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Abstract: In this paper, systems where information about model accuracy is contained in
a model error model are considered. The validity of such a model is typically restricted to
input signals that are limited in amplitude. It is then natural to require the same amplitude
restriction when designing controllers. The resulting implications for controller design are
investigated in both the continuous and the discrete time case.Copyright c© 2005 IFAC
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1. INTRODUCTION

Much of control theory centers around the problem
of designing a regulator for a system based on an
approximate and uncertain model. There are many
useful, classical, results for the case when the model
error and uncertainty can be expressed as bounds on
the model’s Nyquist curve, thus (implicitly) assuming
that the true system is linear, e.g. (Zhouet al., 1996).

The common case where the true system may be
nonlinear and the design is based on a linear model
has also been treated extensively. Among many rele-
vant references we may mention (Yakubovich, 1964;
Megretski and Rantzer, 1997; Vidyasagar, 1993).

In (Glad et al., 2004) the following situation was
considered. A nominal modelS of the system is
constructed, e.g. using system identification. Such a
model cannot exactly describe the system and thus
there will be model errors and disturbances that give
discrepancies from the model’s predictions. The errors
or residuals are denoted by

ε(t) = y(t) − ys(t) (1)

whereys is the output of the modelS. To be able to
say something about the quality of a controller based
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on the nominal modelS, we must assume something
about these residuals.
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Fig. 1. Block diagram of the model error model.

A typical assumption, illustrated in Figure 1, is thatε
has one part that originates from the inputu (a “model
error”) and one part that is due to disturbancesw(t):

ε(t) = gt(u
t) + w(t) (2)

Hereut = {u(τ), τ ≤ t} andgt is a representation of
the model error model. Much work has been devoted
to the problem of separating the two effects in (2),
e.g. (Goodwinet al., 1992; Ljung, 1999; Smith and
Doyle, 1992; Smith and Dullerud, 1996; Hakvoort and
van den Hof, 1997; Bomboiset al., 2000). Often the
model error is assumed to be linear (i.e., assuming the
true system to be linear):



gt(u
t) = G̃(q)u(t) (3)

which allows some conventional model validation
techniques to be used, e.g. (Ljung and Guo, 1997),
or more sophisticated Toeplitz operator methods, e.g.
(Smith and Dullerud, 1996) and (Poollaet al., 1994).
In that case, the error model naturally becomes global
in the amplitude ofu.

If the unmodeled part of the system is nonlinear, it will
often have a large gain if a gain definition without an
offset term is used. Hence, we propose to use an affine
version of the gain definition. This has been done
previously in the nonlinear control literature, see e.g.
(Vidyasagar, 1993). We use a power gain definition
similar to (Dower and James, 1998; Dower, 2000) and
say that the nonlinear system has gainβ with offsetα
if there are positive constantsα andβ such that

||ε||T ≤ α
√

T + β||u||T (4)

for all positiveT . Here|| · ||T denotes the following
truncated norm:

||z||2
T

=

∫

T

0

z(t)T z(t) dt

The form of the termα
√

T makes it possible to model
a component ingt or w that is unknown but has a
known upper bound.

In (Gladet al., 2004) linear models were used to rep-
resentS. Here we introduce more general nonlinear
models of the form

ẋs = fs(xs, u), ys = hs(xs, u), xs(0) = xo

(5)
Since nonlinear models might have drastically differ-
ent behavior in different parts of the state space, we
have also introduced the initial state in the model. This
means that the model error model has to take into
account uncertainties resulting from imprecise knowl-
edge of the initial state. It is then natural to replace
the termα

√
T in (4) with a general functionα(T ). As

was argued in (Gladet al., 2004), it is often natural to
assume that the model error model is valid only in a
certain amplitude range for the inputu. In particular
we have this situation when the model is identified
from data, and the validation has only been performed
for certain classes of inputs. We will investigate a
fairly general form of input constraints and assume
that u(t) belongs to a certain setU for every t. The
model error model is then of the form

u(t) ∈ U, t ≤ T ⇒ ||ε||T ≤ α(T ) + β||u||T (6)

2. GAIN REQUIREMENTS

Suppose a design of a controller is done for the nomi-
nal modelS. This controller would compute a control
u from the outputy in such a way thatu(t) ∈ U is
satisfied. This controller together with the modelS

would give the controlu for an inputε. Suppose this
design satisfies

||u||T ≤ αc(T ) + βc||ε||T (7)

Then (7) and (6) together give an estimate of small
gain theorem type:

||u||T ≤ αc(T ) + βc||ε||T
≤ αc(T ) + βc(α(T ) + β||u||T ) (8)

If βcβ < 1 we have the estimate

||u||T ≤ 1

1 − βcβ
(αc(T ) + βcα(T ))

3. CONTROLLER DESIGN

Consider the control problem as described by figure
2. Here y is the measured signal andz represents
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Fig. 2. Control problem

the controlled output, i.e., the goal of the control is
to keepz small, despite the influence ofε. In linear
H∞ design, theW block would be used to shape the
sensitivity function. We assume that theW block has
a representation

ẋw = fw(xw) + gw(xw)y, z = hw(xw) (9)

The system modelS together withW is then given by

ẋ = f(x, u) + n(x)ε, u ∈ U

y = h(x, u) + ε

z = m(x)

(10)

wherex = [xT
s
, xT

w
]T and

f(x, u) =

[

fs(xs, u)
fw(xw) + gw(xw)hs(xs, u)

]

,

n(x) =

[

0
gw(xw)

]

,

h(x, u) = hs(xs, u),

m(x) = hw(xw).

(11)

Note that (10) is only assumed to be valid foru ∈ U .

To get good control despite the influence of the model
error ε we try to design a controller withu ∈ U
such that the gain fromε to the interesting variables
is small. One way of doing that is to use the criterion

JT =

∫

T

0

(zT z + uT u − γ2εT ε)dt

If we can find a control law such thatJT ≤ 0, we have
achieved the inequality

||z||2
T

+ ||u||2
T
≤ γ2||ε||2

T



Obviously it is desirable to achieve this inequality for
a value ofγ that is as small as possible.

Using standard nonlinearH∞ techniques (van der
Schaft, 1992),JT can be rewritten by subtracting
V (x(0)) and using the following equality,

V (x(0)) = V (x(T )) −
∫

T

0

d

dt
V (x(t)) dt,

where V is an arbitrary continuously differentiable
function. IfV is postulated to be positive semidefinite,
one gets

JT − V (x(0)) ≤
∫

T

0

(zT z + uT u − γ2εT ε + Vx(f + nε)) dt =

∫

T

0

(zT z + uT u + Vxf +
1

4γ2
VxnnT V T

x

− γ2(ε − 1

2γ2
nT V T

x
)T (ε − 1

2γ2
nT V T

x
)) dt

≤
∫

T

0

(zT z + uT u + Vxf +
1

4γ2
VxnnT V T

x
) dt

This leads to the following proposition.

Proposition 1.Suppose that there is a continuously
differentiable positive semidefinite functionV and a
control law u = k(x) such thatu ∈ U and the
Hamilton-Jacobi inequality

mT m + uT u + Vxf +
1

4γ2
VxnnT V T

x
≤ 0 (12)

is satisfied for allx. Then the control lawu = k(x)
gives a closed loop system that satisfies

||z||2
T

+ ||u||2
T
≤ V (x(0)) + γ2||ε||2

T
(13)

wherez = m(x).

So far the nominal design has been considered. Now it
is possible to investigate what happens when the real
system is controlled using the model error model.

Proposition 2.Let the controller of Proposition 1 be
used for a system with model error model (6) and
assume thatγβ < 1. Then the closed loop dynamics,
including the model error model, satisfies

||z||2
T
≤ V (x(0)) +

γ2α2(T )

1 − γ2β2
(14)

Proof.

||z||2
T

+ ||u||2
T

≤ V (x(0)) + γ2(α(T ) + β||u||T )2 (15)

Completing squares gives

||z||2
T

+ (1 − γ2β2)(||u||T − γ2α(T )β

1 − γ2β2
)2

≤ V (x(0)) + γ2α2(T ) +
γ4α2(T )β2

1 − γ2β2
(16)

and deleting the positive term on the left hand side
gives the result. 2

The result in Proposition 2 is that||z||2
T

has an upper
bound which is proportional to the square of the term
α(T ) in the model error model (6). The first term,
V (x(0)), in (14) gives a bound on||z||2

T
that holds

if the nominal model is true (α = 0 andβ = 0), i.e., if
there are no disturbances. Ifα(T ) = α0

√
T like in (4),

(14) can be used to show that the average power ofz
will be bounded. Furthermore, for a fixed value ofβ,
the upper bound on||z||2

T
in (14) will become smaller

if (12) can be solved for a smaller value ofγ without
changingV (x(0)).

4. ESTIMATING THE STATE

The control lawu = k(x) used in the previous
section requires feedback from the full statex of the
model. In principle we would thus require a state
estimator whose dynamics would further complicate
the analysis. However, the specific structure of (10),
(11) makes it possible to use a particular approach.
Rewriting (5) we have

ẋ = f(x, u) + n(x)(y − h(x, u)) (17)

This dynamic system is its own observer, so in prin-
ciple we could use the following observer-feedback
configuration

˙̂x = f(x̂, k(x̂)) + n(x̂)(y − h(x̂, k(x̂))) (18)

u = k(x̂) (19)

In linearH∞-design, this approach is well known, see
e.g. (Glad and Ljung, 2000). In fact, writing out the
sub-models of (18), we have

˙̂xs = fs(x̂s, u) (20)
˙̂xw = fw(x̂w) + gw(x̂w)y (21)

Since the initial conditions ofxs andxw are known,
this is a pure simulation that will give arbitrarily small
errors inxs and xw, provided the modelS and the
systemW can be simulated with sufficient numerical
accuracy.

5. AN EXAMPLE

To solve nonlinearH∞ problems is a subject in itself
and we will confine ourselves to a simple example. We
assume that the nominal model is just a static gain:

ys = u

All the dynamic behavior is thus incorporated into the
model error model that is assumed to be valid for
|u| ≤ 1. We aim at a design where the sensitivity
function when operating in the linear region is given
by

S(s) =
1

b
(1 + s)



where b denotes the desired attenuation of distur-
bances at low frequencies. The sub-systemW is then
given by the transfer function

b

s + 1

and the complete system given byS andW is

ẋ = −x + bu + bε, z = x

The Hamilton-Jacobi inequality becomes

x2 − Vxx + Vxbu + u2 +
b2

4γ2
V 2

x
≤ 0

In the region|x| ≤ 1/b the inequality is satisfied by

V = x2, u = −bx

providedγ is chosen as

γ2 ≥ 1

1 + 1/b2
(22)

For |x| > 1/b the control becomes saturated,u =
−sign(x). Using the minimal value ofγ in (22),

γ2 =
1

1 + 1/b2
, (23)

the Hamilton-Jacobi inequality is

x2 − Vxx − sign(x)Vxb + 1 +
b2 + 1

4
V 2

x
≤ 0

Unfortunately, for this choice ofγ and a quadratic
V , it is impossible to satisfy this inequality for all
|x| > 1/b. One possible remedy is to redefinem as

m(x) =































x |x| ≤ 1

b√
2bx − 1

b
x >

1

b

−
√
−2bx − 1

b
x < −1

b

(24)

With this redefinition ofm we reduce the penalty for
large amplitudes, realizing that it is not reasonable
to require the same amount of disturbance rejection
when the control saturates. With this definition ofm,
the followingV is a solution

V =



























x2 |x| ≤ 1

b
2bx − 1

b2
x >

1

b

−2bx + 1

b2
x < −1

b

and the corresponding control is

u =











−bx |x| ≤ 1

b

−sign(x) |x| >
1

b

From (23), it follows that a largeb, corresponding to
a large desired disturbance rejection, leads to a value
of γ close to one, giving restrictions to the possible
values ofβ satisfyingβγ < 1. Intuitively this is not
surprising: we need a more accurate model to build a
regulator giving more disturbance rejection.

Instead of redefiningm(x) like in (24), a largerγ can
be used. Withγ = b, the Hamilton-Jacobi inequality
is

x2 − Vxx − sign(x)Vxb + 1 +
1

4
V 2

x
≤ 0 (25)

when |x| > 1/b andu = −sign(x). UsingV = x2

in (25) gives

x2 − 2x2 − 2b|x| + 1 + x2 = 1 − 2b|x| ≤ 0

and this inequality is satisfied for allx with |x| > 1/b.
Hence, by using a larger value ofγ in the Hamilton-
Jacobi inequality, a quadraticV (and a linearm(x))
can be used for allx. However, a larger value ofγ
puts harder restrictions onβ for Proposition 2 to be
applicable. On the other hand, a redefinition of the
function m(x) changes the relation betweenz andx
and thus the interpretation of the bound (14) in terms
of the state variable.

6. THE DISCRETE TIME CASE

The results presented so far have been for continuous
time systems but similar results can be formulated in
the discrete time case too. We will here briefly present
the discrete time version of the nonlinear control de-
sign problem in Proposition 1 since it differs from its
continuous time counterpart in some ways. The use
of discrete time models for control design is interest-
ing since many system identification methods produce
such models. The simple model error model

u(t) ∈ U, t ≤ N ⇒ ||ε||N ≤ α(N) + β||u||N (26)

corresponds to the model error model (6) used previ-
ously in the continuous time case. Here,α is a function
with α(N) ≥ 0 for all N , β ≥ 0 is a constant and
|| · ||N denotes the truncated norm

||z||2
N

=
N

∑

t=0

z(t)T z(t)

Assume that the nominal discrete time modelS, that
can be used whenu(t) ∈ U , together with a discrete
time filterW can be written in state-space form as

x(t + 1) = f(x(t), u(t)) + n(x(t))ε(t)

y(t) = h(x(t), u(t)) + ε(t)

z(t) = m(x(t))

(27)

Let

JN =

N
∑

t=0

(m(x(t))T m(x(t)) + u(t)T u(t)

− γ2ε(t)T ε(t))

and consider the problem of findingu(t) = k(x(t))
such thatJN ≤ 0. The following proposition is a
discrete time version of Proposition 1 and can be
useful in some applications.



Proposition 3.Consider the model (27) and suppose
that there is a positive semidefinite functionV (x(t))
and a control lawu = k(x) such thatu ∈ U and

m(x)T m(x) + k(x)T k(x) − γ2εT ε

+ V (f(x, k(x)) + n(x)ε) − V (x) ≤ 0 (28)

for all x and for allε. Then the following inequality
holds whenu(t) = k(x(t))

||z||2
N

+ ||u||2
N

≤ V (x(0)) + γ2||ε||2
N

(29)

for every signalε.

Proof.Since the equality

V (x(0)) − V (x(N + 1))

+

N
∑

k=0

(V (x(k + 1)) − V (x(k))) = 0

holds for any functionV , we have that

JN − V (x(0))

=

N
∑

t=0

(m(x(t))T m(x(t)) + k(x(t))T k(x(t))

− γ2ε(t)T ε(t) + V (f(x(t), k(x(t))) + n(x(t))ε(t))

− V (x(t))) − V (x(N + 1)) ≤ 0

where we have used (28) and the fact thatV is positive
semidefinite in the last inequality. The fact that

JN − V (x(0)) ≤ 0

implies that (29) holds for everyε. 2

For the discrete time robust control design problem in
Proposition 3 to be solved, the inequality (28) must
hold for all x and all ε. Hence, this problem might
be harder than the corresponding continuous time
problem in Proposition 1. However, ifV is assumed
to be a quadratic function,V (x) = xT Px, for some
choice of a symmetric, positive semidefinite matrix
P , ε can be eliminated from (28). In this case, the
two control design problems are more similar. Using a
quadraticV such thatQ = (γ2I − nT Pn) is positive
definite, we have

zT z + uT u − γ2εT ε + fT Pf + fT Pnε

+ εT nT Pf + εT nT Pnε − xT Px

= zT z + uT u + fT Pf

+ fT PnQ−1nT Pf − xT Px

− (ε − Q−1nT Pf)T Q(ε − Q−1nT Pf)

≤ zT z + uT u + fT Pf

+ fT PnQ−1nT Pf − xT Px

Hence, the condition (28) in Proposition 3 is satisfied
if a positive semidefinite matrixP can be found such
thatQ(x, P ) = γ2I−n(x)T Pn(x) is positive definite
and

m(x)T m(x) + k(x)T k(x)

+ f(x, k(x))T Pf(x, k(x))

+ f(x, k(x))T Pn(x)Q(x, P )−1n(x)T Pf(x, k(x))

− xT Px ≤ 0

for all x.

The result in Proposition 3 implies that it is possible to
derive an upper bound on||z||2

N
and||u||2

N
which size

depends on how large the disturbanceε is. This upper
bound can be used to prove the following proposition,
which is a discrete time version of Proposition 2.

Proposition 4.Let the controller of Proposition 3 be
used for a system with model error model (26) and
assume thatγβ < 1. Then the closed loop dynamics,
including the model error model, satisfies

||z||2
N

≤ V (x(0)) +
γ2α2(T )

1 − γ2β2
(30)

Proof.Analogous to the proof of Proposition 2. 2

Just like the corresponding continuous time result,
Proposition 4 shows that||z||2

N
has an upper bound

which depends on the size ofα(T ) in the model error
model (26). Furthermore, (30) shows how this upper
bound depends onγ.

7. CONCLUSIONS

In this paper, it has been shown how the framework of
model error models can be tied together with nonlinear
H∞ techniques to get a systematic design procedure
based on identified models. The results have been pre-
sented both for continuous and discrete time systems.
It is interesting to note that the presence of a setU
of allowed control signal values gives great flexibility
in the modeling, model validation and design. The set
U might for instance contain only a finite number of
points, corresponding to actuators of on-off type. The
model error model needs then be valid only for those
controls.
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