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Abstract: The paper proposes a new frequency domain approach to the design of robust 
decentralized controllers (DC) for continuous-time systems described by a set of transfer 
function matrices. To guarantee the nominal stability and the prespecified nominal 
performance, the recently developed DC design technique (Kozáková and Veselý, 2003) 
has been applied, adapted so as to guarantee the robust M-∆  structure based stability 
conditions modified for the closed-loop system under decentralized controller as well. 
Unlike the standard robust approaches to the DC, this technique allows the inclusion of 
the nominal interactions into the nominal model; thus the conservativeness of the robust 
stability conditions is relaxed. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 

Complex systems are typical by multiple inputs and 
multiple outputs (MIMO systems). Usually, they 
arise as an interconnection of a finite number of 
subsystems. Multivariable controllers are used if 
strong interactions within the plant are to be 
compensated for. However, practical reasons often 
make restrictions on controller structure necessary or 
reasonable. In an extreme case, the controller is split 
into several local feedbacks and becomes a 
decentralized controller. Compared with centralized 
full-controller systems such a control structure brings 
about certain performance deterioration; however, 
this drawback is weighted against important benefits, 
e.g. hardware, operation and design simplicity, and 
reliability improvement (Skogestad and Morari, 
1989; Hovd and Skogestad, 1993; 1994;  Skogestad 
and Postlethwaite, 1996; Engell, 1998; Kozáková, 
1998; Kozáková and Veselý, 2003; Schmidt and 
Jacobsen, 2003). Decentralized control (DC) design 
techniques remain probably the most popular among 
control engineers, in particular the frequency domain 

ones which provide insightful solutions and link to 
the classical control theory. 
 

Development of decentralized control (DC) in the 
70´ has attracted much attention. A survey of the 
main theoretical results can be found e.g. in Hovd 
and Skogestad (1994) and Viswanadham and Taylor 
(1988). With the come up of robust frequency 
domain approaches in the 80’s, several practice-
oriented techniques were developed (Skogestad and 
Morari, 1989; Hovd and Skogestad, 1993; 1994; 
Viswanadham and Taylor, 1988; Kozáková, 1998). 
The DC design comprises two steps: 1) selection of 
control configuration (pairing inputs with outputs); 2) 
design of local controllers for individual subsystems. 
In Step 2), two main approaches can be applied: 
independent design e.g. (Skogestad and Morari, 
1989; Hovd and Skogestad, 1993; Kozáková, 1998) 
or sequential design e.g. (Viswanadham and Taylor, 
1988). According to the independent design used in 
the sequel, local controllers are designed without 
considering interactions with other subsystems. The 
effect of interactions on the full system is assessed 
first and transformed into bounds for individual 
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controller design to guarantee stability and a desired 
performance of the overall system. Main advantages 
with this approach are failure tolerance and direct 
local designs. The main limitation consists in that 
information about controllers in other loops is not 
exploited; therefore obtained stability and 
performance conditions are only sufficient and thus 
conservative. 
 

The paper proposes an interactive graphical design 
technique of robust decentralized controllers for 
continuous-time uncertain systems. The core of it is 
the recently developed decentralized controller 
design method for specified performance (Kozáková 
and Veselý, 2003); applied for the nominal system it 
provides the required nominal performance. 
Moreover, this design method enables to consider the 
full transfer function matrix as the nominal system - 
unlike the existing robust DC approaches, according 
to which the nominal system is the diagonal part of 
the plant transfer matrix and the off-diagonal part is 
dealt with as uncertainty. In the framework of the 
proposed design technique, the DC design process 
has been adapted so as to simultaneously guarantee 
nominal performance and fulfillment of the M-∆  
structure based robust stability conditions modified 
for the closed-loop under the decentralized controller 
considering the three most common types of 
unstructured uncertainty: additive, input 
multiplicative and output multiplicative uncertainty. 
 

The paper is organized as follows: preliminaries and 
problem formulation are given in Section 2, 
development of the robust decentralized controller 
design techniques is presented in Section 3 and 
illustrated by an example in Section 4. Conclusions 
are given at the end of the paper. 
 
 

2. PRELIMINARIES AND  
PROBLEM FORMULATION 

 
Consider a MIMO system G(s) and the controller 
R(s) in a standard feedback configuration  (Fig. 1)  
 

 

 

 
 

 Fig. 1   Standard feedback configuration 
 
where lmR)s(G ×∈  and mlR)s(R ×∈  are transfer 
function matrices and d,e,y,u,w are respectively 
vectors of reference, control, output, control error 
and disturbance of compatible dimensions. Only 
square matrices will be considered, i.e. m=l. 
The return difference matrix mmRsF ×∈)( is 
 

 )]([)( sQIsF +=  (2) 

where mmRsQ ×∈)(  is the open-loop transfer 
function matrix; in particular for the system in Fig.1 

)()()( sRsGsQ = . 

The Nyquist D-contour comprises the imaginary 
axis ωjs = and an infinite semi-circle into the right-
half plane avoiding locations where Q(s) has ωj -axis 
poles by small indentations around them; hence, 
unstable poles of Q(s) are those in the open right-half 
plane. Nyquist plot of a complex function )s(g is the 
image of the Nyquist D-contour under g(s); 

)]s(g,k[N denotes the number of anticlockwise 
encirclements of the point (k, j0) by the Nyquist plot 
of g(s).  
The closed-loop characteristic polynomial of the 
system in Fig.1 is 
 

)]()(det[)](det[)(det sRsGIsQIsF +=+=  (3) 
 

If Q(s) has nq unstable poles, the closed-loop stability 
can be verified using the Generalized Nyquist 
Stability Theorem, e.g. (Skogestad and Postlethwaite, 
1996).  
Theorem 1 (Generalized Nyquist Stability Theorem) 
The feedback system in Fig. 1 is stable if and only if  

1. Ds0sF ∈∀≠)(det   
2. qn)]s(Fdet,0[N =  (4) 

where nq is the number of its open-loop unstable 
poles.    □ 

Eigenvalues of )s(Q  are called characteristic 
functions of )s(Q and are defined to be the set of m 
algebraic functions m1isq i ...,,),( =  (MacFarlane 
and Belletrutti, 1973; MacFarlane and Kouvaritakis, 
1977; MacFarlane and Postlethwaite, 1977) given as 
 

 m1i0sQIsq mi ...,,)]()(det[ ==−  (5) 

Using characteristic functions of )s(Q , the closed-
loop characteristic polynomial becomes 

 ∏
=

+=+=
m

1i
i sq1sQIsF )]([)](det[)(det  (6) 

Characteristic loci (CL) m...,,2,1i),s(qi =  are the set 
of loci in the complex plane traced out by the 
characteristic functions of Q(s), Ds ∈∀ . 
A theorem equivalent to the Theorem 1 has been 
derived in terms of the CL´s (DeCarlo and Saeks, 
1981; MacFarlane and Postlethwaite, 1977).    

Theorem 2 
The closed-loop system with the open-loop transfer 
function matrix Q(s) is stable if and only if 
  

 1. Ds0)]s(QIdet[ ∈∀≠+  

 2.  ∑
=

=+
m

1i
qi n)]}s(q1[,0{N  (7) 

i.e. the sum of anticlockwise encirclements of (0, j0) 
contributed by the CL’s of [I+Q(s)]has to be nq.   □ 
 

When designing a controller, a major source of 
difficulty is the plant model inaccuracy. To deal with 
it, the uncertainty model is used; instead of a single 
model, the behaviour of a class of models is 
considered. Let Π∈)s(G~ be any member of a set of 
possible plants Π , Π∈)s(G be the nominal model 
of the plant. A simple uncertainty model is obtained 

 R(s) G(s) 



 

     

using unstructured uncertainty, i.e. a full complex 
perturbation matrix ∆ with dimensions compatible 
with those of the plant, and satisfying 

1)]j([M ≤ω∆σ  (Skogestad and Postlethwaite, 
1996). We consider three common uncertainty forms 
and their related classes of models along with bounds 
on their scalar weights w(s) expressed in terms of 
bounds on the maximum singular value   

 })s(w{max)()]s(w[ MG~M σωσ
Π∈

=≤ l . 

i. Additive uncertainty 

   
)]s(G)s(G~[max)(

)()s(w
)s()s(w)s(G)s(G~:

M
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−=

≤

+=

∈
σω

ω

∆Π

Π
l

l    (8) 

ii. Multiplicative input uncertainty 

   

)]}s(G)s(G~)[s(G{max)(

)()s(w
)]s()s(wI)[s(G)s(G~:

1
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Π
l
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iii. Multiplicative output uncetainty 

   

)}s(G)]s(G)s(G~{[max)(

)()s(w
)s(G)]s()s(wI[)s(G~:

1
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−

∈
−=

≤

+=

σω

ω

∆Π

Π
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The standard feedback configuration in Fig.1 
comprising the uncertain plant model )(~ sG  with any 
type of uncertainty can be rearranged into the ∆−M  
structure, which is a tool for robust stability analysis.  
 
 
 
 
 
 
Fig. 2   ∆−M  structure  
 

For the uncertainty types (8), (9), (10), the matrix 
M(s) has the following forms: 
 

 1
AA )]s(G)s(RI)[s(R)s(M −+−= l  (11) 

 )s(G)]s(G)s(RI)[s(R)s(M 1
II

−+−= l  (12) 
 1

OO )]s(R)s(GI)[s(R)s(G)s(M −+−= l  (13) 
 
Theorem 3 (Robust stability for unstructured  
perturbations , Skogestad and Postlethwaite, 1996) 
 

Assume that the nominal system M(s) is stable and 
the perturbations )( s∆ are stable. Then the ∆−M  
system in Fig. 2 is stable for all perturbations 
satisfying 1)]j([M ≤ω∆σ  if and only if 
 

  ωωσ ∀< ,1)]j(M[M  (14) 

    □  
Problem Formulation 
Consider a system with m subsystems described by a 
set of N transfer function matrices 

N1ksG k ,...,),( = . 
A robust decentralized controller to be designed is 
  m1ii sRdiagsR ,...,)}({)( ==  (15) 

s0sR ∀≠)(det  

with )s(Ri  being transfer function of the i-th local 
controller. The designed controller has to guarantee 
stability and specified performance of the controlled 
plant over the entire opertaing range specified by the 
N transfer function matrices and described by either 
of the perturbed models (8), (9) or (10). 

 
 

3.  DEVELOPMENT OF THE ROBUST 
DECENTRALIZED CONTROLLER DESIGN 

TECHNIQUE 
 
3.1 Choice of nominal model G(s) 
  

In contrast to the existing robust DC approaches, in 
which always the diagonal model is considered as the 
nominal one, the proposed approach takes the full 
mean parameter value model as the nominal system.  
 
3.2 Decentralized controller design (Kozáková and 

Veselý, 2003) 
Consider the nominal model mmRsG ×∈)(  with m 
subsystems, which can be split into the diagonal and 
the off-diagonal parts describing respectively models 
of decoupled nominal subsystems )( sGd and 
nominal interactions )( sGm   

)()()( sGsGsG md +=  (16) 
 

 where  Ds0sGd ∈∀≠)(det  
The closed-loop comprising the nominal plant 

)s(G and the decentralized controller )s(R  is stable 
if and only if conditions of Theorem 1 are met. 
Factorize )s(Fdet  as follows 
 

 

[ ]{ }

)(det)(det
)(det)]()()(det[

)()()((det)(det

sRsF
sRsGsGsR

sRsGsGIsF

1

md
1

md

=
=++=

=++=
− (17) 

 

where )()()()( sGsGsRsF md
1

1 ++= −  (18) 
 

Corollary 1 
A closed-loop system comprising the system (16) and 
the decentralized controller (15) is stable if and only 
if Ds ∈∀  

1. 0sF1 ≠)(det  

 2. q1 nsR0NsF0N =+ )](det,[)](det,[    (19) 

If )( sR  is stable, 0sR0N =)]}(det[,{  and the 
encirclement condition (19) reduces to  

 
qmd

1
1

nsGsGsR0N

sF0N

=++=

=
− )]}()()(det[,{

)](det,[
 (20) 

    □ 
As )]s(G)s(R[ d

1 +−  is a diagonal matrix related just 
to subsystems, using an appropriately chosen stable 
diagonal matrix m1ii spdiagsP ,...,)}({)( ==  it is 
possible to stabilize the full system and improve its 
performance. Denote  

 )()()( sPsGsR d
1 =+−  (21) 

which yields 

  M(s) 

)( s∆



 

     

 0sPsGsRI d =−[+ )]()()(    (22) 
or, on the subsystem level 

m21i0sGsR1 eq
ii ,...,,)()( ==+  (23) 

where  
m21ispsGsG ii

eq
i ,...,,)()()( =−=  (24) 

is the transfer function of the i-th subsystem 
modified by pi(s) and called the transfer function of 
the i-th equivalent subsystem or simply the 
equivalent transfer function. Similarly, (23) is the i-
th equivalent characteristic equation (Kozáková and 
Veselý, 2003) 
 

Substituting into (18) we obtain 
 

)]()(det[)(det sGsPsF m1 +=  (25) 
 

With (25) it is possible to formulate stability 
conditions for the closed-loop system under a 
decentralized controller in terms of the spectral 
Nyquist plot of )s(F1 .  

Corollary 2 
A closed-loop system comprising the system (16) and 
a stable decentralized controller (15) is stable if 
there exists a stable matrix m,...,1ii )}s(p{diag)s(P ==  
such that each equivalent subsystem (24) can be 
stabilized by its related local controller Ri(s), i.e. 
each equivalent closed-loop characteristic 
polynomial  
 m21isGsR1CLCP eq

ii
eq

i ,...,,)()( =+=  
has stable roots  and the two following conditions 
hold (in Condition 2, a. and b. are equivalent ): 
 1. 0sGsP m ≠+ )]()(det[  (26)   

 2.  a. mm n)]s(G)s(Pdet[,0[N =+   

  b. ∑
=

=
m

1i
mi n)]s(m,0[N  (27) 

where m...,,1i),s(mi =  are characteristic functions 
of )s(G)s(P)s(M m+= ; mn  is the number of its 
unstable poles.  □ 
 
3.3 Choice of m1ispi ...,,),( =  
 

Guaranteeing performance of the closed-loop system 
under the decentralized controller 
 

According to the independent design philosophy 
(Skogestad and Postlethwaite, 1996) 

m1ispi ...,,),( =  on the diagonal of the stable 
diagonal matrix (21) actually represent bounds for 
local controller designs. To guarantee closed-loop 
stability of the full nominal system they should be 
chosen such as to appropriately account for the 
interactions )s(Gm . 
Substituting m1ii spdiagsP ,...,)}({)( ==  into (25) and 
equating to zero yields  
 

  
m1i

0sGIspsF mi1

...,,
,)]()(det[)(det

=
=+=

 (28) 

which, compared with (5) defines the m 
characteristic functions m...,,1i),s(g i =  of the matrix 

[– Gm(s)]. In the sequel, just identical entries in the 
diagonal of I)s(p)s(P =  will be considered. Then 
 

 i. if choosing )s(g)s(p l−=  for a fixed   
}m,...,1{∈l  then 

  0sgsgsF
m

1i
i1 =+−=∏

=
])()([)(det l  (29) 

 In that case the closed-loop system has some 
poles on the imaginary axis and no poles in the 
right half-plane, i.e. it is at the limit of instability. 

ii.  Using 0),s( ≥− αα , Ds ∈∀  in the arguments of 
all terms in (29), 

 

  )s(g)s(p αα −−=− l ,  fixed }m..,,1{∈l   (30) 

  0])s(g)s(g[)s(Fdet
m

1i
i1 =−+−−=− ∏

=
ααα l  (31)  

 hence, the closed-loop system is at the limit of 
instability “shifted to ( α− )”, i.e. it has just poles 
with α−≤sRe  and its degree of stability is α . 

Thus, by specifying the degree of stability 0≥α  for 
P(s) we actually specify performance for the closed-
loop system under the decentralized controlller in 
terms degree of stability. 
 

Transfer functions of equivalent subsystems are 
 

m...,,2,1i),s(p)s(G)s(G i
eq
i =−−−=− ααα ll

 (32) 
For this choice of m1ispi ...,,),( =  the encirclement 
stability conditions (26), (27) of Corollary 2 can be 
restated in terms of the spectral Nyquist plot of 

)s(F1  

1. 0sgsgsF
m

1i
i1 ≠+−−= ∏

=
)]()([)(det αl  (33) 

2. ∑
=

=+−−
m

1i
i sgsg0N )]}()([,{ αl   

 ∑
=

=−=
m

1i
m

eq
i nsm0N )](,[ αl  (34) 

where   

 },...,,{,...,,)( m21m1ismeq
i ∈=− ll α  (35) 

are equivalent characteristic functions of 
)]s(G)s(P[)s(M m+= . 

 

The main theoretical results are summarized next. 

Lemma 1 (Kozáková and Veselý, 2003) 
A closed-loop system comprising the system (16) and 
a stable decentralized controller (15) is stable with 
the degree of stability α  if there exist such 0≥α and 

)s(g l , fixed },m...,,1{∈l   that the two following 
conditions hold 
 

1. Ds,i0)]s(g)s(g[)s(m i
eq
i ∈∀∀≠+−−=− αα ll  

2. all equivalent closed-loop characteristic 
polynomials  have stable roots. □ 

 

To stabilize equivalent subsystems with a 
prespecified degree of stability 0≥α  any graphical 
SISO frequency domain design technique can be 
applied for each subsystem independently. (e.g. Bode 
plots, Neymark D-partition method). 



 

     

 
Guaranteeing performance and robust stability of the 
closed-loop system under the decentralized 
controller 
 

With respect to the factorization of F(s) (17)  and 
using (11), (12), (13) and (21), the respective forms 
of the general robust stability condition (14) have 
been derived for different uncertainty descriptions 
(8), (9), (10). Note that the set of perturbed plants 
consists of N transfer function matrices. 
 

i.  Additive uncertainty 

 
)(

1)]j(G)j(P[

})]j(G)j(P{[

A
mm

1
mM

ω
ωωσ

ωωσ

l
<+=

=+ −

 (36) 

 where  
 )( ⋅mσ  denotes the minimum singular value of the 

corresponding matrix and 
 

 N,,1k)],s(G)s(G[max)( k
MkA Kl =−= σω  

ii. Multiplicative input uncertainty 

 
)(

1)}s(G)]j(G)j(P{[
I

1
mM ω

ωωσ
l

<+ −  (37) 

 where 

N,,1k)]}s(G)s(G)[s(G{max)( k1
MkI Kl =−= −σω . 

iii. Multiplicative output uncertainty 

 
)(

1})]j(G)j(P)[j(G{
o

1
mM ω

ωωωσ
l

<+ −  (38) 

 where 
N,,1k)}s(G)]s(G)s(G{[max)( 1k

MkO Kl =−= −σω  

Corollary 3   
A closed-loop system comprising the system (16) and 
a stable decentralized controller (15) is robustly 
stable and has a guaranteed performance in terms of 
the degree of stability α  if there exist both 
such 0≥α  and )s(g l , fixed },m...,,1{∈l  that the 
following conditions are satisfied: 
 

1. Ds,i0)]s(g)s(g[)s(m i
eq
i ∈∀∀≠+−−=− αα ll  

2. all equivalent closed-loop characteristic 
polynomials  have stable roots.  

3. either of the conditions (36), (37), (38) is 
satisfied for )]s(g[)s(P α−−= l  □ 

 

The design procedure is described in the following 
illustrative example. 

 
 

5. ILLUSTRATIVE EXAMPLE 
 

Consider a laboratory plant consisting of two 
subsystems. Three plant models identified in 3 
different operating points have been available, the 
resulting model is a set of 3 transfer function 
matrices 3,2,1k),s(G k =  
 

• Nominal model is obtained using the mean 
parameter values of corresponding transfer 
functions entries 

 


















++
+

++
+

++
−−

++
+

=

630.52s750.13s
090.30s306.1

259.6s770.9s
215.1s124.0

550.11s870.16s
581.1s023.0

689.9s610.12s
766.4s1178.0

)s(G
22

22
 

 

and has to be partitioned into the diagonal part 
(subsystems) and interactions  
 )s(G)s(G)s(G md +=   

•  Nominal performance is specified in terms of the 
degree of stability 0≥α . Several values can be 
considered: ]7.06.03.02.01.00[=α  to 
simplify the final choice. 

 

•  The nominal system has two characteristic 
functions )s(g1  and )s(g2 . The corresponding 
characteristic loci for the above specified α are in 
Fig. 3. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 3  Characteristic loci of )s(Gm α−  
 

• Choose e.g. )s(g2 α−  to generate equivalent 
characteristic transfer functions  

 
)s(g)s(G)s(G

),s(g)s(G)s(G

22
eq
2

21
eq
1

ααα

ααα

−+−=−

−+−=−
 

 

• The robust stability conditions (36), (37), (38) are 
satisfied for 4.0=α  and I)]4.0s(g[)s(P 2 −= , 
the test is in Fig. 4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Test of robust stability conditions for the closed-
loop under the DC and uncertainty (8), (9),(10) 

 

)s(p1 α−

)s(p2 α−



 

     

• PI controllers with the transfer function 

  
s
r

r)s(R 1
0 +=  

are designed for individual subsystems by means 
of the Neymark D-partition of the (r0,r1) plane 
applied to the equivalent closed loop 
characteristic polynomials. The resulting D-plots 
are in Fig. 5. 

 

• Controller parameters have been chosen from the 
D-plots for 4.0=α  as follows 

 

 
s
083.1805.1)s(R1 +=         

s
835.1140.3)s(R2 +=  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5  Neymark D-plots for equivalent subsystems under 
local PI controllers 

 
• Calculation of the closed-loop poles confirms 

achievement of the degree of stability 0.4. The 
set of closed-loop poles is 

 

 
}1532.16;2203.11

;0808.9;j1529.87308.8;2038.1
;j0244.06998.0;j0791.03954.0{

−−
−±−−
±−±−=Λ

 

The designed decentralized controller simultaneously 
guarantees robust stability and performance in terms 
of degree of stability. 
 

 

6. CONCLUSION 
 

A new frequency domain approach to the design of 
robust decentralized controllers for continuous-time 
systems is proposed. To guarantee robust stability 
and performance, the recently developed DC design 
technique is applied (Kozáková and Veselý, 2003) 
being adapted so as to simultaneously guarantee a 
prespecified performance in terms of the degree of 
stability, and fulfillment of the M-∆  structure based 
robust stability conditions modified for the closed-
loop system under decentralized controller. This 

design technique also enables including interactions 
in the nominal model, which considerably relaxes the 
M-∆  structure based robust stability conditions.  
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