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Valparáıso, Chile

Abstract: There exists a substantial literature dealing with the problem of errors-
in-variables identification. It is known, for example, that there is an equivalence
class of models that give compatible descriptions of the input-output data. In
the current paper, we impose a mild restriction so as to avoid certain singular
possibilities. This leads to a parameterization of the equivalence class of models
via a single real parameter. We then use this result to show that there exists a
model which is optimal in the sense that minimizes the maximal weighted infinity
norm of the error between the chosen model and all members of the equivalence
class. This model is unique and is independent of the weighting function used in
the infinity norm. It is thus the natural choice to be used in applications such
as robust control. The result is also compared with more conventional estimates
provided by prediction error methods. Copyright c©2005 IFAC
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1. INTRODUCTION.

The topic of errors-in-variables identification has
attracted ongoing interest for almost a century.
Work on the non-dynamic case goes back to Gini
(1921) and Frisch (1934). These results have also
been embellished by Madansky (1959), Moran
(1971), Kalman (1981), Anderson et al. (1996),
among others. The dynamic case has also at-
tracted substantial interest in the engineering and
statistics literature-see for example (Söderström,
1981; Green and Anderson, 1986; Tugnait, 1992;
Nowak, 1992; Pintelon and Schoukens, 2001).
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One conclusion from the above work is that there
exists an equivalence class of models which are
indistinguishable in term of their second-order
input-output behavior. For example, Anderson
(1985) has given a succinct description of the
equivalence class and has shown that it is finitely
parameterized in terms of (N + 1) real variables,
provided it is known that the plant has N zeros
outside the unit circle. The case of white measure-
ment noise has been studied in Stoica and Nehorai
(1987) and in Chen (2003). An overview of errors-
in-variables estimation is given in Söderström et

al. (2002).

Our result builds on the earlier work of Anderson
(1985). Indeed, it could be fairly said that the



result is implicit in this earlier paper. However
we see advantages in making the result explicit
since it has important implications in the context
of robust control design. In particular, we show
that, by introducing a very mild restriction, we
are able to parameterize the equivalence class of
input-output compatible models by a single real
parameter. We then utilize this result to show that
there exists a model which minimizes the maximal
weighted infinity norm of the error between the
chosen model and all members of the equivalence
class. This model is independent of the weighting
function used in the infinity norm. It is thus, a
natural choice. For example, it would give the best
worst case performance in the context of robust
control. We also compare the result with estimates
provided by prediction error methods.

The layout of the reminder of the paper is as
follows: in section 2, we describe the errors-in-
variables estimation problem. In section 3, we
discuss our main result. In section 4, we make
some comments regarding robust control issues,
and finally we sketch some conclusions in section
5.

2. MODEL SETUP

Consider the setup shown in Figure 1
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Fig. 1. Errors-in-variables model

We assume that {uo(t)}, {n1(t)} and {n2(t)},
are independent stationary stochastic processes
described by:

uo(t) = Lo(z)ūo(t) (1)

n1(t) = L1(z)n̄1(t) (2)

n2(t) = L2(z)n̄2(t) (3)

with Lo(z), L1(z) and L2(z) are normalized

spectral factors, and where the variances of ūo(t),
n̄1(t) and n̄2(t) are σ2

o , σ2

1
and σ2

2
respectively.

The problem of interest is to make statements
about the transfer function P (z) from the second
order statistics of {u(t)} and {y(t)}.

We introduce the following assumptions:

A.1 Lo, L1 and L2 are rational of finite order
A.2 P is strictly stable

A.3 P contains no zero, zo, satisfying the sym-
metry conditions

P (zo) = 0 : and P (z−1

o ) = 0

A.4 P contains no pole or zero ζ, that is either a
pole or zero of Lo(z) or Lo(z

−1), i.e. such that

Lo(ζ) = 0 or Lo(ζ
−1) = 0

Remark Note that assumptions (A.3) and (A.4)
are relatively mild. They are, of course, restric-
tive. However, without them, one must resort to
the general result of Anderson (1985) and its
multivariable generalization (Green and Ander-
son, 1986). Assumptions A.3 and A.4 rule out
various singular cases. These cases lie in a set
of measure zero in the set of all systems. This,
in itself, is not necessarily important. After all,
systems containing a pure integrator also lie in
a set of measure zero yet they are, nonetheless,
of practical importance. Perhaps it is simply a
matter of opinion as to which assumptions one
deems reasonable and which one does not. In this
context, it is interesting to compare assumptions
A.3 and A.4 with other assumptions made in the
literature. For example, in Stoica and Nehorai
(1987) and Nowak (1992) it is shown that unique
identifiability is possible, provided certain restric-
tions are placed on the noise structure and/or the
degrees of the AR and MA components of the
various signal models. Assumptions A.3 and A.4
appear, at least to the current authors, to be less
restrictive than these latter assumptions.
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We will consider asymptotic analysis. In this con-
text, most identification procedures can be shown
(Ljung, 1999) to be equivalent to analyzing the
joint input-output spectrum which is here given
by:

S(ejω) =

[

S11(e
jω) S12(e

jω)
S21(e

jω) S22(e
jω)

]

(4)

where

S11(e
jω) = σ2

o |P (ejω)Lo(e
jω)|2 + σ2

2
|L2(e

jω)|2

(5)

S12(e
jω) = σ2

oP (ejω)|Lo(e
jω)|2 (6)

S21(e
jω) = σ2

oP (e−jω)|Lo(e
jω)|2 (7)

S22(e
jω) = σ2

o |Lo(e
jω)|2 + σ2

1
|L1(e

jω)|2 (8)

3. THE MAIN RESULT

The main result of the current paper is



Theorem 1. Subject to assumptions A.1 to A.4,
then the equivalence class of compatible models is
given by

P =

{

P (z) : P (z) =
S12(z)

σ2

o|Lo(z)|2

}

(9)

where σ2

o is any positive real satisfying

|S12(e
jω)|2

S11(ejω)
≤ σ2

o|Lo(e
jω)|2 ≤ S22(e

jω) ∀ω (10)

and where Lo(z) is uniquely determined by taking
those poles and zeros from S12(z) which are sym-
metrically placed with respect to the unit circle,
i.e. were (z − c) and (1 − zc) are factors.

Proof The key observation is that assumptions
A.3 and A.4 allow Lo(z) to be uniquely deter-
mined from S12(z) . Then equation (6) immedi-
ately leads to (9).

Now we also require that

σ2

o|Lo(e
jω)|2 + σ2

1
|L1(e

jω)|2 = S22(e
jω)

Thus

S22(e
jω) − σ2

o|Lo(e
jω)|2 must be nonzero ∀ω

Also from (4)-(8)

|S12(e
jω)|2

σ2

o|Lo(ejω)|2
+ σ2

2
|L2(e

jω)|2 = S11(e
jω)

Thus we also require σ2

o to satisfy

σ2

o|Lo(e
jω)|2 ≥

|S12(e
jω)|2

S11(ejω)

Thus the constraints on σo are that

|S12(e
jω)|2

S11(ejω)
≤ σ2

o|Lo(e
jω)|2 ≤ S22(e

jω)
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An immediate consequence of the above result is:

Corollary 1. Consider the equivalence class P.
Then there exists a unique model P

∞
(z) ∈ P

which satisfies

P
∞

(z) = arg min
P∈P

max
P∈P

{

|W (z)(P (z) − P (z))|∞
}

(11)

P
∞

(ejw) =
1

2
[Pmax + Pmin] (12)

Pmax =
S11

S∗
12

(13)

Pmin =
S12

S22

(14)

for any weighting function W (z).

Proof We note from Theorem 1 that at any
frequency ω, every P (z) ∈ P satisfies

P (ejω) =
S12(e

jω)

σ2

o|Lo(ejω)|2

where σ2

o > 0. Since all frequency responses lie on
a straight line passing through the origin but not
including the origin, then the solution to (11) is
clearly (see Figure 2)

P
∞

(z) =
S12(z)

[σ∞
o ]2|Lo(z)|2

where

1

[σ∞
o ]2

=
1

2

[

1

σ2

min

+
1

σ2

max

]

and where σmin and σmax are the minimum and
maximal values of σ such that (10) is satisfied.
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max σo min σo

true model
P

Pmin =
S12

S22

Pmax =
S11

S12∗

Re

Im

Fig. 2. Nyquist Plot (The dashed line represents
all possible estimates)

4. IMPLICATIONS IN ROBUST CONTROL

Since P
∞

(z) minimizes the maximal weighted
infinity norm of the error among the class P ,
then it is a natural choice in the context of
robust control since it will yield the smallest value



of |ToP
−1

(P − P )|∞, where To is any nominal
complementary sensitivity function. This is the
best one can hope for since all members of P are
indistinguishable from the given second order data
on {y(t), u(t)}

Notice that the bias in the result is minimized
over the class of compatible models. This re-
sult should be compared with estimates blindly
obtained by other methods (e.g. prediction er-
ror methods (PEM) , (Ljung, 1999)). The latter
schemes will, in general, yield results which are at
the extreme edge of the equivalence class. This is
illustrated below.

Theorem 2. Let us assume that the system is es-
timated by a PEM based on the following hypoth-
esized model:

y(t) = Gu(t) + Hε(t) (15)

where G and H are independently parameterized.

Then, the asymptotic PEM estimate is given by

Ĝ =
1

1 + ρ
P = Pmin

ρ =
Φn1

Φuo

=
|L1|

2σ2

1

|Lo|2σ2
o

where Φn1
and Φuo

are the input noise and input
spectra respectively.

Proof The prediction error is given by

ε(t) = H−1[y(t) − Gu(t)] (16)

= H−1[G̃u(t) + x(t)] (17)

where G̃ = P − G, and x(t) = n2(t) − Pn1(t).

Then, the prediction error spectrum is given by

Φε =
1

|H|2
[

G̃ 1
]

ΦX

[

G̃

1

]∗

(18)

where

ΦX =

[

Φu Φux

Φxu Φx

]

(19)

and Φu = S22(e
jw).

It is possible to write the prediction error spec-
trum as:

Φε =
Φu

|H|2

(

G̃ +
Φxu

Φu

) (

G̃ +
Φxu

Φu

)∗

(20)

+
1

|H|2

[

Φx −
|Φxu|

2

Φu

]

We also have that, since uo, n1, and n2 are
uncorrelated:

Φxu = −PΦn1
= −P |L1|

2σ2

1
(21)

Then, assuming that G, and H are independently
parameterized we have that the asymptotic esti-
mate is given by:

Ĝ = P +
Φxu

Φu

= P

(

1 −
Φn1

Φu

)

(22)

We also have that

Φn1

Φu

=
Φn1

Φuo + Φũ

=
ρ

1 + ρ
(23)

Then, noting that S12 = PΦuo
, we obtain the

result.
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Remark The above asymptotic result for PEM
shows that Ĝ is a scaled version of P , where
the scaling is frequency dependent. Notice that
the bias in Ĝ can be larger or smaller than that
achieved by P

∞
depending on the value of ρ.

On the other hand, Corollary 1 shows that P
∞

minimizes the maximal bias among the indistin-
guishable members of the equivalence class P.

OOO

5. CONCLUSIONS

This paper has given a parameterization of the
equivalence class of all compatible models in dy-
namic errors-in-variables estimation. A mild re-
striction has been introduced ensuring that this
equivalence class is parameterized by a single real
variable. Comparisons with the estimates by pre-
diction error methods have been given. Implica-
tions of the result in robust control have also been
briefly examined.
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