probability of the sequence satisfying the given
KL-bound is arbitrarily close to one for all time
and goes to one as time goes to infinity.

We would like a similar result for switching be-
tween an input to state stable (ISS) system and
one which is not. However, such a result is not
possible. Particularly, we cannot expect that the
probability of satisfying an ISS bound will go to
one. There will always be some residual probabil-
ity that trajectories exceed any given bound. Con-
sider, for instance, that the state has converged to
the ISS disturbance level; i.e.,

|φ(k, x, d)| ≤ γ(||d||).

If the system simultaneously experiences several
sequential large disturbances and is operating in
the “bad” (non-ISS) mode when those distur-
bances arrive, the state will exceed any bound set
a priori. As a consequence, rather than expecting
a probabilistic bound such as (cf. (9))

Pr {|φ(k, x, d)| ≤ β(|x|, k) + γ(||d||)} ≥ 1− e−ηk

we expect to get a bound such as

Pr {|φ(k, x, d)| ≤ β(|x|, k) + γ(||d||)} ≥ 1−e−ηk−ε

where ε > 0. Furthermore, we expect there will be
some sort of trade-off between the size of the ISS
gain γ and the parameter ε.

In order to deal with (2), we need to modify our
assumption.

Assumption 2. (1) There exist functions ρ1, ρ2 ∈
K∞, σ ∈ K, V : Rn → R≥0, and a constant
λ ∈ [0, 1) such that, for all x ∈ Rn and
d ∈ Rm

ρ1(|x|) ≤ V (x) ≤ ρ2(|x|), and (10)

V (fg(x, d)) ≤ λV (x) + σ(|d|). (11)

(2) There exists a constant L > 1 such that, for
all x ∈ Rn

V (fs(x, d)) ≤ LV (x) + σ(|d|). (12)

(3) The sequence {αk} is ergodic. Let ᾱ ∈ R
satisfy, almost surely,

ᾱ = lim
T→∞

1
T

T∑
k=0

αk. (13)

Theorem 3. Suppose that Assumption 2 holds
and that there exists a constant δ > 0 such that

λᾱL1−ᾱ < e−δ. (14)

Then there exists a constant η > 0 such that, for
every ε1, ε2 > 0, there exist functions βε1 ∈ KL,
γε2 ∈ K such that, for all k ∈ Z≥0,

Pr {|φ(k, x, d)| > βε1(|x|, k) + γε2(||d||)}
≤ min

{
ε1, e

−ηk
}

+ ε2. (15)

3. PROOF OF THEOREM 1

To show that (7) indeed gives convergence requires
the following observation:

T∑
k=0

(αk log λ + (1− αk) log L)

=
T∑

k=0

log (αkλ + (1− αk)L) . (16)

Now, (7) implies ᾱ log λ+(1− ᾱ) log L < 0 so that

log λ

(
lim

T→∞

1
T

T∑
k=0

αk

)

+ log L

(
1−

(
lim

T→∞

1
T

T∑
k=0

αk

))
< 0.

Appealing to (16) we can rewrite this as

lim
T→∞

1
T

T∑
k=0

log (αkλ + (1− αk)L) < 0

which implies that

lim
T→∞

T∏
k=0

(αkλ + (1− αk)L) = 0. (17)

We observe that



V (φ(k + 1, x)) =

V

(
αkfg(φ(k, x)) + (1− αk)fs(φ(k, x))

)
= αkV (fg(φ(k, x))) + (1− αk)V (fs(φ(k, x)))

≤ αkλV (φ(k, x)) + (1− αk)LV (φ(k, x))

=
(

αkλ + (1− αk)L
)

V (φ(k, x))

= λαkL1−αkV (φ(k, x)). (18)

That |φ(k, x)| → 0 then follows from the upper
and lower bounds in (3), (17), and (18). �

4. PROOF OF THEOREM 2

We will use the following simplified version of
Hoeffding’s inequality (see (Vidyasagar, 2003,
pg. 26)):

Lemma 1. Suppose α0, . . . , αk−1 form an ergodic
sequence taking values in {0, 1} with mean ᾱ.
Then, for any ε > 0 and k ∈ Z≥1 we have

Pr

{
k−1∑
i=0

(ᾱ− αi) ≥ εk

}
≤ exp

[
−ε2

2
k

]
. (19)

Remark 3. We note that the proof of Hoeffding’s
Inequality goes through, without modification, if
we reverse the order of ᾱ − αi; i.e., if we instead
consider summing the differences αi − ᾱ.

We mention that the following proof is not valid
for λ = 0. A similar proof is available for the
case where λ = 0, which we omit due to space
constraints.

From (18) we see that the Lyapunov function
evolves as

V (φ(k, x)) ≤ V (x)
k−1∏
j=0

(
λαj L1−αj

)
. (20)

Let η ∈ R>0, k∗ ∈ Z≥0, and M ∈ R≥0 be defined
as

η :=
1
2

(
δ

log(λ/L)

)2

, (21)

k∗ := min
{

k ∈ Z≥0 : k ≥ − log ε

η

}
, and (22)

M :=

(
eδ

(
λ

L

)ᾱ
)−k∗

. (23)

We let Ψ := eδλᾱL1−ᾱ. Define the function βε ∈
KL as

βε(s, k) := ρ−1
1

(
ΨkMρ2(s)

)
. (24)

We see that, for all k ≥ 0

Pr {|φ(k, x)| > βε(|x|, k)} =

Pr
{
|φ(k, x)| > ρ−1

1

(
ΨkMρ2(|x|)

)}
≤Pr

{
|φ(k, x)| > ρ−1

1

(
ΨkMV (x)

)}
= Pr

{
ρ1(|φ(k, x)|) > ΨkMV (x)

}
≤Pr

{
V (φ(k, x)) > ΨkMV (x)

}
. (25)

We will consider two cases: k < k∗ and k ≥ k∗.
First the case where k < k∗. From the definition
of M (23) and the constraint (8) we observe that,
for k < k∗,

ΨkM =
(
eδλᾱL1−ᾱ

)k−k∗

Lk∗ ≥ Lk∗ .

Therefore, continuing (25), for k < k∗ we have

Pr
{
V (φ(k, x)) > ΨkMV (x)

}
≤ Pr

{
V (φ(k, x)) > Lk∗V (x)

}
.

However, (20) implies that

V (φ(k, x)) ≤ LkV (x), ∀k ≥ 0

and, consequently,

Pr
{

V (φ(k, x)) > Lk∗V (x)
}

= 0, ∀k < k∗.

In other words, for all k < k∗,

Pr {|φ(k, x)| > βε(|x|, k)} = 0. (26)

We now turn to the case where k ≥ k∗. We note
that,

M =
(

L

eδλᾱL1−ᾱ

)k∗

≥ 1.

Returning to (25), we may write, for all k ≥ 0

Pr
{
V (φ(k, x)) > ΨkMV (x)

}
≤Pr

{
V (φ(k, x)) > ΨkV (x)

}
≤Pr

V (x)
k−1∏
j=0

(
λαj L1−αj

)
> ΨkV (x)


= Pr

V (x)

k−1∏
j=0

(
λαj L1−αj

)
−Ψk

 > 0

 . (27)

Since V (·) is positive definite, we see that the
above expression being greater than zero is equiv-
alent to the question of whether or not

k−1∏
j=0

(
λαj L1−αj

)
>

k−1∏
j=0

(
eδλᾱL1−ᾱ

)
Taking logarithms on both sides we see the above
is equivalent to

k−1∑
j=0

(ᾱ− αj) > − δk

log(λ/L)
. (28)

Note that, since λ
L < 1, the right hand side of (28)

is positive. Therefore, appealing to Hoeffding’s
Inequality (Lemma 1), we see that



Pr


k−1∑
j=0

(ᾱ− αj) > − δk

log(λ/L)

 ≤ e−ηk. (29)

Therefore, combining (27) and (29), we see that

Pr {|φ(k, x)| > βε(|x|, k)} ≤ e−ηk.

Now, with (22), we see that, for k ≥ k∗,

Pr {|φ(k, x)| > βε(|x|, k)}
≤ e−ηk ≤ e−ηk∗ ≤ ε. (30)

Therefore, combining (26) and (30) we have, for
all k ∈ Z≥0,

Pr {|φ(k, x)| > βε(|x|, k)} ≤ min
{
ε, e−ηk

}
.

5. PROOF OF THEOREM 3

5.1 Definitions

We reuse many of the ideas from the proof of
Theorem 2. Let η ∈ R>0, k∗ ∈ Z≥0, and M ∈ R≥0

be defined as

η :=
1
2

(
δ

log(λ/L)

)2

, (31)

k∗ := min
{

k ∈ Z≥0 : k ≥ − log ε1

η

}
, and (32)

M :=

(
eδ

(
λ

L

)ᾱ
)−k∗

. (33)

As before, we let Ψ := eδλᾱL1−ᾱ. Define the
function βε1 ∈ KL as

βε1(s, k) := ρ−1
1

(
2ΨkMρ2(s)

)
. (34)

Let c > 0 be

−2
(log(λ/L))2

δ
log
(
ε2(1− e−η)

)
(35)

and define γε2 ∈ K as

γε2(s) := ρ−1
1

(
ec

1−Ψ
σ(s)

)
, ∀s ≥ 0. (36)

5.2 Divide and Conquer

We now calculate

Pr {|φ(k, x, d)| > βε1(|x|, k) + γεs
(||d||)} . (37)

We first observe that
1
2
ρ1 (βε1(|x|, k)) ≥ ΨkMV (x), and (38)

1
2
ρ1 (γε2(||d||)) =

ec

1−Ψ
σ(||d||). (39)

It is easy to see that, for any ρ ∈ K∞

ρ(s1 + s2) ≥
1
2
ρ(s1) + ρ(s2), ∀s1, s2 ≥ 0. (40)

Therefore, using (38), (39), (40), and the bounds
(10), we may bound (37) as

Pr {|φ(k, x, d)| > βε1(|x|, k) + γε2(||d||)}
= Pr {ρ1(|φ(k, x, d)|) > ρ1 (βε1(|x|, k) + γε2(||d||))}
≤Pr {V (φ(k, x, d)) > ρ1 (βε1(|x|, k) + γε2(||d||))}

≤Pr
{

V (φ(k, x, d)) > ΨkMV (x) +
ec

1−Ψ
σ(||d||)

}
= Pr

{
V (φ(k, x, d))−ΨkMV (x)

− ec

1−Ψ
σ(||d||) > 0

}
. (41)

We observe that the ISS Lyapunov function
evolves as

V (φ(k, x, d)) ≤ V (x)
k−1∏
j=0

(λαj L1−αj )

+
k−1∑
j=0

 k−1∏
i=j+1

λαiL1−αi

σ(|dj |) (42)

We further observe that

1
1−Ψ

σ(||d||)≥ 1−Ψk

1−Ψ
σ(||d||)

= σ(||d||)
k−1∑
j=0

Ψj

≥
k−1∑
j=0

σ(|dj |)

 k−1∏
i=j+1

Ψ

 (43)

Since V (·) is positive definite and σ ∈ K, we see
that a condition guaranteeing positivity of the
quantity in (41) is given by the two conditions

k−1∏
j=0

(λαj L1−αj ) ≥
k−1∏
j=0

(eδλᾱL1−ᾱ), and (44)

k−1∑
j=0

 k−1∏
i=j+1

λαiL1−αi


≥

k−1∑
j=0

ec

 k−1∏
i=j+1

eδλᾱL1−ᾱ

 . (45)

Using arguments similar to those used to prove
Theorem 2, we may obtain

Pr


k−1∏
j=0

(λαj L1−αj ) ≥
k−1∏
j=0

(eδλᾱL1−ᾱ)


≤ min

{
ε1, e

−ηk
}

. (46)

We now turn our attention to (45).

5.3 Bounding Equation (45)

We see that a conservative bound for (45) would
follow from requiring that each term be positive.



Let ` = i−j−1. Then, changing the limits on the
product and taking logarithms on both sides, we
see that we require

k−j−2∑
`=0

(α`+j+1 log λ + (1− α`+j+1) log L)

≥ c +
k−j−2∑

`=0

(δ + ᾱ log λ + (1− ᾱ) log L) .

Rearranging terms this becomes
k−j−2∑

`=0

(ᾱ− α`+j+1) ≥
c + δ(k − j − 1)

log(λ/L)
.

We use Hoeffding’s Inequality and the definition
of c in (35) to write

Pr

{
k−j−2∑

`=0

(ᾱ− α`+j+1) >
c + δ(k − j − 1)

log(λ/L)

}

≤ exp

[
− 1

2(k − j − 1)

(
c + δ(k − j − 1)

log(λ/L)

)2
]

≤ exp
[
− cδ

2(log(λ/L))2

]
exp [−η(k − j − 1)]

= ε2(1− e−η)e−η(k−j−1).

In other words,

Pr


k−1∏

i=j+1

λαiL1−αi > ec
k−1∏

i=j+1

eδλᾱL1−ᾱ


≤ ε2(1− e−η)e−η(k−j−1).

Consequently, we may write

Pr


k−1∑
j=0

 k−1∏
i=j+1

λαiL1−αi

 >

k−1∑
j=0

ec

 k−1∏
i=j+1

Ψ


≤

k−1∑
j=0

ε2(1− e−η)e−η(k−j−1)

= ε2(1− e−η)
1− eηk

1− e−η
≤ ε2. (47)

It is easy to see that, for fixed A,B > 0

Pr {a + b ≥ A + B} ≤ Pr{a ≥ A}+ Pr{b ≥ B}.
Therefore, combining (41), (46), and (47) we ob-
tain (15). 2
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