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1. INTRODUCTION on the nominal mode$, we must assume something

about these residuals.
Much of control theory centers around the problem

of designing a regulator for a system based on an
approximate and uncertain model. There are many
useful, classical, results for the case when the model
error and uncertainty can be expressed as bounds on >
the model's Nyquist curve, thus (implicitly) assuming
that the true system is linear, e.g. (Zhetal,, 1996).

model
error model

The common case where the true system may be u
nonlinear and the design is based on a linear model
has also been treated extensively. Among many rele-
vant references we may mention (Yakubovich, 1964; )
Megretski and Rantzer, 1997; Vidyasagar, 1993). Fig. 1. Block diagram of the model error model.

In (Glad et al, 2004) the following situation was
considered. A nominal mode$ of the system is
constructed, e.g. using system identification. Such a
model cannot exactly describe the system and thus
there will be model errors and disturbances that give e(t) = gi(u’) +w(t) (2)
discrepancies from the model’s predictions. The errorsHereu! = {u(7), 7 < t} andg; is a representation of
or residuals are denoted by the model error model. Much work has been devoted
e(t) = y(t) — ys(t) (1) to the problem of separating the two effects in (2),
e.g. (Goodwinet al, 1992; Ljung, 1999; Smith and
Doyle, 1992; Smith and Dullerud, 1996; Hakvoort and
van den Hof, 1997; Bomboiet al, 2000). Often the
model error is assumed to be linear (i.e., assuming the
L Supported by the Swedish Research Council true system to be linear):

A typical assumption, illustrated in Figure 1, is that
has one part that originates from the inpu@a “model
error”) and one part that is due to disturbanags):

wherey;, is the output of the modef. To be able to
say something about the quality of a controller based




gi(ut) = @(q)u(ﬁ) (3) would give the controk for an inpute. Suppose this

) _ ~ design satisfies
which allows some conventional model validation

techniques to be used, e.g. (Ljung and Guo, 1997), lullr < ae(T) + Bellellr ™
or more sophisticated Toeplitz operator methods, e.g.Then (7) and (6) together give an estimate of small
(Smith and Dullerud, 1996) and (Pook# al., 1994). gain theorem type:
In that case, the error model naturally becomes global
lullr < oe(T) + Bellellr

in the amplitude of..

If the unmodeled part of the system is nonlinear, it will )
< 1 we have the estimate

often have a large gain if a gain definition without an If B0
offset term is used. Hence, we propose to use an affine |7 < 1 (ae(T) + Bear(T))
version of the gain definition. This has been done T 1-060

previously in the nonlinear control literature, see e.g.

(Vidyasagar, 1993). We use a power gain definition
similar to (Dower and James, 1998; Dower, 2000) and
say that the nonlinear system has gaiwith offseta

if there are positive constantsand such that

3. CONTROLLER DESIGN

Consider the control problem as described by figure
2. Herey is the measured signal andrepresents

el < avV'T + Bfullr 4)
for all positive T'. Here|| - || denotes the following J€
truncated norm: U Ys Yy
- —_— S E >
el = [ 020 di L :
0 w —

The form of the termyy/7” makes it possible to model
a component ing, or w that is unknown but has a Fig. 2. Control problem
known upper bound.
the controlled output, i.e., the goal of the control is
to keepz small, despite the influence ef In linear
H, design, thé/V block would be used to shape the
sensitivity function. We assume that thé block has

‘ils = fS (‘r57 U), yS = hS (‘T57 U’)7 xS (O) = xO a representatlon

®) Tw = fu(Tw w(Tw)Ys, 2= hy(Ty 9

Since nonlinear models might have drastically differ- ful@w) + gul@w)y wlow) ()
ent behavior in different parts of the state space, we The system mode$ together withiV is then given by
have also introduced the initial state in the model. This .
means that the model error model has to take into ¢ =fl@u)+nlz)e, uel
account uncertainties resulting from imprecise knowl- y=h(z,u) +e (10)
edge of the initial state. It is then natural to replace z=m(z)
the termav/T in (4) with a general function(T'). As
was argued in (Gladt al,, 2004), it is often natural to

In (Gladet al, 2004) linear models were used to rep-
resentS. Here we introduce more general nonlinear
models of the form

wherer = [zT, 2717 and

s

assume that the model error model is valid only ina () = { fs(@s,u) ,
certain amplitude range for the input In particular fo(Tw) + gu(@w)hs(@s, u)

we have this situation when the model is identified n(z) = { 0 } (11)
from data, and the validation has only been performed Guw(Tw)]’

for certain classes of inputs. We will investigate a h(z,u) = hg(zg,u),

fairly general form of input constraints and assume m(z) = ho ()

that u(t) belongs to a certain séf for every¢. The , ,

model error model is then of the form Note that (10) is only assumed to be valid foe U.

To get good control despite the influence of the model
error ¢ we try to design a controller withw € U
such that the gain from to the interesting variables
is small. One way of doing that is to use the criterion

ut) eU, t<T =lle|lr < a(T)+ Bllul|lr (6)

2. GAIN REQUIREMENTS T
Jr = / 2Tz 4+ uTu — 42T e)dt
Suppose a design of a controller is done for the nomi- 0
nal modelS. This controller would compute a control
u from the outputy in such a way that(t) € U is
satisfied. This controller together with the mod@! 12115 + ||ul|Z < 72|le]|%

If we can find a control law such thdt- < 0, we have
achieved the inequality



Obviously it is desirable to achieve this inequality for
a value ofy that is as small as possible.

Using standard nonlineaH . techniques (van der
Schaft, 1992),/7 can be rewritten by subtracting
V(x(0)) and using the following equality,

T
vw@»fﬁ a

—V(z(t)) dt

=V (a(t)) dt,
where V' is an arbitrary continuously differentiable
function. If V' is postulated to be positive semidefinite,
one gets

Jr —V(x(0)) <

V(2(0))

T
/ 2Tz +ulu—72eTe + Vo (f + ne)) dt =
0
r 1
/ Tz +uTu+ Vof + —QVxnnTVIT
0 4y

inTVIT)) dt

1 Ty, T\T
7277, Vx) (5_272

— 2 J—
(e 5

T
1
< / Tz 4+uTu+ Vof + ﬁvmnnTVmT) dt
0 Y

This leads to the following proposition.

Proposition 1. Suppose that there is a continuously
differentiable positive semidefinite functidin and a
control law u k(x) such thatu € U and the
Hamilton-Jacobi inequality

1
mim +ulu+ V,f + FVInnTVzT <0 (12)

Y
is satisfied for alle. Then the control law: = k(x)
gives a closed loop system that satisfies
12117 + [[ullF < V(2(0)) +7°|lel7

wherez = m(x).

(13)

So far the nominal design has been considered. Now it
is possible to investigate what happens when the real

system is controlled using the model error model.

Proposition 2. Let the controller of Proposition 1 be
used for a system with model error model (6) and
assume thays < 1. Then the closed loop dynamics,
including the model error model, satisfies

2.2 T
lalfy < Vi) + 0 @
Proof.
2117 + [lul |7
<V (2(0)) +~*(a(T) + Blullr)* (15)
Completing squares gives
2 T 6
Jalfy + (=28 ullr - T2
4 2 2
< V((0)) +12a2(T) + LD g

1— 1232

and deleting the positive term on the left hand side
gives the result. a

The result in Proposition 2 is thfit:||% has an upper
bound which is proportional to the square of the term
a(T) in the model error model (6). The first term,
V(z(0)), in (14) gives a bound ofiz||2 that holds

if the nominal model is truex{ = 0 andg = 0), i.e., if
there are no disturbancesalfT’) = ay+/T like in (4),
(14) can be used to show that the average power of
will be bounded. Furthermore, for a fixed value®f
the upper bound ofjz||2. in (14) will become smaller
if (12) can be solved for a smaller value pfwithout
changingV/ (z(0)).

4. ESTIMATING THE STATE

The control lawu = k(z) used in the previous
section requires feedback from the full statef the
model. In principle we would thus require a state
estimator whose dynamics would further complicate
the analysis. However, the specific structure of (10),
(11) makes it possible to use a particular approach.
Rewriting (5) we have

&= fle.u) +n@)(y - hz,u) (A7)

This dynamic system is its own observer, so in prin-
ciple we could use the following observer-feedback
configuration

&= f(&,k(®) +n(2)(y — h(2,k(2)))  (18)
u = k(%) (19)

In linear H..-design, this approach is well known, see
e.g. (Glad and Ljung, 2000). In fact, writing out the
sub-models of (18), we have

fi's = fs(i'syu) (20)
i’w = fw(iw) + gw(‘%w)y (21)

Since the initial conditions of; andzx,, are known,
this is a pure simulation that will give arbitrarily small
errors inxz, and x,,, provided the modefS and the
systemlV can be simulated with sufficient numerical
accuracy.

5. AN EXAMPLE

To solve nonlineaif ., problems is a subject in itself
and we will confine ourselves to a simple example. We
assume that the nominal model is just a static gain:

Ys = U
All the dynamic behavior is thus incorporated into the
model error model that is assumed to be valid for
|lu] < 1. We aim at a design where the sensitivity
function when operating in the linear region is given
by

~ Lty

S(s) =3



where b denotes the desired attenuation of distur- Instead of redefining:(z) like in (24), a largery can

bances at low frequencies. The sub-sysi&nis then
given by the transfer function

b
s+1
and the complete system given 8yandW is

T=—-z+but+bs, z==x

The Hamilton-Jacobi inequality becomes

b2
2?2 —Vex + Vibu+u? + —<V2 <0

44277 =
In the regionz| < 1/b the inequality is satisfied by
V=2 wu=-bz
providedr is chosen as
1
2
>
eI (22)

For || > 1/b the control becomes saturated,=
—sign(x). Using the minimal value of in (22),

1
2
=—— 2
T T (23)
the Hamilton-Jacobi inequality is
b2 +1
22 — Vya —sign(2)Vpb + 1+ + V2<0

4
Unfortunately, for this choice ofy and a quadratic
V, it is impossible to satisfy this inequality for all
|z| > 1/b. One possible remedy is to redefimeas

2] < 1
T z| < 5
200 — 1 1

O R
vV —=2bxr —1 1
5 <7}

With this redefinition ofm we reduce the penalty for

large amplitudes, realizing that it is not reasonable
to require the same amount of disturbance rejection

when the control saturates. With this definitionrof
the following V' is a solution

1

2
< Z
: o] < 1
2bx — 1 1
~2bz+1 1

. S T%
and the corresponding control is
—bx lz| <

—sign(z) |z| >

SRS

From (23), it follows that a largé, corresponding to

a large desired disturbance rejection, leads to a value

be used. Withy = b, the Hamilton-Jacobi inequality
is

1
2?2 — Vo — sign(z) Vb + 1 + ZVIQ <0 (25

when|z| > 1/bandu = —sign(z). UsingV = a?
in (25) gives

2% — 222 — 2blz| + 14+ 2% =1 —2b|z| <0

and this inequality is satisfied for aflwith |z| > 1/b.
Hence, by using a larger value ¢fin the Hamilton-
Jacobi inequality, a quadrati¢ (and a lineann(x))
can be used for alk. However, a larger value of
puts harder restrictions ofi for Proposition 2 to be
applicable. On the other hand, a redefinition of the
functionm(z) changes the relation betweerandx
and thus the interpretation of the bound (14) in terms
of the state variable.

6. THE DISCRETE TIME CASE

The results presented so far have been for continuous
time systems but similar results can be formulated in
the discrete time case too. We will here briefly present
the discrete time version of the nonlinear control de-
sign problem in Proposition 1 since it differs from its
continuous time counterpart in some ways. The use
of discrete time models for control design is interest-
ing since many system identification methods produce
such models. The simple model error model

u(t) €U, t < N = |le]|ny < a(N) + Bl|ul|y (26)

corresponds to the model error model (6) used previ-
ously in the continuous time case. Hatds a function
with «(N) > 0 for all N, 8 > 0 is a constant and

|| - || v denotes the truncated norm

N

211% = > =) =(t)

t=0

Assume that the nominal discrete time modelthat
can be used whea(t) € U, together with a discrete
time filter W can be written in state-space form as

z(t+1) = f(z(t),u(t)) +n(x(t))e(t)
y(t) = h(z(t), u(t)) +e(t)
z(t) = m(z(1))

(27)

Let

—7e(t)Te(t))

of ~ close to one, giving restrictions to the possible and consider the problem of findingt) = k(x(t))

values off satisfying3y < 1. Intuitively this is not

such thatJy < 0. The following proposition is a

surprising: we need a more accurate model to build adiscrete time version of Proposition 1 and can be

regulator giving more disturbance rejection.

useful in some applications.



Proposition 3. Consider the model (27) and suppose m(z)Tm(z) + k(2)Tk(z)
that there is a positive semidefinite functidf{xz(t))
and a control law: = k(z) such that € U and + /(@ k(@) Pf (e, k(z))
+ [ (@, k(2))" Pn(2)Q(a, P)~'n(x)" Pf(x, k(x))
m(x)Tm(z) + k(z) k(z) — y%eTe TPy <0
+V(f@ k@) +n(@e) V@) <o @)
x.

Loorljsl,l vih?e?s (;?r_allﬁga?f n the following inequality The result in Proposition 3 implies that it is possible to
o derive an upper bound dfx||% and||u||3 which size
2113 + [Jull3 < V(@(0)) + +2|el% (29) depends on how large the disturbards. This upper
bound can be used to prove the following proposition,
for every signak. which is a discrete time version of Proposition 2.

Proposition 4. Let the controller of Proposition 3 be

Proof. Since the equality used for a system with model error model (26) and

V(2(0)) — V(z(N +1)) assume thats < 1. Then the closed loop dynamics,
N including the model error model, satisfies

+ ) (V(z(k+1)) = V(x(k))) =0 202(T
2 el < Vo) + 200 @)

holds for any functiori/, we have that

In — V(2(0) Proof. Analogous to the proof of Proposition 2. O
N T T Just like the corresponding continuous time result,
- Z(m(x(t)) m(z(t)) + k(x(t)" k(z(t) Proposition 4 shows thdtz||3, has an upper bound
tjo T which depends on the size a@fT') in the model error
—ye(t) e() + V(f(2(t), k(2(1))) + n(xz(t)(t)) model (26). Furthermore, (30) shows how this upper
= V(z(t)) = V(N +1) <0 bound depends on.

where we have used (28) and the fact thas positive

semidefinite in the last inequality. The fact that
7. CONCLUSIONS

In =V (2(0)) <0

In this paper, it has been shown how the framework of
model error models can be tied together with nonlinear
) ) ] . H, technigues to get a systematic design procedure
For the discrete time robust control design problem in 5564 on identified models. The results have been pre-
Proposition 3 to be solved, the inequality (28) must genteq hoth for continuous and discrete time systems.
hold for all = and alle. Hence, this problem might ; i5 interesting to note that the presence of a et
be harder than the corresponding continuous time ¢ aijowed control signal values gives great flexibility
problem in Proposition 1. However,TW is assumed i, the modeling, model validation and design. The set
to be a quadratic functioni/ (z) = z* Pz, for some ¢ might for instance contain only a finite number of
choice of a symmetric, positive semidefinite matrix points, corresponding to actuators of on-off type. The

P, ¢ can be eliminated from (28). In this case, the 44| error model needs then be valid only for those
two control design problems are more similar. Using a -ontrols.

quadraticV’ such that) = (v2I — n” Pn) is positive
definite, we have

implies that (29) holds for every.
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