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Abstract: The paper proposes a new frequency domain approach to the design of robust
decentralized controllers (DC) for continuous-time systems described by a set of transfer
function matrices. To guarantee the nomina stability and the prespecified nominal
performance, the recently developed DC design technique (Kozékové and Vesely, 2003)
has been applied, adapted so as to guarantee the robust M-D structure based stability
conditions modified for the closed-loop system under decentralized controller as well.
Unlike the standard robust approaches to the DC, this technique allows the inclusion of
the nominal interactions into the nominal model; thus the conservativeness of the robust
stability conditionsis relaxed. Copyright © 2005 IFAC
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1. INTRODUCTION

Complex systems are typical by multiple inputs and
multiple outputs (MIMO systems). Usualy, they
arise as an interconnection of a finite number of
subsystems. Multivariable controllers are used if
strong interactions within the plant are to be
compensated for. However, practical reasons often
make restrictions on controller structure necessary or
reasonable. In an extreme case, the controller is split
into several local feedbacks and becomes a
decentralized controller. Compared with centralized
full-controller systems such a control structure brings
about certain performance deterioration; however,
this drawback is weighted against important benefits,
e.g. hardware, operation and design simplicity, and
reliability improvement (Skogestad and Morari,
1989; Hovd and Skogestad, 1993; 1994; Skogestad
and Postlethwaite, 1996; Engell, 1998; Kozakova,
1998; Kozakova and Vesdly, 2003; Schmidt and
Jacobsen, 2003). Decentralized control (DC) design
techniques remain probably the most popular among
control engineers, in particular the frequency domain

ones which provide insightful solutions and link to
the classical control theory.

Development of decentralized control (DC) in the
70" has attracted much attention. A survey of the
main theoretical results can be found e.g. in Hovd
and Skogestad (1994) and Viswanadham and Taylor
(1988). With the come up of robust frequency
domain approaches in the 80's, severa practice-
oriented techniques were developed (Skogestad and
Morari, 1989; Hovd and Skogestad, 1993; 1994;
Viswanadham and Taylor, 1988; Kozékova, 1998).
The DC design comprises two steps. 1) selection of
control configuration (pairing inputs with outputs); 2)
design of local controllers for individual subsystems.
In Step 2), two main approaches can be applied:
independent design eg. (Skogestad and Morari,
1989; Hovd and Skogestad, 1993; Kozakova, 1998)
or sequential design e.g. (Viswanadham and Taylor,
1988). According to the independent design used in
the sequel, local controllers are designed without
considering interactions with other subsystems. The
effect of interactions on the full system is assessed
first and transformed into bounds for individual
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controller design to guarantee stability and a desired
performance of the overall system. Main advantages
with this approach are failure tolerance and direct
local designs. The main limitation consists in that
information about controllers in other loops is not
exploited;  therefore obtained stability and
performance conditions are only sufficient and thus
conservative.

The paper proposes an interactive graphical design
technique of robust decentralized controllers for
continuous-time uncertain systems. The core of it is
the recently developed decentralized controller
design method for specified performance (Kozdkova
and Vesely, 2003); applied for the nominal system it
provides the required nominal performance.
Moreover, this design method enables to consider the
full transfer function matrix as the nominal system -
unlike the existing robust DC approaches, according
to which the nomina system is the diagona part of
the plant transfer matrix and the off-diagona part is
dealt with as uncertainty. In the framework of the
proposed design technique, the DC design process
has been adapted so as to simultaneously guarantee
nomina performance and fulfillment of the M-D
structure based robust stability conditions modified
for the closed-loop under the decentralized controller
considering the three most common types of
unstructured uncertainty: additive, input
multiplicative and output multiplicative uncertainty.

The paper is organized as follows. preliminaries and
problem formulation are given in Section 2,
development of the robust decentralized controller
design techniques is presented in Section 3 and
illustrated by an example in Section 4. Conclusions
are given at the end of the paper.

2. PRELIMINARIES AND
PROBLEM FORMULATION

Consider a MIMO system G(s) and the controller
R(s) in a standard feedback configuration (Fig. 1)

d
%?i> R(S) 4>é>5> G(s)

Fig. 1 Standard feedback configuration

where G(s)T R™' and R(s)I R'™ are transfer
function matrices and w, u,y, e, d are respectively

vectors of reference, control, output, control error
and disturbance of compatible dimensions. Only
square matrices will be considered, i.e. m=I.

The return difference matrix F(s)T R™ Mis
F(s)=[1+Q(s)] @)
where Q(s)T R™™ is the open-loop transfer

function matrix; in particular for the system in Fig.1

Q(s)=G(s)R(s).

The Nyquist D-contour comprises the imaginary
axiss= jw and an infinite semi-circle into the right-
half plane avoiding locations where Q(S) has jw -axis
poles by small indentations around them; hence,
unstable poles of Q(s) are those in the open right-half
plane. Nyquist plot of a complex functiong(s) isthe
image of the Nyquist D-contour under g(s);
N[ k,g(s)] denotes the number of anticlockwise
encirclements of the point (k, jO) by the Nyquist plot
of g(s).

The closed-loop characteristic polynomia of the
systeminFig.1lis

det F(s)=det[ | +Q(s)] =det[ | +G(s)R(s)] (3)

If Q(s) has ng unstable poles, the closed-loop stability
can be verified using the Generalized Nyquist
Stability Theorem, e.g. (Skogestad and Postlethwaite,
1996).

Theorem 1 (Generalized Nyquist Sability Theorem)

The feedback systemin Fig. 1 is stableif and only if

1 detF(s)t 0 "si D

2. N[0,det F(s)] =n, 4)
where nq is the number of its open-loop unstable
poles. o

Eigenvalues of Q(s) are caled characteristic
functions of Q(s) and are defined to be the set of m
agebraic functions q;(s),i=1,...m (MacFarlane
and Belletrutti, 1973; MacFarlane and Kouvaritakis,
1977; MacFarlane and Postlethwaite, 1977) given as

det] gi(s)ly,- Q(s)] =0 i=1..m (9

Using characteristic functions of Q(s), the closed-
loop characteristic polynomial becomes
Ju)
det F(s)=det[ | +Q(s)] =O[1+q(s)] (6)
i=1
Characteristic loci (CL) g;(s),i =1,2,...m arethe set
of loci in the complex plane traced out by the
characteristic functions of Q(s), " sl D.
A theorem equivalent to the Theorem 1 has been
derived in terms of the CL's (DeCarlo and Saeks,
1981; MacFarlane and Postlethwaite, 1977).

Theorem 2

The closed-loop system with the open-loop transfer
function matrix Q(s) is stableif and only if

1 def 1 +Q(s)] 0 "si D
2. & N{O[1+q(s)]}=n, )

i=1
i.e. the sum of anticlockwise encirclements of (0, jO)
contributed by the CL’s of [1+Q(s)| hastoben,. o

When designing a controller, a mgjor source of
difficulty is the plant model inaccuracy. To dea with
it, the uncertainty model is used; instead of a single
model, the behaviour of a class of models is
considered. Let G(s)T P be any member of a set of
possible plants P , G(s)1 P be the nomina model
of the plant. A simple uncertainty model is obtained



using unstructured uncertainty, i.e. a full complex
perturbation matrix D with dimensions compatible
with those of the plant, and satisfying
sulD(jw)] £1 (Skogestad and Postlethwaite,

1996). We consider three common uncertainty forms
and their related classes of models along with bounds
on their scalar weights w(s) expressed in terms of
bounds on the maximum singular value
SwlwWs)] £ |(W)=g|1%xs m{w(s)}.
i. Additive uncertainty
P a1 G(s)=G(s)+W,(s)Da(s)
Wa(S) £ 1a(w) 8
|A(W)=thg\><8 w[G(s)- G(s)]
A
ii. Multiplicative input uncertainty
P, :G(s)=G(s)[I +w,(s)D(s)]
W (S) £, (w) )
||(W)=Gr_|ng>l<8 w{G 1 (s)G(s)- G(s)}
iii. Multiplicative output uncetainty
Po:G(s)=[1+Wwy(s)Do(8)]G(S)
Wo () £ 1o(w) (10)
|o(W)=thg\XS w{[G(s)- G(s)]1G*(s)}
(0]

The standard feedback configuration in Fig.l
comprising the uncertain plant model G(s) with any

type of uncertainty can be rearranged intothe M - D
structure, which isatool for robust stability analysis.

v

D(s)

M(s)

A

Fig.2 M - D structure

For the uncertainty types (8), (9), (10), the matrix
M(s) has the following forms:
Mp =- 1o(S)R(S)[ | +R(s)G(s)] * (11)
M, =-1,(S)R(s)[I +R(s)G(s)] *G(s) 12)
Mo =- 15(S)G(S)R(S)[ | +G(s)R(s)] * (13)

Theorem 3 (Robust stability for unstructured
perturbations, Skogestad and Postlethwaite, 1996)

Assume that the nominal system M(s) is stable and
the perturbations D(s) are stable. Then the M - D

system in Fig. 2 is stable for all perturbations
satisfying s, [ D( jw)] £1 if and only if

swlM(jw)] <1, "w (14)

O
Problem Formulation
Consider a system with m subsystems described by a
set of N transfer ~ function matrices
GX(s), k=1,..,N.
A robust decentralized controller to be designed is

R(s) = diag{ R(8)}=1,..m (15)
detR(s)* 0 "s

with R (s) being transfer function of the i-th local

controller. The designed controller has to guarantee
stability and specified performance of the controlled
plant over the entire opertaing range specified by the
N transfer function matrices and described by either
of the perturbed models (8), (9) or (10).

3. DEVELOPMENT OF THE ROBUST
DECENTRALIZED CONTROLLER DESIGN
TECHNIQUE

3.1 Choice of nominal model G(s)

In contrast to the existing robust DC approaches, in
which aways the diagonal model is considered as the
nominal one, the proposed approach takes the full
mean parameter value model as the nominal system.

3.2 Decentralized controller design (Kozakova and
Vesely, 2003)

Consider the nominal model G(s)I R™™ with m

subsystems, which can be split into the diagonal and
the off-diagona parts describing respectively models
of decoupled nominal subsystems G(s)and

nominal interactions G,,(s)
G(s) = Gy(s) +Gy(s) (16)

where det G4(s)* 0 "sT D
The closed-loop comprising the nominal plant
G(s) and the decentralized controller R(s) is stable
if and only if conditions of Theorem 1 are met.
Factorizedet F(s) asfollows
det F(s) =det{l +[(G4(s)+Gr(s)R(s)} =
=det[ R™(5)+Gy(s)+Gp(s)] detR(s)= (17)
=det F,(s)det R(s)

where F,(s)=R(s) +Gy(s) +G,(s) (18)

Corollary 1
A closed-loop system comprising the system (16) and
the decentralized controller (15) is stable if and only
if *sT D

1. detF,(s)t 0

2. N[O, detFy(s)] +N[O,detR(s)] =n, (19)
If R(s) is stable, N{O,det[ R(s)]} =0 and the
encirclement condition (19) reduces to

N[O, det F,(s)] =

- (20)

=N{0, detf R"*(s) +Gy(s) +Gp(s)]} =g

O
As [R(s)+Gy(s)] isadiagona matrix related just
to subsystems, using an appropriately chosen stable
’’’’’ it is
possible to stabilize the full system and improve its
performance. Denote
R(s)+Gy(s) =P(s) (21)

which yields



I +R(s)[Gy(s)- P(s)] =0 (22)
or, on the subsystem level
1+R(s)G™(s)=0
where
G,eq(s):Gl(S)- pl(S) | :1,2,...,m (24)
is the transfer function of the i-th subsystem
modified by pi(s) and called the transfer function of
the i-th equivalent subsystem or simply the
equivalent transfer function. Similarly, (23) is the i-
th equivalent characteristic equation (Kozakova and
Vesely, 2003)
Substituting into (18) we obtain
det Fy(s) = det[ P(s)+G,,(s)] (25)

With (25) it is possible to formulate stability
conditions for the closed-loop system under a
decentralized controller in terms of the spectral
Nyquist plot of F(s).

Corollary 2
A closed-loop system comprising the system (16) and
a stable decentralized controller (15) is stable if

i=12,..m (23)

such that each equivalent subsystem (24) can be
stabilized by its related local controller Ri(s), i.e
each  eguivalent  closed-loop  characteristic
polynomial

CLCR®M =1+R(s)GM(s) i=12,..m
has stable roots and the two following conditions
hold (in Condition 2, a. and b. are equivalent ):

1. detf P(s)+G,(s)] ! O (26)
2. a N[O, deff P(s)+G,(s)] =n,
b. & N[O, m(s)] =n,, 27)

i=1
where m(s),i =1,..,m are characteristic functions
of M(s)=P(s)+G(s); N, is the number of its
unstable poles. |

3.3 Choiceof p,(s),i =1,..,m

Guaranteeing performance of the closed-loop system
under the decentralized controller

According to the independent design philosophy
(Skogestad and Postlethwaite, 1996)
pi(s),i=1,..m on the diagonal of the stable
diagonal matrix (21) actualy represent bounds for
local controller designs. To guarantee closed-loop
stability of the full nominal system they should be
chosen such as to appropriately account for the
interactionsG,,(s).

equating to zero yields

det Fy(s) =_det[ pi(s)l +Gp(s)] =0, (28)
i=1..m

which, compared with (5) defines the m
characteristic functions g;(s),i =1,...,m of the matrix

[— Gw(9)]. In the sequel, just identical entries in the
diagonal of P(s)=p(s)l will be considered. Then

i. if choosing p(s)=-g,(s) for a fixed
IT {1,..,m} then
dﬂFl(S)=g[-gu(S)+g(S)] =0 (29)

In that case the closed-loop system has some
poles on the imaginary axis and no poles in the

right half-plane, i.e. it is at the limit of instability.
ii. Using(s-a), a3 0, "sl D in the arguments of
al termsin (29),
p(s-a)=- g,(s-a), fixed IT {1,..m} (30)
defy(s-a)=0[- ai(s-a)rg(s-a) =0 (31)
hence, the closed-loop system is at the limit of
instability “shifted to (-a )", i.e. it has just poles
with Res£ -a anditsdegree of stability isa .
Thus, by specifying the degree of stability a 2 0 for
P(s) we actualy specify performance for the closed-

loop system under the decentralized controlller in
terms degree of stahility.

Transfer functions of equivalent subsystems are
Gi(s-a)=Gj(s-a)- p(s-a), i=12,..,.m
(32)
For this choice of p;(s),i =1,...,m the encirclement

stability conditions (26), (27) of Corollary 2 can be
restated in terms of the spectral Nyquist plot of
Fi(s)

1 detFl(s):_cfil[-g.(s- a)+g(s)] 10 (33
2 _%"lN{o,[-g.(s- a)+g(s)}=

N[O, m(s-a)] =n, (34)

I Doz

i=1

where

mi(s-a)i=1,..m IT {12,..m} (35)
are  equivalent  characteristic
M(s)=[P(s)+Gy(s)] -
The main theoretical results are summarized next.
Lemma 1 (Kozakova and Vesely, 2003)
A closed-loop system comprising the system (16) and
a stable decentralized controller (15) is stable with
the degree of stability a if there exist such a 2 0 and

g,(s), fixed IT {1,...m}, that the two following
conditions hold

functions  of

1. mi(s-a)=[-g,(s-a)+gi(s)]*0"i,"sI D
2. all  equivalent closed-loop characteristic
polynomials have stable roots. i

To dabilize equivalent subsystems with a
prespecified degree of stability a 3 0 any graphical
SISO frequency domain design technique can be
applied for each subsystem independently. (e.g. Bode
plots, Neymark D-partition method).



Guaranteeing performance and robust stability of the
closed-loop system under the decentralized
controller

With respect to the factorization of F(s) (17) and
using (11), (12), (13) and (21), the respective forms
of the genera robust stability condition (14) have
been derived for different uncertainty descriptions
(8), (9), (10). Note that the set of perturbed plants
consists of N transfer function matrices.

i. Additive uncertainty
sw{[P(jw)+G,(jw)] '} =

=s [ P(jw)+Gy(jw)] <

(36)

1A(W)
where
S (» denotes the minimum singular value of the

corresponding matrix and

IA(w):mkaxs w[G*(s)- G(s)], k=1K,N
ii. Multiplicative input uncertainty

s w{[P(jw)+G,(jw)] *G(s)} <

1
1 (w) 37)

where
I (w)=maxs w{G (S G*(s)- G(s)]} k=1K,N.
iii. Multiplicative output uncertainty

s w{G(iW)[P(jw)+Gy(jw)] '} <

1
Io(w)

(38)

where
|o(W)=mfl><s w{l[G*(s)- G(s)IG *(s)} k=1K,N

Coroallary 3

A closed-loop system comprising the system (16) and
a stable decentralized controller (15) is robustly
stable and has a guaranteed performance in terms of
the degree of stability a if there exist both
sucha 30 and g,(s), fixed IT {1,...m}, that the

following conditions are satisfied:

1. mi(s-a)=[-g,(s-a)+gi(s)]*0"i,"sl D

2. al equivalent closed-loop characteristic
polynomials have stable roots.

3. dther of the conditions (36), (37), (38) is
satisfied for P(s)=[-g,(s-a)] o

The design procedure is described in the following
illustrative example.

5. ILLUSTRATIVE EXAMPLE

Consider a laboratory plant consisting of two
subsystems. Three plant models identified in 3
different operating points have been available, the
resulting model is a set of 3 transfer function

matrices G¥(s), k=1,2,3

- Nomina model is obtained using the mean
parameter values of corresponding transfer
functions entries

& 0.1178s+4.766

¢ 2
—¢s® +12.610s+9.689
C($)=8" 012a5+1.215

& s? +9.770s +6.259

-0.023s- 1581 &

s? +16.870s +11.550 ~
1.3065+30.090 -

2 +13.750s + 52.630 g

and has to be partitioned into the diagonal part
(subsystems) and interactions

G(s)=Gy(s) +Gy(s)
- Nominal performance is specified in terms of the
degree of stahility a 3 0. Severa values can be
considered: a=[0 01 02 03 06 0.7] to

simplify the final choice.
- The nomina system has two characteristic
functions g,(s) and g,(s). The corresponding

characteristic loci for the above specified a arein
Fig. 3.

B pl(s'a) o =0 DI040ENT]

Fig. 3 Characteristic loci of G, (s-a)

- Chooseeg. g,(s- a) to generate equivalent
characteristic transfer functions
Gl(s-a)=Gi(s-a)+g,(s-a),
Gyl(s-a)=G,(s-a)+g,(s-a)
- The robust stability conditions (36), (37), (38) are
satisfied for a =04 and P(s)=[g,(s- 04)]1,
thetestisinFig. 4

Flax =mgulame cizls LIRD
19— T T T T

asf--

aef---
a7k
DL~
gk
ad -
]
azf---

[

Fig. 4 Test of robust stability conditions for the closed-
loop under the DC and uncertainty (8), (9),(10)



- Pl controllers with the transfer function
R(s)=ry + Ut
S

are designed for individual subsystems by means
of the Neymark D-partition of the (ro,r;) plane
applied to the eqguivalent closed loop
characteristic polynomials. The resulting D-plots
arein Fig. 5.

- Controller parameters have been chosen from the
D-plotsfor a =0.4 asfollows

1.083

R (s)=1.805+ "
S

R,(s)=3.140 + 18
S

Gf(s-a)

[ =[0aiozo4]

Fig. 5 Neymark D-plots for equivalent subsystems under
local Pl controllers

Calculation of the closed-loop poles confirms
achievement of the degree of stability 0.4. The
set of closed-loop polesis

L ={-0.3954£0.0791j; - 0.6998 £0.0244 ;
- 1.2038; - 8.7308+8.1529 j;- 9.0808;
- 11.2203;- 16.1532}

The designed decentralized controller simultaneously
guarantees robust stability and performance in terms
of degree of stahility.

6. CONCLUSION

A new frequency domain approach to the design of
robust decentralized controllers for continuous-time
systems is proposed. To guarantee robust stability
and performance, the recently developed DC design
technique is applied (Kozékova and Vesely, 2003)
being adapted so as to simultaneously guarantee a
prespecified performance in terms of the degree of
stability, and fulfillment of the M-D structure based
robust stability conditions modified for the closed-
loop system under decentralized controller. This

design technique also enables including interactions
in the nominal model, which considerably relaxes the
M-D structure based robust stability conditions.
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