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Abstract: Process monitoring and fault diagnosis is of considerable interest from an 
industrial perspective. In this paper, the general applicability of intelligent methods, like 
self-organizing maps (SOM) and multilayer feedforward networks with backpropagation , 
for the identification of sensor failure on combine harvesters will be illustrated. Both 
neural network types showed comparable results in order to classify normal and faulty 
sensor conditions. Copyright © 2005 IFAC 
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 1. INTRODUCTION 
In this study, the general applicability of supervised 
self-organizing maps (SOM) and back-propagation 
neural networks for the identification of sensor 
failure will be illustrated by an off-line evaluation of 
both intelligent methods on a New Holland CX 
combine harvester. By comparing the signals of a 
machine running in normal and faulty conditions, 
detection of sensor failure becomes possible. 

 
Constructors of agricultural machinery always strive 
for the development of more efficient and performant 
products. Accordingly, big investments are dedicated 
to the development of new sensors in order to gain 
some process knowledge. Considering the 
automation and control of agricultural machinery, 
condition monitoring of machines is gaining 
importance in industry because of the need to 
increase reliability and to decrease possible loss of 
production due to machine breakdown. Hence, there 
is considerable interest in this field now from an 
industrial perspective. There is an abundance of 
literature on process fault diagnosis ranging from 
analytical methods to artificial intelligence and 
statistical approaches (Venkatasubramanian, et al., 
2003).  

 
 
 

2. THE COMBINE HARVESTING PROCESS 
 

Combine harvesters are large, complex machines 
sent out to all corners of the world to harvest 
different types of crops under all possible 
environmental conditions. The working process of a 
combine harvester can be divided into four different 
sub-processes: 1, cutting of crop systems and 
collection of harvested material; 2, the separation of 
grain kernels from larger crop parts as straw; 3, the 
cleaning process, separating grain kernel from other 
small particles as chaff and short straw; and 4, the 
temporary storage of clean crop material in the grain 
bin.  

 
Neural networks have emerged as a powerful tool for 
pattern recognition. Like other pattern recognition 
techniques, neural networks act on data by detecting 
some kind of underlying organization. The networks 
can recognize spatial, temporal, or other relationships 
and can perform such tasks as classification, 
prediction and function estimation.  

     



 
The combine harvesting process is a highly uncertain 
process asking for sensors that extract immediate 
information from the process. Different measurement 
devices are installed to extract information from the 
combine process with an eye to the automation of the 
combine process.  The sensors used in this study 
were installed on a New Holland CX test combine 
(Fig. 1)  and were read out during field experiments 
with the CANbus Control Design Interface program, 
developed for the on-the-go design and evaluation of 
combine automation systems. 
 
 
 
 

 
Fig. 1. New Holland CX840 combine harvester 

harvesting in wheat. 
 
The sensors used in this study are: 
 
� Machine speed: The rotation speed of the 

driving wheels is commonly used to estimate 
ground speed. 

 

 Feedrate sensor: Measures the driving torque 
of the header as a measure of the total crop 
flow into the harvester 

 

� Grain Pan load sensor: a sensor according to 
the principle of De Baerdemaeker (1989),  to 
measure the crop load on the the grain pan. 

 

� Walker Loss:  An impact sensor,  installed at 
the end of the walker section to estimate the 
amount of residual grain kernels between the 
straw particles. 

 
 
 

3. SELF-ORGANIZING MAPS (SOM) 
 
The SOM is a neural network methodology 
developed by Kohonen that forms a two-dimensional 
presentation from multi-dimensional data (Kohonen, 
1995).  During this transformation, the topology of 
the data is kept in the presentation such that data 
vectors, which closely resemble one another, are 
located next to each other on the map. An important 
characteristic of the SOM is generalization of the 
information, which enables the classification of data 
vectors not used in the training of the SOM. The 
SOM can thus serve as a clustering tool of high-

dimensional data which were not included in the 
training data set.  
 
Each neuron i of the SOM is represented by an n-
dimensional weight, or model vector, 
mi=[mi1,…,min]T  (n is the dimension of the input 
vectors). The neurons are connected to adjacent 
neurons by a neighbourhood relation, which dictates 
the topology, or structure of the map. 
 
 
3.1 Training of the SOM 
 
During iterative training procedure, the SOM forms 
an elastic net that folds onto ’cloud’ formed by input 
data. The net tends to approximate the probability 
density of the data (Kohonen, 1995). The model 
vectors tend to drift there were the data are dense, 
while there are only a few model vectors where data 
are sparse.  For the training of the SOM there exist 
both batch versions and sequential or on-line 
adaptive versions. 
 
Sequential training algorithm 
The SOM is trained iteratively. In each training step, 
one sample vector x from the input data set is chosen 
randomly and the distances between it and all the 
weight vectors of the SOM are calculated using some 
distance measure. The neuron whose weight vector is 
closest to the input vector is called the Best-Matching 
Unit (BMU) denoted here by c: 
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where ||.|| is the distance measure, typically Euclidean 
distance. After finding the BMU, the weight vectors 
of the SOM are updated so that the BMU is moved 
closer to the input vector in the input space. The 
topological neighbours of the BMU are treated 
similarly. The SOM update rule for the weight vector 
of unit i is: 
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where t denotes time. The x(t) is an input data vector 
randomly drawn from the input data set at time t, hci(t) 
the neighbourhood kernel around the winner unit c 
and α(t) the learning rate at time t. The training is 
usually performed in two phases. In the first phase, 
relatively large initial learning rate α0 and 
neighbourhood radius σ0 are used. In the second 
phase both learning rate and neighbourhood radius 
are small right from the beginning. This procedure 
corresponds to first tuning the SOM approximately to 
the same space as the input data and then fine-tuning 
the map. 
 
Batch training algorithm 
The batch algorithm is also iterative, but instead of 
using a single data vector at a time, the whole data 
set is presented to the map before any adjustments 
are made. In each training step, the data set is 
partitioned according to the Voronoi regions of the 
map weight vectors, ie. each data vector belongs to 

     



the data set of the map unit to which it is closest. 
After this, the new weight vectors are calculated as: 
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where  is the index of the 
BMU of data sample x

k j kc = arg min {||x -m ||}

( )ic t

j. The new weight vector is a 
weighted average of the data samples, where the 
weight of each data sample is the neighbourhood 
function value h  at its BMU c.  Fig. 2. Multilayer perceptron with one hidden layer 

  
To find the minima of the function f, Levenberg 
proposed an algorithm whose update rule for the 
weights is a blend of the gradient descent and Gauss-
Newton iteration algorithms.  

 
4. MULTILAYER FEEDFORWARD NETWORKS 

WITH BACKPROPAGATION 
 

 Feed-forward neural networks (Rumelhart, et al., 
1986) provide a general framework for representing 
non-linear functional mappings between a set of 
input and output variables. Such a network consists 
of one or more hidden layers and an output layer. A 
multilayer perceptron with one hidden layer is shown 
in Fig. 2.  

1
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where H is the Hessian matrix and ∇f are the 
derivatives of f. 
Marquardt replaced the identity matrix in equation 5 
with the diagonal of the Hessian resulting in the 
Levenberg-Marquardt update rule.  

The key to the back propagation algorithm is its 
ability to change the values of its weights in response 
to errors.  For it to be possible to ca lculate the errors, 
the training data must contain a series of input 
patterns labeled with their target output patterns. 
During back propagation training, the network passes 
the derivatives of the output errors back to the hidden 
layer, using the original weighted connections. This 
backward propagation of errors gives the algorithm 
its name. Each hidden node then calculates the 
weighted sum of the back-propagated errors to find 
its indirect contribution to the known output errors. 
After each output and hidden node finds its error 
value, the node adjusts its weights to reduce its error.  

 
1
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5. RESULTS AND DISCUSSION 
 

The neural network approach for sensor fault 
identification was applied on a dataset gathered with 
a conventional CX combine harvester during wheat 
harvest. A dataset of  44163 samples was registered 
at a sample rate of 5 Hz. In order to achieve a good 
end result, the following pre-processing steps were 
applied to the dataset: 
 

 � Analog filtering of the data by a second 
order low-pass filter with a cut-off 
frequency of 0.15 Hz. 

The Levenberg-Marquardt (LM) algorithm is the 
most widely used optimization algorithm. The 
problem for which the LM algorithm provides a 
solution is called Nonlinear least squares 
minimization (Hagan, et al., 1996). This implies that 
the function to be minimized is of the following 
special form: 

 

� Normalization of the data 
 

� Labelling of the data: Data were subdivided 
into three different regimes; 1, normal 
operation; 2, failure of a grain pan load 
sensor; 3, failure of the walker loss sensor  
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The data set was at random splitted in a training (2/3) 
and test set (1/3). This selection procedure of training 
and test set along with the training and testing of the 
different neural network model structures was 
performed a number of times (20 cycles) in order to 
cope with the intrinsic variability of neural networks 
(selection of data, initialization of weights,…). After 
pre-processing of the data, an evaluation was made 
of both intelligent methods (self-organizing maps and 
backpropagation neural networks) for the 
identification of sensor failure.  

 
where rj  is a function from Rn to R. Each rj is referred 
as residual or error between the actual results and 
target results. The w represents the weights or 
parameters that has to be optimized.  
 

 
 

     



5.1 Sensor fault detection by supervised Self-
organizing maps 

 
Different SOM configurations and training 
algorithms were evaluated for detection of sensor 
failure. In this section, an overview will be given of 
the performances of the different map configurations 
and training algorithms.  
 
In a first step of the training procedure, the SOM was 
initialized linearly. The initialization was made by 
first calculating the eigenvalues and eigenvectors of 
the given data. The map weight vectors were 
initialized along the two greatest eigenvectors of the 
covariance matrix of the training data. After 
initialization, the map was trained on a supervised 
way by both sequential and batch algorithms. The 
training length, 10 epochs , was held constant during 
the tests. A hexagonal lattice and gaussian 
neighbourhood function was used during all training 
procedures. 
 
The result of a sequential training procedure of a 5*5 
self-organizing map is shown in Fig.3. 
 

 
Fig. 3. Visualization of a SOM trained by a 

sequential training algorithm  
 
The U-matrix is shown along with the seven 
component planes and label grid. By making use of 
the U-matrix, the distances between each map unit to 
each of its immediate neighbours is calculated. 
Distance matrix methods show the borders between 
the different clusters. Each component plane consists 
of the values of a single vector component in all map 
units. The neurons of the SOM were labelled based 
on a voting procedure and labels of the training data 
set; ’0’ label corresponds with normal operating 
regime, ‘1’ label corresponds with a failure of a grain 
pan load sensor, ‘2’ label corresponds with a failure 
of the walker loss sensor. 
 
Different map configurations and training procedures 
were tested in the field of an accurate classification 
of new test data. Test data were classified into one of 
the three different regimes by making use of an auto-
labelling algorithm. This algorithm assigns a label to 
the new test data by locating the new data vector on 
the trained label grid. The classification of test data 
was classified as correct if the label, assigned by the 

auto-labelling algorithm, corresponds with the real 
label, assigned during the pre-processing phase.  
The results are illustrated in Fig. 4.  
 

 
Fig. 4. Classification performance of different SOM 

configurations and training algorithms 
 
Analysis of the results in Fig. 4 shows that: 
� A sequential training algorithm achieves 

better classification results in comparison 
with batch algorithms. 

 

� The classification performance increases 
with the map size until overtraining occurs. 
This occurred at a map dimension of 60*60 
and implies less generalisation power.  

 

� Best classification accuracy (82.37%) was 
achieved with a 50*50 SOM and a 
sequential training algorithm. 

 
 
5.2 Sensor fault detection by multilayer feedforward 

neural networks with backpropagation  
 
Different multilayer perceptron architectures were 
evaluated for detection of sensor failure. During all 
the tests, a neural network with one input layer, one 
hidden layer and one output layer was used. The 
input layer had seven nodes representing the seven 
input signals. The number of neurons in the hidden 
layer was varied from 2 to 14. The number of output 
nodes, two, was constant during the tests. The target 
values of the output nodes could have only binary 
levels representing normal and failed bearing. During 
the training stage, the target value of the two output 
nodes for the normal state conditions were set 0. For 
failed grain pan sensor conditions, the first output 
node was set 1 and the second output node was set 0. 
Similarly for failed walker loss sensor conditions, the 
first output node was set 0 and the second output 
node was set 1. The artificial neural network was 
trained and implemented using the MATLAB neural 
network toolbox using backpropagation with 
Levenberg-Marquardt algorithm. 
 
The classification performance of different neural 
network architectures, considering new test data, is 
illustrated in Fig. 5 and a selection of the most 
important results is shown in Table 2. A maximum 
number of 14 hidden neurons was used during the 

     



test due to excessive training times with more 
complex architectures. 

 

 

     

Fig. 5. Classification performance of different  
multilayer perceptron architectures. 

 
 
 

Table 2: Percentage of correct classification of 
different process regimes by making use of 

multilayer perceptrons  
 
Number of hidden 
layer neurons 

10 training 
epochs 

30 training 
epochs 

2 77.62 79.29 
4 80.34 80.85 
6 80.67 81.01 
8 80.49 81.08 
10 80.78 81.14 
12 80.74 80.98 
14 80.65 80.98 
 
Analysis of the results in Fig. 5 and Table 2 shows 
that: 
� No significant increase of classification 

performance was reached by an increase of 
the number of neurons in the hidden layer. 

 

� No significant increase of classification 
performance was reached by an increase of 
the training epochs. 

 

� No overtraining occurred during the tests.  
 

� A classification performance of 
approximately 80% was reached with a 
rather simple network (4 hidden neurons) 
and training procedure (10 training epochs). 

 
 

6. CONCLUSION 
 

An artificial neural network procedure was presented 
for sensor fault diagnosis in combine harvesters. Two 
intelligent methods, namely supervised self-
organizing maps and multilayer feedforward neural 
networks with backpropagation were evaluated 
within the framework of the development of a 
supervisory fault detection system. Different 
configurations of both neural network types were 
several times trained by a random training set and 
their classification performance was tested. Both 
neural network types showed comparable 

classification results for new test data. However, best 
results were obtained with a supervised self-
organizing map of 50*50 dimension. With this neural 
network configuration, it became possible to classify 
82% of the new test data correctly. Self-organizing 
maps offer also interesting tools within the 
framework of monitoring and visualization of the 
different process regimes. 
According to the theory, unsupervised neural 
network models can be constructed solely on the 
basis of measurement data of the process. However, 
if supervised neural networks are used, like in this 
study, information about the process state is needed. 
This demonstrates that, despite new modelling 
techniques, process knowledge still plays an 
important role in fault detection systems. 
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