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1. INTRODUCTION

Whilst nearly all real-world systems are nonlinear in
nature, attempts to design improved system perfor-
mances through feedback control strategies, fault de-
tection techniques and monitoring of plant efficiency,
are usually based on classical linear systems theory.
Indeed, within the classical linear systems theoretical
framework, issues of system stability and preservation
of spectral characteristics are well understood. One
approach adopted, when attempting to model nonlin-
ear systems for the purpose of analysis and design,
is that of multiple-models, and a good introduction
may be found in (Murray-Smith and Johansen, 1997).
Recent years, however, has witnessed developments
in linear systems theory and the emergence of a
wider, all-encompassing, theoretical framework based
on time series, known as the behavioural approach,
proposed in (Willems, 1986a,1986b,1987).Within this
new theoretical framework the classical representa-
tion of linear systems co-exists as a special subclass.
Traditional input/output models, which are very much
central in the classical approaches, are only a special
case and may be deduced from the behavioural model.
The behavioural approach defines a dynamical sys-
tem as a family of trajectories, without reference to

input/output maps or relations, without reference to
state variables, and without reference to behavioural
equations. The trajectories are defined by the triple
(T,W,B), whereT represents the time instants of in-
terest on a finite subset of the time axis,W represents
the signal space (or vector space over a field) in which
the time signals, that the system produces, take their
values, andB is a family of W-valued trajectories
over the finite time series, which, in general, will be
a linear subspace ofW. Essentially, the setsT andW

define the ‘size’ of the system, whilstB formalises the
‘laws’ that govern the system. The notion of model
complexity is related to the ‘size’ of the system de-
notedB ∈ B and is related to the rank, or number of
unique (i.e. linearly independent) trajectories, and the
degree, or length of the time series. In practice, the aim
is to obtain a reasonably simple model which provides
a sufficiently accurate representation of the data.

A distinguishing feature of the behavioural approach
is that there is no necessary distinction between the
system inputs and outputs, both being regarded as ‘ex-
ternal’ variables. Such a feature is, indeed, of particu-
lar interest when dealing with error-in-variable (EIV)
models, as the effect of noise can be understood on the
external variables. Therefore, while EIV techniques



have been developed within the classical approach
(Soderstromet al., 2002), extension to the behavioural
approach seems a particularly natural choice. The
global total least squares procedure (GTLS), proposed
in (Roorda, 1995), allows estimation of fully param-
eterised state-space EIV models, with the specificity
of treating all external variables equally (i.e. same
noise variance). This technique utilises the notion of
an isometric state representation (ISR), which, by def-
inition (see (Heij, 1989)), leads to a model for a linear
stabilizable system that can be driven forward or in
reverse time.

The paper investigates the appropriateness of extend-
ing the behavioural approach, combined with the
GTLS approach, to encompass a parallel structured
weighted multiple-model approach to deal with non-
linear systems. The nature of the problem is such that
once an initial GTLS model has been obtained, and
refined, it is transformed to an equivalent classical rep-
resentation, where the total model, together with the
scheduling parameters, are repeatedly optimised us-
ing a ‘global ordinary least squares’ (GOLS) scheme.
Then, following the optimisation, the model is re-
turned to the behavioural framework and the GTLS
optimisation sequentially applied to the linear time-
invariant (LTI) sub-models. This cycle is repeated un-
til the distance between the measured and simulated
time series has converged to a minima. The theo-
retical framework for the new approach is derived
for the general case of multiple-input multiple-output
(MIMO) systems, and demonstrated using a single-
input single-output (SISO) nonlinear system.

Inherent in the hybrid approach is the assumption
(from GTLS) of measurement noise on the measured
signals and, due to its presence within the construction
of the scheduling vector which weights the tempo-
ral importance of each of the sub-models, it plays
a crucial role in the optimisation. In recognition of
the potential problems arising due to ISR modelling
error, the method uses an approach developed in
(Vinsonneauet al., 2004) in which the uncertainty
present in a noise residual, associated with an esti-
mated noise free input, is iteratively modified in order
to remove, or reduce, the effect of inherent modelling
error; arising when linearising a nonlinear system. The
algorithm is an initial step towards integrating and
extending both the multiple-model approach and the
behavioural framework, and constitutes a novel devel-
opment for handling nonlinear systems.

A description of the GTLS modelling techniques is
given in Section 2. Section 3 introduces a multiple-
model structure in the classical approach, which min-
imises a GOLS criterion. This algorithm forms a
subset of the multiple-model EIV identification tech-
niques described within the behavioural approach. The
algorithm, which minimises the GTLS criterion is de-
fined in Section 4. To provide an insight, the resulting
hybrid algorithm is applied to an arbitrary SISO non-

linear system in Section 5, noting that extension to the
MIMO case is straightforward.

2. GLOBAL TOTAL LEAST SQUARE

One of the distinguishing characteristics of GTLS
when compared to other EIV methods (Soderstromet
al., 2002), is that all the external variables are treated
symmetrically. EIV systems in the classical approach
are illustrated in Figure 1, where observations are
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Fig. 1. An error-in-variables dynamic system.

assumed to be corrupted by additive measurement
noises̃uk andỹk at the input and output, respectively.
This results in measured signals:

uk = u0k
+ ũk, yk = y0k

+ ỹk (1)

This section reviews the GTLS technique and the as-
sociated terminology, while subsection 2.3 discusses
how the use ofa priori knowledge on the input
noise distribution may be utilised to advantage by ex-
tending the use of a weighted approach proposed in
(Roorda, 1995).

2.1 Behavioural model: SR and ISR

The behavioural state space model was originally in-
troduced in (Willems, 1991) where a state-space sys-
tem is denoted(S). This offers a more general descrip-
tion of systems, noting, for example, that the classi-
cal(i/s/o) (input/state/output) state space representa-
tions is a special case ofS. (Roorda, 1995) adopted
the behavioural representation, and termed this a state
representation(SR), defined by:

xk+1 =Axk +Bv̂k (2a)

ŵk =Cxk +Dv̂k (2b)

whereŵk ∈ R
q denotes the estimated external vari-

ables at time instantk, xk ∈ R
n the states, and

v̂k ∈ R
m the driving variables.

As defined in (Heij, 1989), and with attention re-
stricted to discrete time systemsT = Z, let Bsr de-
note realisations of the class of systemBsr with the
following form:

Bsr = Bsr(M) :=
{

(v, x, w) ∈ (Rm × R
n × R

q)Z ;
(

σx
w

)

=

(

A B
C D

) (

x
v

)}

(3)

whereσ denotes the time shift operator.



It has been proved in (Willems, 1986a,1986b,1987)
that this class coincides with the class of LTI, complete
systems. The class of realisationsBsr are said to be
minimal if m and n are, individually, as small as
possible. Therefore, it is not evident that a minimal
realisation exists.

A state representation(A,B,C,D) is said to be iso-
metric (ISR) if, for allx ∈ R

n, v ∈ R
m, w ∈ R

q, and
z ∈ R

n, wherez = Ax+Bv andw = Cx+Dv, the
following relationship holds:

|v|2 + |x|2 = |w|2 + |z|2 (4)

A sufficient condition for the ISR to exist is that
the system is stabilizable, and, in addition, if the
representation is minimal, thenA is asymptotically
stable (see (Heij, 1989) for proof).

Such representations are of key importance as they
may be driven backwards and forwards in time and
therefore, facilitate the estimation of an optimal ini-
tial statex0. The representations can be obtained by
solving an appropriate Riccati equation.

In this paper, a hybrid scheme is proposed, in which
the classical(i/s/o) and the behavioural ISR repre-
sentations are repeatedly utilised in order to realise the
multiple-model GTLS.

2.2 Misfit and cost function

It is necessary to propose a means to asses the model
performance, within a class of behavioural models
B

q with q external variables. The misfitd(w,B) of a
particular modelB ∈ B

q with respect to a time series
w : T → R

q, for observation intervalT , is defined as:

d(w,B) := min
ŵ∈BT

‖w − ŵ‖ (5)

whereBT denotes the restriction ofB to the observa-
tion intervalT andŵ is the estimate ofw.

The GTLS problem can be summarised as follows:
assuming a complexity constraint with tolerated size
(m,n) with m auxiliary/driving variables (estimated)
andn state variables, determine a state representation
M := (A,B,C,D) ∈ B

q,m,n, a class of models with
q external variables and(m,n) satisfying a complex-
ity constraint, with auxiliary inputŝv ∈ R

N×m, where
N is the number of observations, that minimises:

(M̂, x̂0) = arg min
M,x0

{

‖w − ŵ(M,x0)‖
2
F

}

(6)

where‖.‖F denotes the Frobenius norm, andŵ(M,x0)
are the simulated external variables of a behavioural
state space model, parameterised byM and usingx0

as initial state.

Within the classical approach, the criterion minimised
in (6) is equivalent to:

J =

N
∑

k=1

‖uk − ûk‖
2
F + ‖yk − ŷk‖

2
F (7)

whereuk andyk are the measured input and output,
while the ûk and ŷk are the respective simulated
variables at time instantk.

2.3 A priori knowledge on the input noise distribution

In (Roorda, 1995), it was noted that to suppress the ap-
proximation of the input, and therefore favour the ap-
proximation of the output, the input could be weighted
by a scalarα such that

‖w − ŵ‖2
α,F := α2‖u− û‖2

F + ‖y − ŷ‖2
F (8)

with α sufficiently large.

In this paper, the systems of interest are nonlinear
and thus, after linearising, the model aims to estimate
an input, free of measurement noise, and an output
which tends to reflect an optimal noise free output
with ‘linearisation’ error. Here, the hypothesis is made
that somea priori knowledge, concerning the input
measurement noise varianceσu, is known. A degree
of uncertaintyγ can be added, thus allowing the
corresponding weight of interest,α, to be estimated
using:

α̂ = inf
α

{

α > 0,
∣

∣σu − ‖u− û(α)‖2
F

∣

∣ < γ
}

(9)

Such a problem may be readily solved using a line
search technique, with a positivity constraint forα.

3. MULTIPLE-MODEL GOLS

This section introduces a new multiple-model state-
space representation and minimisation of GOLS is
considered.

The discussion focuses on MIMO nonlinear sys-
tems withm noise-free inputs andl noisy outputs.
The multiple-model approach is a well studied con-
cept (see, for example, (Murray-Smith and Johansen,
1997) and the references therein) to represent nonlin-
ear systems, where each local model aims to repre-
sent the system behaviour about a specified operating
point. The importance of a particular sub-model at a
particular time instant is specified using radial basis
functions, which provide smooth transition over the
whole operating range.

The problem of minimising the multiple-model GOLS
is given in the following problem statement:

Problem 1.( Multiple-model GOLS ). The proposed
structure consists ofs state-space sub-models of
parameterisationθ :=

[

θ1 . . . θs

]

where θi :=
(Ai,Bi,Ci,Di) and the transition between sub-models
is specified by a scheduling vector composed of nor-
malised radial basis functions which are dependent
on r chosen premise variablesφ ∈ R

N×r, with N
being the number of observations. Assuming noise-
free inputsu ∈ R

N×m, determine an estimate ofθ̂ the



multiple-model parametersθ, the centresc ∈ R
r×s

and widths̟ ∈ R
r×s of the radial basis functions and

the initial statêx0 ∈ R
n, which minimises the differ-

ence between the measured outputs and the simulated
outputsŷ ∈ R

N×l:

(θ̂, ĉ, ˆ̟ , x̂0) = arg min
θ,c,̟,x0

{

‖y − ŷ(θ, c,̟, x0)‖
2
F

}

(10)

The problem dealt with here is formulated and solved
as two sub-problems: namely (1) identification of the
parameters for each of the sub-models; and (2) finding
the scheduling parameters of the radial basis func-
tions, which will minimise the modelling error. Both
sub-problems are interdependent and an iterative re-
finement of each set of parameters is necessary.

3.1 Multiple-model structure description

Figure 2 shows the structure of the model withs sub-
models to be parameterised.

sub-model 1

sub-modeli

sub-models

y1,k

ys,k

yi,kpi(φk)uk

ps(φk)uk

p1(φk)uk

ykuk

φk

Fig. 2. Structure of the multiple model.

At each time step, the sub-models inputsûi,k are ex-
pressed as a weighted equivalent of the inputsuk with
weightspi,k = pi(φk) with

∑

i pi,k = 1 for everyk,
while the sub-models outputŝyi,k are estimated using
the following classical state-space representation:

xi,k+1 = Aixi,k + Bipi,k(φk, c,̟)uk (11a)

ŷi,k = Cixi,k + Dipi,k(φk, c,̟)uk (11b)

The multiple-model outputs are given as the sum of
the sub-models outputs:

ŷk(θ, c,̟) =

s
∑

i=1

ŷi,k(θi, c,̟) (12)

for k = 1, . . . , N , withN the number of observations.

The ‘weighting’ or ‘scheduling’ vectorspi are defined
as unknown functions of the ‘premise’ variablesφk ∈
R

r. Typically, it will depend on the input and the state,
that is:

φk = ψ(xk, uk) (13)

Let theith radial basis function be equal to:

ri(φk; ci, ̟i) = exp(−(φk−ci)
T diag(̟i)

2(φk−ci))
(14)

whereci is the centre and̟ i is the width of theith
radial basis function. The weightspi are obtained from
the radial basis function after normalisation:

pi(φk; ci, ̟i) =
ri(φk; ci, ̟i)

∑s

j=1 rj(φk; cj, ̟j)
(15)

3.2 Initialisation

An initial model is estimated, which solves the pre-
diction error minimisation (PEM) problem for a full
parameterised state-space model. Here, the N4SID
subspace-based method is used (see (Overschee and
Moor, 1996) for more details), for the example in
Section 5, but it has been noted in (McKelvey, 1995)
that such methods may not perform well on data with
non-zero initial conditions. In such a case, it might be
preferable to use another type of PEM method.

The initial model is then replicated in each of the sub-
models. Due to the normalisation of the scheduling
vector pi in (15), the sum of the sub-models inputs
is equal to the initial model inputs, and given that the
sub-models are linear, the sum of the resulting outputs
is equal to the outputs of the initial single model.

3.3 Parameter optimisation for sub-models

Having an initial parameterisation for a multiple
model, an optimisation can then be performed to min-
imise the output error (OE) depending on the parame-
tersΘ:

Θ :=
[

vec(θ)T vec(c)T vec(̟)T
]T

(16)

wherevec(·) denotes the vectorisation operator that
forms a vector from a matrix by stacking the columns
on top of each other. The induced cost function is
defined as:

JN :=
N

∑

k=1

∥

∥

∥

∥

∥

yk −
s

∑

i=1

ŷi,k(Θ)

∥

∥

∥

∥

∥

2

F

= ET (Θ)E(Θ) (17)

where

E(Θ) =
[

ET
1 (Θ) . . . ET

N (Θ)
]T

(18)

and

ET
j (Θ) = yj −

s
∑

i=1

ŷi,j(Θ), j = 1, . . . , N (19)

The minimisation ofJN is a nonlinear, non-convex
problem, because of the complicated dependence of
JN on the parametersθ, c, and̟. Therefore, this
optimisation problem is reformulated into two sub-
problems: the optimisation of the local models with
a fixed scheduling vector; and the optimisation of the
parameters of the scheduling vector with fixed sub-
model parameters. This type of problem is commonly
solved using the Levenberg-Marquardt method (see
(Moré, 1978)).



4. MULTIPLE-MODEL GTLS

This section focuses on the multiple-model GTLS,
where the system input is considered noisy. To im-
prove the model estimation, this approach aims to
estimate a multiple-model EIV. In general, the system
is a MIMO nonlinear system withm noisy inputs
and l noisy outputs. The multiple-model structure is
identical to that in Figure 2.

4.1 Multiple-model GTLS definition

The extended GTLS approach, which reflects the
multiple-model structure put forward in this paper, is
given in the following problem statement:

Problem 2.( Multiple-model GTLS ). The proposed
structure iss state-space sub-models of parameteri-
sationMmm :=

[

Mmm1
. . . Mmms

]

∈ B
q,m,n,s

whereMmmi
:= (Ai, Bi, Ci, Di), where the transi-

tion between sub-models is specified by a scheduling
vector (15) composed of normalised radial basis func-
tions (14) which are dependent onr chosen premise
variablesφ ∈ R

N×r introduced in (13), whereN
is the number of observations. Within a complexity
constraint(m,n, s) withm auxiliary/driving variables
(estimated),n state variables, the external variables
w =

[

u y
]

∈ R
N×q, s sub-models, and assum-

ing a priori knowledge on the input noise variances
σu ∈ R

m, within uncertainty boundaryγ ∈ R
m,

determine the multiple-model parametersMmm, the
centresc ∈ R

r×s and widths̟ ∈ R
r×s of the radial

basis functions and the initial statêx0 ∈ R
n, with

auxiliary inputsv̂ ∈ R
m×N , such that:

(M̂mm, x̂0, ĉ, ˆ̟ ) =

arg min
M,x0

{

‖w − ŵ(Mmm, x0, c,̟, σu, γ)‖
2
F

}

4.2 Algorithm

Initialisation: An initial model, obtained using the
modified canonical correlation analysis (see (Roorda,
1995)) and iteratively improved using GTLS tech-
niques, provides estimated noise free external vari-
ablesŵ(0) :=

[

û(0) ŷ(0)
]

∈ R
N×q under the restric-

tion specified in (9). In addition, the initial schedul-
ing vector parameters

(

c(0), ̟(0)
)

are chosen such
that the operating points of the local models span the
operating range under consideration. An iterative re-
finement is then applied until the sequence of ‘global’
misfit:

d(w,B)(j) =
∥

∥

∥
w − ŵ(j)

∥

∥

∥

2

F
(20)

wherej denotes thejth iteration, converges. In reality,
the algorithm is stopped when :

d(w,B)(j+1) − d(w,B)(j) < ν (21)

whereν is a prescribed threshold level.

Step 1: Solve the multiple-model GOLS problem
The GOLS problem is solved using the noise-free es-
timated inputŝu(j) and the measured outputsy, giv-
ing model parametersθ(j), as well as the estimated
outputs of each sub-modelsy(j)

mmi . Each of theses
sub-models are then transformed from ani/s/o rep-
resentation to an ISR representationM (j)

mmi , contained
within the multiple model parametersM (j)

mm.

Step 2: Solve the GTLS problem for each sub-model
In order to solve the GTLS problem for each sub-
model, it is required to generate the noisy external
variablesw(j)

mmi corresponding to each sub-model. As
the inputs of the sub-models are weighted quantities in
terms of the measured inputs, the resulting ‘external’
variables are simply the weighted measured inputs:

w(j)
mmi,k

=
[

pi,k gi,k

]

∗ wk (22)

wheregi,k denotes the contribution of each of the sub-
models to the outputs and the result of the operator∗
is a vector whose entries are obtained by component-
wise multiplication. This can be reflected by the ratio:

gi,k :=
ŷi,k

ŷk

for ŷk 6= 0 (23)

whereŷi,k andŷk are defined, respectively, in (11) and
(12). If ŷk = 0, thengi,k := 0. The GTLS problem of
(6) is then solved for each sub-model under a similar
constraint to the one shown in (9), namely:

α̂i = inf
αi

{

αi > 0,
∣

∣p̄iσu − ‖piu− ûi(αi)‖
2
F

∣

∣ < γ
}

(24)
wherep̄i is the mean value ofpi,k for k = 1, . . . , N .

Step 3: Estimated model variables
The resulting estimated noise-free external variables
ŵ

(j+1)
mm of the sub-models can then be used to re-

estimate the correspondingnoise-free inputsŵ
(j+1)
s (1 :

m), which in turn, taking the mean value, gives, when
pi is non-zero:

ŵ
(j+1)
k (1 : m) =

1

s

s
∑

i=1

ŵ
(j+1)
mmi,k(1 : m)

pi(φk, c(j), ̟(j))
(25)

The corresponding noise-free outputsŵ(j+1)
s (m+ 1 :

q) is given by the sum of those of the sub-models:

ŵ
(j+1)
k (m+ 1 : q) =

s
∑

i=1

ŵ(j+1)
mmi,k

(m+ 1 : q) (26)

Each of the above steps are carried out iteratively until
(21) is verified.

5. NONLINEAR SISO EXAMPLE

The extended multiple-model GTLS method, is demon-
strated using the following nonlinear SISO system:

yk+1 = 1.5yk − 0.7yk−1 + 0.08uk−1 + 0.04uk−2

+0.02yk−1uu−1 − 0.01yt−1ut−2 + 0.08u2
t−1
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Fig. 3. External variables and their respective estima-
tions using a single model (SM) and a multiple
model (MM) for one particular run.
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Fig. 4. Evolution of the radial basis functionsri after
optimisation with respect toc and̟

where initially y0 = y1 = y2 = 0 and the ex-
ternal variables used for the modelling are the in-
put and the output with additive noise sequences
(here,N (0, 0.1)) being independent and identically
distributed, as shown in Figure 1. A multiple-model
GTLS representation of the system is estimated using
s = 4 sub-models and the corresponding estimated
external variables are shown in Figure 3. For100 runs,
the mean of the misfits for the single model GTLS
is 10.9 while the proposed multiple-model GTLS
achieves a mean misfit of4.47. The evolution of the
radial basis functionsri which form the scheduling
vector is given in Figure 4, for one particular case.
The dashed line set corresponds to the initial radial
basis functions, chosen to span the operating range,
while the solid line set shows the functions following
optimisation with respect toc and̟.

6. CONCLUSION

An extension of the behavioural modelling approach
to encompass a class of nonlinear systems, which ex-
ploits a weighted multiple-model representation has

been proposed. Each sub-model, which retains the
linear time invariance property, is repeatedly esti-
mated using a new hybrid algorithm comprising a
multiple-model global total least square procedure and
a multiple-model global ordinary least square proce-
dure which are sequentially executed. The classical
multiple-model global ordinary least square technique
is necessitated due to the requirement to re-construct
the external variables for each successive implemen-
tation of the multiple-model global total least square
method. Whilst the approach has been demonstrated
using an arbitrary SISO nonlinear system, it may be
readily applied to the MIMO case.
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