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Abstract: This paper explores the robustness issues that arise in the identification
of continuous-time systems from sampled data. A key observation is that, in
practice, one cannot rely upon the fidelity of the model at high frequencies. This
implies that any result which implicitly or explicitly depends upon the folding
of high frequency components down to lower frequencies will be inherently non-
robust. We illustrate this point by referring to the identification of continuous-time
auto-regressive stochastic models from sampled data. We argue that traditional
approaches to this problem are sensitive to high frequency modelling errors.
We also propose an alternative maximum likelihood procedure in the frequency
domain, which is robust to high frequency modelling errors.
Copyright c©2005 IFAC.
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1. INTRODUCTION

Identification of continuous-time systems is a
problem of considerable importance in various
disciplines such as economics, control, fault detec-
tion and signal processing. In recent years, there
has been an increased interest in the problem
of identifying continuous-time models (Rao and
Garnier, 2002; Garnier et al., 2003; Ljung, 2003).
Even though it is theoretically possible to carry
out system identification using continuous-time
data (Young, 1981; Unbehauen and Rao, 1990),
this will generally involve analogue operators to
emulate time derivatives and will thus usually be
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impractical. Thus, one is usually forced to work
with sampled data (Sinha and Rao, 1991; Pintelon
and Schoukens, 2001). In this context, one might
hope that if one samples quickly enough then
the difference between discrete and continuous
processing would be vanishing small. There are
indeed many cases which support this hypothe-
sis — see, for example, (Middleton and Good-
win, 1990; Feuer and Goodwin, 1996; Goodwin
et al., 2001).

The above discussion can, however, lead to a false
sense of security when using sampled data. A well
known instance where naive use of sampled data
can lead to erroneous results is in the identifica-
tion of continuous-time stochastic systems where



the noise model has relative degree greater than
zero. In the latter case, it has been shown in
(Wahlberg, 1988) that the sampled data model
will have sampling zeros. These are the stochas-
tic equivalent of the well-known sampling zeros
that occur in deterministic systems of relative
degree greater than one (Åström et al., 1984). The
stochastic sampling zeros play a crucial role in ob-
taining unbiased parameter estimates in the iden-
tification of such systems from sampled data. The
reason is that most identification procedures rely
upon whitening of the noise, an operation which is
sensitive to the sampling zeros of continuous-time
systems of non zero relative degree.

A particular case of the above problem has been
studied in detail in (Söderström et al., 1997; Lars-
son and Söderström, 2002; Larsson, 2003). In par-
ticular, these papers deal with continuous-time
auto-regressive (CAR) system identification from
sampled data. Such systems have relative degree
n, where n is the order of the auto-regressive
process. It has been shown that if one ignores the
stochastic sampling zeros, e.g., by using ordinary
least squares, a clear bias will appear in the pa-
rameter estimates, even when using fast sampling
rates (Söderström et al., 1997).

In the current paper we further explore the cir-
cle of ideas outlined above. We pay particular
attention to the impact of high frequency mod-
elling errors on continuous-time system identifi-
cation when using sampled data. We show that
high frequency modelling errors can be equally as
catastrophic as ignoring sampling zeros. Thus we
argue that one should always define a bandwidth
of fidelity of a model and ensure that the model
errors outside that bandwidth do not have a major
impact on the identification results. This leads
us to develop a frequency domain identification
procedure which we show is insensitive to both
relative degree and unmodelled high frequency
poles.

2. BACKGROUND TO THE
IDENTIFICATION OF CAR SYSTEMS

The ideas presented in this paper are equally
applicable to all continuous-time identification
problems. However, to be specific we will focus
primarily on the case of CAR system identification
from sampled data.

In (Larsson and Söderström, 2002), estimation of
the parameters of a CAR system is performed by
using a filtered least squares procedure. In fact,
the prefilter applied to the data is closely related
to the asymptotic sampling zeros described in
(Wahlberg, 1988) (for stochastic models, and in
(Åström et al., 1984), for the deterministic case).

This is an elegant and insightful solution to the
problem. However, the asymptotic location of the
sampling zeros depend on the relative degree of
the continuous-time plant description. At this
point our claim about a bandwidth of validity for
this model becomes relevant since relative degree
may be an ill-defined quantity for continuous-time
systems.

This kind of issues has been previously illustrated,
for example, by the same authors in the context of
deterministic control (Yuz et al., 2004). Here we
extend these ideas to the identification problem.

We consider a CAR system described by:

Ac(ρ)y(t) = v̇(t) (1)

where Ac(ρ) is a polynomial in the differential
operator ρ = d

dt
, i.e.

Ac(ρ) = ρn + an−1ρ
n−1 + . . . + a0 (2)

In equation (1) the term v̇(t) represents a continuous-
time white noise process.

Remark 1. We already notice the source of some
difficulties since the process v̇(t) does not exist in
any meaningful sense. Indeed, equation (1) should
actually be written as a stochastic differential
equation driven by a process with independent
increments, that is, Brownian motion or Wiener
process (Øksendal, 2003). Indeed, a continuous-
time white noise (CTWN) process is a mathe-
matical abstraction and does not physically exist
(Jazwinski, 1970), but it can be approximated
to any desired degree of accuracy by conven-
tional stochastic processes with broad band spec-
tra (Kloeden and Platen, 1992). Note, however,
that the difference between a broad band spectra
and white noise is equivalent to a particular form
of high frequency modelling error. This is the key
issue of relevance in the current paper.

If we treat equation (1) appropriately then it is
possible to derive an exact discrete-time system
that describes the samples of y(t) (Wahlberg,
1988). This model takes the following generic
form:

Ad(q
−1)y(k∆) = Bd(q

−1)wk (3)

where wk is a discrete-time white noise process,
and Ad and Bd are polynomials in the backward
shift operator q−1.

It is readily shown that the polynomial Ad(q
−1)

in equation (3) is well behaved in the sense that it
converges naturally to its continuous-time coun-
terpart. This relationship is most readily por-
trayed if the model is rewritten in the equivalent
delta form (Middleton and Goodwin, 1990):

Aδ(δ) = δn + ān−1δ
n−1 + . . . + ā0 (4)



where δ = q−1

∆
is the delta operator.

Using (4), it can be shown that, as the sampling
period ∆ goes to zero:

lim
∆→0

āi = ai ; i = n − 1, . . . , 0 (5)

An interesting fact, in the current context, is that
the polynomial Bd(q

−1) in equation (3) has no
continuous-time counterpart. This is the stochas-
tic sampling zero polynomial (Wahlberg, 1988;
Larsson and Söderström, 2002) arising from the
folding of high frequency components back onto
the low frequency range.

Much is known about the polynomial Bd(q
−1) and

its roots (Åström et al., 1984; Wahlberg, 1988;
Weller et al., 2001). In particular, it has been
shown that its coefficients converge asymptoti-
cally to specific values as the sampling period ∆
goes to zero.

If we apply the prediction error method (PEM)
(Ljung, 1999) to the model (3), then one needs to
minimise the cost function:

JPEM =
N
∑

k=1

[

Ad(q
−1)y(k∆)

Bd(q−1)

]2

(6)

Notice the key role played by the sampling zeros
in the above expression. A simplification can be
used at high sampling rates by replacing the
polynomial Bd(q

−1) by its asymptotic expression.
However, this polynomial can never be ignored.
Hence it is not surprising that the use of ordinary
least squares, i.e., a cost function of the form:

JLS =

N
∑

k=1

[

Ad(q
−1)y(k∆)

]2
(7)

leads to (asymptotically) biased results, even
when using the delta formulation (4) (Söderström
et al., 1997). We illustrate these ideas by the
following example.

Example 2. Consider the continuous-time system
defined by the nominal model :

Ac(ρ)y(t) = v̇(t) (8)

where v̇(t) is a CTWN process with (constant)
spectral density equal to 1, and

Ac(ρ) = ρ2 + 3ρ + 2 (9)

Following (Wahlberg, 1988), the exact discrete-
time model has the form:

Y (z) =
Bd(z)

Ad(z)
W (z) =

z(z − z1)

(z − e−∆)(z − e−2∆)
W (z)

(10)

As the sampling rate increases the sampled model
converges to:

Bd(z)

Ad(z)

∆→0−−−→ z(z − z∗1)

(z − 1)2
(11)

where z∗1 = −2 +
√

3 is the asymptotic stochas-
tic sampling zero, which corresponds to the sta-
ble root of the polynomial (Åström et al., 1984;
Wahlberg, 1988):

B3(z) = z2 + 4z + 1 (12)

For simulation purposes we choose a sampling
frequency ωs = 250[rad/s]. Note that this fre-
quency is two decades above the fastest system
pole, located at s = −2. We perform Nsim = 250
simulations, using N = 10000 data points in each
run.

Test 1: If one uses ordinary least squares as
in (7), then one finds that the parameters are
(asymptotically) biased, as discussed in detail in
(Söderström et al., 1997). The continuous-time
parameters are extracted by converting to the
delta form and then using (5). We obtain the
following (mean) parameter estimates:

[

â1

â0

]

=

[

1.9834
1.9238

]

(13)

We observe that â1 is clearly biased, but close
to the asymptotic biased value theoretically pre-
dicted â1 → 2

3
a1 (Söderström et al., 1997).

Test 2: We next perform least squares estimation
of the parameters, but with prefiltering of the data
by the asymptotic sampling zero polynomial, i.e.,
we use the sequence of filtered samples {yF (k∆)}
given by:

yF (k∆) =
1

1 + (2 −
√

3)q−1
y(k∆) (14)

Note that this strategy is essentially as in (Larsson
and Söderström, 2002; Larsson, 2003).

Again, we extract the continuous-time parameters
by converting to the delta form and using (5). We
obtain the following estimates for the coefficients
of the polynomial (9):

[

â1

â0

]

=

[

2.9297
1.9520

]

(15)

The residual small bias in this case can be ex-
plained by the use of the asymptotic sampling zero
in (11), while the sampling period ∆ is finite.

Up to this point, we have not introduced any
high frequency under-modelling. In the follow-
ing section, we will see the consequences of an
unmodelled fast pole or, equivalently, wide-band
(i.e., non-white) noise, in the filtered least squares
estimation.



3. REAPPRAISAL OF CAR SYSTEM
IDENTIFICATION

The solution of the CAR identification problem
for sampled data would seem to be straightfor-
ward given the discussion in Section 2. Appar-
ently, one only needs to include the sampling
zeros to get asymptotically unbiased parameter
estimates using least squares. However, this ig-
nores the issue of fidelity of the high frequency
components of the model. Indeed, as pointed out
before, relative degree cannot be robustly defined
for continuous-time systems due to the presence
of (possibly time-varying and ill-defined) high fre-
quency poles or zeros. If one accepts this claim,
then one cannot rely upon the integrity of the
extra polynomial Bd(q

−1). In particular, the error
caused by ignoring this polynomial (as suggested
by the cost function (7)) might be as catastrophic
as using a sampling zero polynomial arising from
some hypothetical assumption about the relative
degree. Thus, this class of identification proce-
dures seems to be inherently non-robust. We il-
lustrate this by continuing Example 2.

Example 3. (Example 2 continued). Let us now
assume that the true model for the system (8) is
given by the polynomial:

Ac(ρ) = Ao
c(ρ)(0.02ρ + 1) (16)

where we have renamed the polynomial (9) in the
original model as Ao

c(ρ). The true system has an
unmodelled pole at s = −50, which is more than
one decade above the fastest nominal pole in (8)–
(9), but almost one decade below the sampling
frequency, ωs = 250[rad/s].

We repeat the estimation procedure described in
Test 2, in Section 2, using the filtered least squares
procedure. We obtain the following estimates:

[

â1

â0

]

=

[

1.4238
1.8914

]

(17)

These are clearly biased!

To analyse the effect of different types of under-
modelling, we now consider the true denominator
polynomial (16) to be:

Ac(ρ) = Ao
c(ρ)

(

ρ

ωu

+ 1

)

(18)

We consider different values of the parameter ωu

in (18), using the same simulation conditions as in
the previous examples (i.e., 250 Monte Carlo runs
using 10000 data points each). Figure 1 clearly
shows the effect of the unmodelled dynamics, even
beyond the sampling frequency due to the folding
effect inherent to the sampling process.

Figure 2 shows similar simulations results using
an instrumental variable (IV) estimator. The IV-
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Fig. 1. Mean of the parameter estimates as a
function of the unmodelled dynamics, using
filtered LS.
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Fig. 2. Mean of the parameter estimates as a
function of the unmodelled dynamics, using
simple delayed IV.

estimator is a basic IV method where the IV
vector consists of observations of y(t) delayed one
sampling period (Bigi et al., 1994).

4. FREQUENCY DOMAIN ESTIMATION

The difficulties raised above are due to the fact
that the high frequency model is not exactly as
hypothesised in the algorithm. Thus, the folding
that occurs is not governed by the anticipated
sampling zero polynomial that is used to prefilter
the data.

This raises the question as to how this problem
might be avoided, or at least reduced by using
an identification procedure more robust to high
frequency under-modelling. Our proposal to deal
with this problem is to suggest that one must
designate a bandwidth of validity for the model
assumed and then develop an algorithm which is



insensitive to errors outside that range. This is
most easily done in the frequency domain.

If one converts the data to the frequency domain,
then one can carry out the identification over
a limited range of frequencies. Note, however,
that one needs to carefully define the likelihood
function in this case. We use the following result.

Lemma 4. Let us consider the (approximate)
discrete-time model:

Ad(q)y(k∆) = wk (19)

where wk is a discrete-time stationary Gaussian
white-noise sequence with variance σ2

w. Given N
data points of the output sequence y(k∆) sampled
at ωs[rad/s], the appropriate likelihood function,
in the frequency domain, takes the form:

L =

nmax
∑

`=0

|Ad(e
jω`∆)Y (ejω`∆)|2

Nσ2
w

−log
|Ad(e

jω`∆)|2
σ2

w

(20)

where ω` = ωs`
N

and nmax corresponds to the
bandwidth to be considered, i.e., ωmax = ωsnmax

N
.

PROOF. In the frequency domain, for every
frequency ω`, we have that:

A`Y` = W` (21)

where Y` , Y (ejω`∆) and W` , W (ejω`∆) are the
discrete Fourier transforms (DFTs) of the (finite)
sequences y(k∆) and wk, respectively, and:

A` , Ad(e
jω`∆) (22)

We note that the process W` has a (complex)
Gaussian distribution such that:

E{W`W
∗
m} = Nσ2

wδK [` − m] (23)

where ∗ denotes complex conjugation. The process
Y` is also Gaussian and, from (21):

E{Y`Y
∗
m} =

Nσ2
w

A`A∗
m

δK [` − m] (24)

Thus, its probability density function is given by:

p(Y`) =
|A`|2
πNσ2

w

exp

{

−|A`|2|Y`|2
Nσ2

w

}

(25)

We can now maximise the joint probability of
the frequency components Y0 up to Ynmax

, by
minimising the function:

L = − log p(Y0, . . . , Ynmax
) = − log

nmax
∏

`=0

p(Y`)

=

nmax
∑

`=0

[ |A`Y`|2
Nσ2

w

− log
|A`|2
σ2

w

]

+ C (26)

where C is constant. Minimising (26) is equivalent
to minimising (20).

Remark 5. In the full bandwidth case it can be
readily shown that:

2π

N

N−1
∑

`=0

log
|Ad(e

jω`∆)|2
σ2

w

→
∫ 2π

0

log
|Ad(e

jω)|2
σ2

w

dω

(27)

as N → ∞. The Jensen’s formula for the unit disk
(Goodwin et al., 2001, Theorem C.11) guarantees
that the last integral is equal to zero but only

if one considers all frequencies components from
0 to π/∆. Thus, with full bandwidth one can use
ordinary least squares in the frequency domain for
the model (19). However, with finite bandwidth,
one must include the last term in (20). This loga-
rithmic term is non-quadratic, however, this is the
price one pays for using a restricted bandwidth.
On the other hand, this ensures robustness to
potential high frequency modelling errors.

Remark 6. Note that the likelihood function (20)
is not scalable by σ2

w and hence one needs to also
include this parameter in the set to be estimated.
This is an important departure from the simple
least squares case.

Remark 7. The result in Lemma 4 is indepen-
dent of the discrete-time model representation.
Both shift and delta model parameters can be
estimated, using the discrete-time frequency re-
sponses relationship:

Ad(e
jω`∆) = Aδ

(

ejω`∆ − 1

∆

)

(28)

Example 8. We consider again the CAR system
presented in 2. If we use the result in Lemma 4,
using the full bandwidth [0, π/∆] (or, equivalently,
up to 125[rad/s]) we obtain the following (mean)
value for the parameter estimates:

[

â1

â0

]

=

[

4.5584
1.9655

]

(29)

As expected, these parameters are clearly biased
because we are not taking into account the pres-
ence of the sampling zero polynomial in the true
model.

On the other hand, we can reduce our estimation
procedure to a certain bandwidth of validity. For
example, the usual rule of thumb is to consider up
to one decade above the fastest nominal system
pole, in this case, 20[rad/s]. The obtained (mean
of the) parameter estimates are then given by:

[

â1

â0

]

=

[

3.0143
1.9701

]

(30)

Note that these estimates are essentially equal
to the true values. Moreover, no prefiltering as
in (6) or (14) has been used. Thus, one has
achieved robustness to the relative degree at high



frequencies since it plays no role in the suggested
procedure.

Finally, we show that the frequency domain proce-
dure is also robust to the presence of unmodelled
fast poles. We consider again the true system to
be as in (16), restricting the estimation bandwidth
up to 20[rad/s]. In this case, the mean of the
parameter estimates is again very close to the
nominal system coefficients:

[

â1

â0

]

=

[

2.9285
1.9409

]

(31)

5. CONCLUSIONS

This paper has considered the robustness im-
plications of high frequency under-modelling on
continuous-time system identification. It has been
argued that any procedure that implicitly or ex-
plicitly relies upon high frequency folding is inher-
ently non-robust. Examples illustrating this claim
have been given, where it was shown the sensitiv-
ity to high frequency under-modelling. Finally, a
maximum likelihood procedure in the frequency
domain has been described. This approach is in-
herently robust to high frequency model errors,
including both asymptotic relative degree and un-
modelled poles. The robustness of this method has
been illustrated by an example, obtaining very
good estimates of the system parameters.
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