OPTIMAL CONTROL OF A LABORATORY ANTILOCK BRAKE SYSTEM
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Abstract: A general optima control problem for ABS is formulated and analyzed, with
the elimination of excessive slip and reduction of braking distance taken into account.
Analytical formulas for singular optimal solutions are derived. These results are applied
to asimple laboratory model of ABS. The results of simulations are compared with those
obtained by a gain-scheduling approach. Copyright © 2005 IFAC
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1. INTRODUCTION

For the last twenty years intensive development of
control systems for car brakes has been observed.
The antilock brake system (ABS) fulfils two basic
tasks in a car. First, it prevents the wheels from
locking, by keeping the dip below the maximum
admissible level. Second, it should reduce the
braking distance to its minimum possible value. In a
typical situation (on dry asphalt) the maximum
friction force between the tire and the road occurs at
a certain moderate slip, when the wheel is not
locked. In the first ABS systems, various on-off
controllers were applied (Hattwig 1993, Maier 1995).
Later PID and gain-scheduled PID controllers, as
well as their robustified versions were introduced.

(Johansen et al., 2001) proposed a robust gain-
scheduled LQ controller where Sontag’s procedureis
used to stabilize the system. Some strategies based
on optimization and off-line trajectory planning are
presented in (Johansen, 2001). In a rea car it is
necessary to estimate the car velocity and parameters
of the friction curve in the presence of disturbances
and various effects which are difficult to model
(Petersen, 2003). To this end, the extended Kalman
filter isfrequently used.

The laboratory ABS model (LABS) used in this work
allows precise identification of friction mechanisms
and does not require state estimation. This gives a

possibility to determine optimal control basing on a
mathematical model and apply it in practice. The
paper is organized as follows. Section 2 contains a
short description of the laboratory setup and the state
equations, also in the scaled version. In the next
section the optimal control problem is formulated,
optimality conditions are given and singular optimal
controls are analyzed. Next, the optimal solution is
caculated by the MSE method (Szymkat and
Korytowski, 2003). Section 4 presents a comparison
with the gain-scheduled LQ controller based on the
results of (Johansen et al., 2001, 2003). Results of
the real life laboratory experiments are discussed in
section 5. The paper ends with conclusions.

2. LABORATORY MODEL OF ABS

The laboratory model of ABS (LABS), shown in Fig.
1 consists of two wheels rolling on one another. The
upper wheel, mounted on a rocker arm, has a steel
rim and a rubber tire. The lower wheel is made of
aluminum. The angles of rotation of the wheels are
measured by encoders with the resolution of
2p/ 2048 =0.175°. The angular velocities are
approximated by differential quotients. The sampling
period is equal to 2 [ms]. The upper wheel is
equipped with a disk brake controlled by a DC
motor. Another DC motor, placed on the axle of the
lower whedl is used to set the system in motion and



accelerate it. During the braking process, the latter
motor is switched off. Both motors are steered by
PWM signalswith frequency 7.0 [kHZz].

The relative pulse width of the PWM signal of the
upper wheel braking motor is the control variable.
The peripheral velocity of the lower wheel can be
identified with the speed of the vehicle and the
angular velocity of the upper wheel can be identified
with the angular velocity of the rotating wheel of the
vehicle.

X,

Fig. 1. Diagram of LABS

We use the following notations (see Fig. 1). The
angular velocities of the upper and lower wheel
[rad/s] are denoted by x; and X,, respectively,
X5 © M, is the braking moment [Nm] of the upper
wheel, r; and r, aretheradii of the upper and lower
wheel [m], J; and J, are the moments of inertia of
the upper and lower wheel [kgnf], d, and d, are
the coefficients of viscous friction in the upper and
lower wheel bearing [kgnf/s], F, is the force with
which the upper wheel presses the lower one [N],
m( ) is the coefficient of friction between the
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r2X;

of peripheral velocities of the wheels, or the wheel
ip (1%, 3 1,% ), My, and M., are the moments of
static friction [Nm] of the upper and lower whedl,
respectively, My isthe moment of gravity acting on

wheels, | is the relative difference

the rocker arm, L is the distance between the point of
contact of the wheels and the axis of the rocker arm

[m],j is the angle between the normal at the point
of contact of the wheels and the rocker arm [rad], u is
the control of the disk brake. The values of model

parameters are given in Appendix A.

It is assumed that the friction is proportional to the
pressing force F_, with the proportionality

coefficient m(l ).

n

2.1 Stateequations

The dynamics of the system is described by the
following state equations
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The dependence of the friction coefficient on the slip
ispresentedin Fig. 2.
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Fig. 2. Friction coefficient as a function of dlip. Solid
line — approximation, * — measurements (with
standard deviations).

Remark: Balance of forces for the system of Fig. 1

leads to the formula S(l ) = ——— m(l) —.

L(sinj - m(l )cog )
For the sake of computational simplicity we use the
approximation (2). The coefficients are determined
by the | east squares method.

2.2 Scaling of variables

The variables are scaled to simplify the equations
axX

r

X = ,i=12, X3 =bX;+g, u=kuU+g,

t=df, S=w,S.
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We rewrite the state equations in the new notations,
omitting the bars over symbols
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The constraints on control now take the form
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3. OPTIMAL CONTROL
3.1 Control task

The goal of control isto reduce the velocity intime T
in such a way that an adequate compromise is
ensured between excessive dlip, braking distance and
accuracy of reaching the target state. These
requirements are expressed by the following
performance index

:
QU T) =L [IX(T)- x" 1§, +4r ghryx,-rx)7dt+
0

T
+r 1(‘jzx2dt 5

0
IX(T) - x 11321206 (T) - %) 2+ 12 (x,(T) - %4 )2

The first term in (5) is a penalty for the error in
reaching the target, the second penalizes for
excessive slip, and may be interpreted as a measure
of probability of losing steering qualities by the
vehicle. Excessive dlip is likely to cause a complete
loss of steerability of the vehicle. The third term is
proportional to braking distance. The parameters r

and r, are nonnegative weighting coefficients. The

control horizon T can be free or fixed. Notice that the
task of slip stabilization can be obtained as a special
case after putting r ; = 0. Using the scaled variables
introduced in section 2.2, we write the performance
index in the form

ll
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IX(T) - X" &= (% (T)- X' )?+(Xo(T) - X,).
3.2 Optimality conditions

We use Pontryagin's maximum principle. The
hamiltonian is asfollows

H=Hy(xy )+Hy(xy)u

Ho =Y 1(Sth- X +(C;5S- Dxg) +

+y 2(SQ2 +0;+ C25S(3) Y 3C31%5 -
2

- (x- X)5 - 1%

H, =y 5.

The control maximizing the hamiltonian satisfies

U f (1) >0
w =jm O

HU F(1) <0
where
f(t)=y;=Hy.

Write the adjoint equations

Y1=-(Sqth+CuS-1+CsS Xg)y 1~

- (Sl + €S +CsS X3)Y 2- T (NXs - %)+

Y2 =-(S, 0 +C15S,,X3)Y 1-

- (8,02 +C23 +C255, X3)y 2 +hr (hXz - %) 4 +14
Y3=-(CsS- DY 1- CisY - CaY 3

with terminal conditions

YT =% - %(T),y ,(T) =x] - %,(T)
y3(T):0.

It can be proved that a singularity of the second order
usually occurs in the optimal solution of the
considered problem. In the interval of singularity we
have f (t)° 0,i.e, y 5(t)° 0. By differentiating this
identity four times we obtain an expression for the
optimal singular control as a function of state,
u(t) =ug (x(t)) . The adjoint variables are eliminated

using the relationships f © f © f © 0. To save space

we omit the detailed computations which are lengthy
and laborious.

3.3 Experiments

Let h=0.7, r =1000, r, =0, T=0.0064 . The

search for optimal control is started in the class of
bang-bang functions (Fig. 3). Large density of
control switchings indicates the singularity interval
and allows the structure of optimal control to be
determined.
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Fig. 3. Bang-bang control and trajectory.



In the next stage, the MSE method was used to
caculate the optima solution (Szymkat and
Korytowski, 2003). The results are shown in Fig. 4.
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Fig. 5. Optimal control and trajectory.

Letnow h =0.7, r =1000, r, =0, T =0.0064 . As
before, a bang-bang approximation of optimal
control was used to establish the structure of optimal
solution. The results obtained with the use of the
explicit representation of singular control are shown
in Fig. 5. The next example shows (Fig. 6) the
consequences of diminishing the weighting
coefficients r 14 times, which means that exceeding

the value of slip 0.7 ismuch less penalized.
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Fig. 6. Optimal control and trajectory.

In the fourth experiment the slip was stabilized at the
value 0.3. It was thus assumed h =0.7,r =1

r,=0, T=0.01, and the term in the performance

index penalizing for missing the target was skipped.
Theresultsare shown in Fig. 7.
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Fig. 7. Optimal control and trajectory.

4. COMPARISON WITH GAIN-SCHEDULED LQ
CONTROLLER

This section is devoted to the gain-scheduled LQ
(GSLQ) controller of (Johansen et al., 2001, 2003).
We consider the model (2.1), neglecting the friction
in the bearings and static friction. The state equations
taketheform

% = CpS(1) +(CsS(1) +46)Xs
X, =C5S(l ) +Cy5S(1 ) Xg
X, =C,(U- X,)

with
M - r,
_Mgn ho -1
2 3, Cs 3, Cie 3,
C22—'Mgrza 25:'2-
J2 J2
- FoXo - [X _ .
Substituting | :% and treating the velocity
272

X, asadisturbance we obtain the equations

=1, %, %)
X3 = C34(U - X3)

f =31 (21 )(Cn*Cas¥s) - Cro- Gs¥a)S( ) - TieXa)

- . n - n - n
C2 == G2, C15 =G5, Cig =~ (i
Iy rp Iy
The model linearized a the equilibrium point

Xg = (I g1 X5, Xg0,Uy) hastheform

DI = fi§X)D + f,g (X)Dxg

Dx; =5, (Du - Dx;)

Dx, = DI

D =1-1, Du=u-uy, DX;=X5- Xg-

This model is non-stationary and its coefficients
depend on the velocity x,, which is taken as a

disturbance. In the controller synthesis it will be
assumed that x, is constant. The third equation is

introduced into the model so that the controller has

the integrating (astatic) property. The controller
synthesis consists of determining a gain matrix

K =[K;,K,,K;] which minimizes a quadratic
performance index

¥
J = &fDx"W(x,)Dx+ Du" RDu)ct
0

Dx = col(Dl ,Dxg,Dx,), Du=-KDx
W(x,) = X3 diag(wg , W,, W)
w =01, w, =10%, wy =15, R=1.

It is assumed that the set value of the slip is equal to
I, =0.2, which corresponds to the braking moment
X30 =5.7156 [Nm]. The gain matrices are
determined by solving an appropriate Riccati
equation, for the velocity X, in the range from 1 to
180 [rad/s]. The dependence of the controller gains
on X, isshowninFig. 8.
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This gain-scheduled LQ controller is confronted with
the solution, optimal according to the performance
index (5) with the parameters h =0.8r =1,
r,=0 T=0.01. Notice that the state trajectory
generated by the optimal controller (black linein Fig.
9) exhibits better transient behavior than the GSLQ
controller (blue line). The corresponding slip
trajectories are shown in Fig. 10.
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5. EXPERIMENTAL VALIDATION

In the experiment the slip was stabilized at the value
0.3. It was thus assumedh =0.7,r =1, r, =0,

T =12, and the term in the performance index
penalizing for missing the target was skipped. The
MSE method was used to calculate the optimal
solution. Next, the optimal control was applied to the
LABS. The results of the open loop experiments are
shown in Fig. 11 and 12. A measured time history of
the slip and optimal control are shown in Fig. 11.
The trajectory of LABS is shown in Fig. 12. It is
easy to see that the quality of the slip stabilization is
very good.
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6. CONCLUSIONS

The Laboratory ABS model (LABS) is a smple and
convenient tool for experimental verification of
different antilock brake control methods. The optimal
control setting of the antilock braking problem, with
the control time, terminal error, excessive dlip and
braking distance accounted for in the performance
index, provides efficient control agorithms which
can be used in practice. This is possible due to the
careful identification of LABS. The MSE method of
optimal control calculation has proved well-suited for
this application. An interesting feature of the optimal
solutionsin the considered problem is the presence of
singularities that may be analytically treated.

Further research should answer the important
guestion how the obtained results can be
incorporated into an adaptive real-time control
scheme, resulting in a robust, reliable practical
solution.
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