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Abstract: Modeling of bioprocesses for engineering applications is a very difficult and 
time consuming task, due to their complex nonlinear dynamic behaviour. In the last years 
several propositions for hybrid models were published and discussed, in order to combine 
analytical prior knowledge with the learning capabilities of neural networks. This paper 
proposes a comparison between several hybrid models based on the two most widespread 
neural networks, the MultiLayer Perceptron and the Radial Basis Function network. This 
evaluation relies on simulations of fed-batch bacterial cultures. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Macroscopic models of bioprocesses (cultures of 
bacteria, yeast or animal cells in bioreactors) are very 
useful to build engineering tools like simulators, 
software sensors or controllers. Three kinds of 
macroscopic models are commonly used in 
bioprocess modeling. Among them, a first principles 
model consists in the system of mass balances for the 
main species appearing in the culture (Bastin and 
Dochain, 1990). The advantage of such a model is 
the use of the available prior knowledge about the 
system; its main drawback is the requirement for a 
selection of a pseudo-stoichiometry and a kinetic 
model structure a priori badly known. A second 
macroscopic model structure is the black-box neural 
network structure (Haykin, 1999; Norgaard, et al., 
2000; Montague and Morris, 1994). Neural networks 
are powerful approximators of arbitrary nonlinear 
functions but they have strong requirements, in terms 
of quantity and quality, on the available experimental 
data. Moreover, they present a lack of transparency 
because they do not use any prior knowledge. As for 
the third kind of macroscopic models, a hybrid model 

combines a partial first principles model, which 
incorporates the available prior knowledge about the 
process being modeled, with a neural network which 
serves as an estimator of unmeasured process 
parameters (Psichogios and Ungar, 1992; Oliveira, 
2004). Among several architectures of hybrid models 
the parallel and the serial structures are the most 
common ones (Vande Wouwer et al., 2004). In the 
parallel structure (Fig. 1), a complete first principles 
model is connected in parallel with a neural network. 
The first principles model provides an estimation of 
the output, while the neural network is trained to 
compensate the remaining errors between the model 
and the observed process behaviour. In the serial 
structure (Fig. 2), an incomplete first principles 
model is used. The unknown or hardly known terms 
(i.e. the pseudo-stoichiometry and/or the kinetics) are 
represented by a neural network. 
 
Combining the advantages of the first principles 
model and the neural network model without their 
drawbacks, serial hybrid models, in which the 
pseudo-stoichiometry and the kinetics are modeled 
by the neural network, are studied in this work. 



 
Fig. 1. Parallel hybrid model 
 

 
Fig. 2. Serial hybrid model 

 

 
 

Fig. 3: feedforward neural network (Haykin, 1999)

Models based on the two most commonly used 
neural networks (Haykin, 1999; Suykens et al., 
1996), the MultiLayer Perceptron and the Radial 
Basis Function network, are compared thanks to 
simulations of fed-batch bacterial cultures. 
 
In the next section, our serial hybrid modeling 
approach is presented and the characteristics of the 
two classes of neural networks considered in this 
study are discussed in the section 3. Section 4 
develops neural parameters identification procedures 
based on a slightly adapted maximum-likelihood 
estimator, which determines parameters values while 
taking the measurements errors into account and 
improving models generalisation. The simulator of 
fed-batch bacterial cultures used to build the database 
is presented in section 5. Section 6 exposes and 
compares different serial hybrid models on the basis 
of the validation and cross-validation results as well 
as the parameters estimation errors. Finally, some 
conclusions are drawn in section 7. 
 
 

2. SERIAL HYBRID MODELING OF 
BIOPROCESS 

 
A very general approach to describe the dynamics of 
a bioprocess has been proposed in (Bastin and 
Dochain, 1990). It consists in the system of mass 
balances for the main culture components: 
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td QF��K� −+−= ϕϕϕϕ  (1) 

 

where ξξξξ  is the vector of components concentrations, 
K  the pseudo-stoichiometric coefficients matrix, ϕϕϕϕ  
the reaction rates, D  the dilution rate, F  the vector 
of external feed rates and Q  the vector of gaseous 
outflow rates. 
 
Due to the lack of understanding the biological 
phenomena occurring in the culture, the reaction term 

),( tξξξξϕϕϕϕK  is usually arduous to model. To avoid the 
difficult selection of an appropriate pseudo-
stoichiometry and a complex kinetic model structure, 
the strongly nonlinear reaction term can be 

represented in (1) thanks to a neural network 
(Psichogios and Ungar, 1992; Van de Wouwer et al., 
2004): 
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dt

td QF��NN� −+−=  (2) 

 
where ),( t�NN  is a neural network. 
 
 

3. NEURAL NETWORKS CHOICE 
 
The nonlinearities of ),( tξξξξϕϕϕϕK  being purely static, it 
appears that a simple feedforward neural network is 
satisfactory. Indeed, a neural network with internal 
dynamics is not necessary. 
 
A typical feedforward neural network (Fig. 3) 
consists of massively interconnected simple 
processing elements (neurons or nodes) arranged in a 
layered structure, where the strength of each 
connection is given by an assigned weight. The 
weights are the internal parameters of the network. 
The input neurons are connected to the output 
neurons through layers of hidden nodes. Each neuron 
receives information in the form of inputs from 
neurons of previous layers or from the outside world, 
and processes it through some activation function. 
Among the different existing feedforward neural 
networks, the most famous are the MultiLayer 
Perceptron (MLP) and the Radial Basis Function 
network (RBF).  
 
The MLP is the most widespread feedforward neural 
network. Fully connected (each node is connected to 
each neuron of the following layer), its number of 
hidden layers can be chosen by the user. Moreover, 
various activation functions can be used in the 
different neurons of a MLP; so, it is frequent to 
observe nonlinear activation functions in the hidden 
layers while the activation functions of the output 
neurons are linear (Norgaard et al., 2000). In this 
work, only MLPs presenting one hidden layer with 
sigmoid activation functions and a linear output layer 
are considered. Indeed, Cybenko (1989) proved that 
such a MLP is a universal approximator, able to 
approximate any nonlinear continuous function 
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arbitrarily accurately. The mathematical expression 
of such a network is the following (Suykens et al., 
1996): 
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where )1( mjx j �=  are the inputs of the network, 

)1( outi niy �=  the outputs of the network, 

)1,1( hloutri nrniw �� ==  and )1( outi nib �=  the 

weights and the biases of the output layer, 
)1,1( mjnrv hlrj �� ==  and )1( hlr nr �=β  the 

weights and the biases of the hidden layer, 
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)(  is the sigmoid activation function. 

 
The most frequent alternative to the MLP is the RBF. 
Fully connected and universal approximator, this 
network presents three layers including one hidden 
layer with radial basis activation functions (in our 
case, Gaussian functions): 
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where )(tx  is the inputs vector of the network, 

)1( outi niy �=  the outputs of the network, 

)1,1( hloutji njniw �� ==  and )1( outi nib �=  the 

weights and the biases of the output layer, 
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cx−−=  the activation function, 
jc )1( hlnj �=  

the centres of the activation functions, jcx−  the 

Euclidean distance between the input vector x  and 
the centre 

jc , 
jr  the width of the Gaussian centred 

on 
jc . 

 
 

4. NETWORKS TRAINING 
 
In this section, identification procedures are 
developed for the determination of the neural 
parameters. Moreover, the choice of an optimisation 
criterion is discussed so as the selection of the 
number of hidden neurons. 
 
 
4.1. MLP parameters identification procedure 
 
The MLP identification procedure used in this work 
is inspired by the RBF identification procedure 
described in (Vande Wouwer et al., 2004). It consists 
in a supervised learning and proceeds in several 
steps: 
1. From random values of the weights and biases of 

the hidden layer, the parameters of the output layer 
are determined linearly thanks to a least square 
estimator. This identification step is based on an 

estimation of the reaction term ),( tξξξξϕϕϕϕK , a function 
of the time derivative of the vector �  which can be 
obtained by an interpolation model of the measured 
concentrations (Bogaerts and Hanus, 2000). 

2. Starting from the parameters values obtained in 
step (1), a first nonlinear identification step gives a 
new estimation of the weights and the biases of the 
MLP. This time, the identification is based on the 
simulation of the complete hybrid model and uses 
an estimator relied on a slightly modified 
maximum-likelihood criterion which takes the 
measurements errors into account and improves the 
generalisation of the MLP (its ability to respond 
satisfactorily to unknown inputs). This criterion is 
presented in the subsection 4.3. 

3. A second nonlinear identification challenges the 
weights, biases and initial conditions of the various 
cultures used for the identification. This last step 
uses the same estimator as in the second step and 
can be achieved using a simplex algorithm. 

 
 
4.2. RBF parameters identification procedure 
 
The RBF identification procedure used in this work 
is also based on the procedure proposed in (Vande 
Wouwer et al., 2004). It mixes unsupervised and 
supervised learning’s and presents four identification 
steps: 
1. An unsupervised learning phase realizes a first 

estimation of the centres and the widths of the 
Gaussian RBFs. A clustering algorithm, as k-
means in MatLab, classifies the data according to 
similarities among them, organizes these latter into 
groups and computes the centres of each group. 
Then the widths are chosen as the mean distances 
between the different centres. 

2. A supervised phase determines the corresponding 
optimal values of the weights and biases. This 
identification step is subdivided into:  
• A linear identification step similar to the first 
identification phase of the MLP parameters. 
• A nonlinear identification step through 
simulation of the complete hybrid model and 
numerical minimization of a slightly modified 
maximum-likelihood cost function quantifying the 
deviation between the simulated and the real 
system outputs, taking the measurements errors 
into account and improving the generalisation of 
the model. 

3. A second nonlinear identification step is then 
operated, the set of parameters (centres, widths, 
weights and biases) is estimated again starting 
from the previous estimations and the above-
mentioned slightly modified maximum-likelihood 
estimator. 

4. The last supervised step, based on the same 
estimator as previously, considers the centres, 
widths, weights, biases and initial concentrations 
of the cultures used for the identification. This step 
can be achieved using a simplex algorithm, 
supplemented by positivity constraints on some of 



the parameters imposed by nonlinear parameter 
transformation (e.g. logarithmic transformation). 

 
 
4.3. Optimisation criterion and number of hidden 

neurons 
 
This section describes the estimator chosen to 
identify the different parameters nonlinearly. 
 
The simulation model {(2), (3) or (4)} consists of a 
nonlinear differential system of the form: 
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�uxfx
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dt
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where )()( tt �x =  is the state vector containing the 
concentrations of the main culture components, 

[ ])()()()()()( 11 tQtFtQtFtDt NN
T −−= �u  a 

vector containing the dilution rate and the difference 
between the external feed rates and the gaseous 
outflow rates, �  the vector of parameters to be 
identified and f  the model structure corresponding to 
{(2), (3) or (4)}. 
 
Let ));0(),(,()( �xugx ttt =  (6) 
 
be the solution (generally obtained by numerical 
solving) of the differential system (5) starting from 
the initial concentrations )0(x . Consider the sampled 
measurements 
 
 

ksysksksksm tt ,,,,,, ));0(),(,( ��xugy +=  (7) 

 
where 

kst ,
 is the kth  sample time of the sth experiment 

and 
ksy ,,�  a white noise normally distributed with 

zero mean and covariance matrix 
ks,Q . 

 
In order to take the measurements errors into account 
during the nonlinear identifications, the selected 
estimator is based on a maximum-likelihood criterion 
(Bogaerts and Hanus, 2000): 
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However, a regularisation term (Norgaard et al., 
2000) must be added to this criterion in order to 
improve the generalisation by minimizing the 
learning of the noise contained in the training data: 
 
 ����� I

TVW += )()(  (9) 
 
where 

I�  is a diagonal matrix whose diagonal 
elements, called weight decays, must be chosen by 
the user. 

The estimation of �  is then: 
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An estimation of the covariance matrix for the 
parameters estimation errors is given by: 
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which can be calculated according to a method 
proposed in (Bogaerts and Hanus, 2000). 
 
The use of the estimator (10) can lead to satisfactory 
results in validation and cross-validation. 
Nevertheless, if the use of such a criterion can 
improve the generalisation, the number of hidden 
neurons plays also a role in this domain. Indeed, too 
many hidden neurons can lead to overfitting, noise 
learning and bad generalisation. 
 
 

5. SIMULATED FED-BATCH BACTERIAL 
CULTURE 

 
Consider the following reaction scheme: 
 
 XSk →  (14) 
 
where S  denotes the substrate, X  the biomass, k  the 
pseudo-stoichiometric coefficient. The mass balance 
corresponding to this reaction scheme is: 
 

 inSDtSDtk
dt

tdS
+−−= )(),(
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where )(tS  and )(tX  are the substrate and biomass 
concentrations, D  is the dilution rate, �  the reaction 
rate and inS  the substrate concentration in the feed 
medium. The reaction rate is described by a Monod 
law: 
 

 )(
)(
)(

),( max tX
tSK
tS

t
m ++++

====
µ

��  (17) 

 



The numerical values used in the simulations are the 
following : 111 )10(5.0 −= cellgk , 112 −= glK m

, 
1

max 4.1 −= hµ , 120 −= glS in . 
 
Thanks to this model, 27 simulations are performed 
for various values of the initial concentrations in 
substrate and biomass ( [ ] 1

0 15.0110 −= glS  and 

[ ] 111
0 )10(4.014.1 −= lcellX ) as well as for different 

profiles of the external feed rate F  ( 1.0)(1 =tF , 

ttF 01.0)(2 = , and ttF 1.0)(3 = ). Each simulation 

corresponds to 16h and is corrupted by a white noise 
normally distributed with zero mean and constant 
standard deviation equalled to 25.0 . The sampling 
time is 1h. 
 
Among the 27 simulations, only 10 are selected for 
parameters identification, the remaining experiences 
being kept for cross-validation, the study of 
generalisation. The 10 experiences are chosen in 
order to have a representative sampling of the system 
behaviour: )),1(),1(( 100 FXS , )),1(),1(( 200 FXS , 

)),1(),1(( 300 FXS , )),3(),1(( 100 FXS , )),3(),1(( 200 FXS , 

)),3(),1(( 300 FXS , )),1(),3(( 100 FXS , )),1(),3(( 300 FXS , 

)),3(),3(( 100 FXS , )),3(),3(( 300 FXS . 

 
 
6. COMPARISON BETWEEN HYBRID MODELS 

 
As mentioned previously some factors must be 
selected before building a hybrid first principles 
neural network model: the number of hidden neurons 
and the weight decays values. However, there are no 
systematic procedures able to determine a priori the 
network size or the optimal weight decays values. 
Indeed, the better way to determine these factors is 
the trial and error method. 
 
In order to compare hybrid models based on MLP or 
RBF, models with different numbers of hidden 
neurons are identified in this work thanks to the 
procedures of section 4 with different weight decays 
values. 
 
 
6.1. Tested weight decays and numbers of hidden 

neurons 
 
As pointed out above, different numbers of hidden 
neurons must be tested while keeping in mind that 
the number of parameters has to be limited to avoid 
overfitting. So only two and three hidden neurons 
models are tested here and identified thanks to the 
criterion (9) with different weight decays values. 
These latter values are chosen according to the 
following notice: the regularisation term ��� I

T  
implies that �  belongs to a normal distribution 
centred at 0 , with covariance matrix 1−

I� . Hence, 

��� I
T    can   be   interpreted   in   (9)  as   too  high 

Table 1. Tested weight decays values for hybrid 
models with 2 or 3 hidden nodes 

 
λ  RBF MLP 
3 neurons 0, 8, 20 0, 8, 20 
2 neurons 8, 20 8, 20 

 
Table 2. Parameters values and 95% interval 

confidence of best 3 hidden neurons hybrid models 
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parameters sanction. In this way, null weight decays 
are selected for biases, centres and widths while the 
different weights present positive weight decays. 
Indeed, while the biases provide a continuous 
component to the neural network output signal, the 
weights are only able to induce some variations 
around this component. To avoid the learning of the 
noise contained in the training data, low variations 
and thus low weights values seem to be better. 
Concerning the centres and the widths of a RBF, 
there is a priori no reason to restrict the state space 
which has to be covered. Note that the positive 
weight decays considered in this work are equalled to 
each other and noted � . The weight decays values 
used in this work are presented in Table 1. 
 
 
6.2. Results and discussion 
 
In this subsection, the different hybrid models 
appearing in the Table 1 are compared on the basis of 
the validation and cross-validation results as well as 
the parameters estimation errors. 
 
The results obtained for hybrid models with two 
hidden neurons are not satisfactory in simple 
validation. Indeed, the difference between the 
training data and the simulated signals is too high. 
However, for 3 hidden neurons models, the results 
are better. Two models distinguish themselves: a 



RBF hybrid model and a MLP hybrid model, both 
identified with a high value of λ , are superior in 
simple validation (Fig 4). Their parameters values are 
contained in Table 2 in their 95% confidence 
interval. 
 
Although the 95% confidence intervals seem to be 
better for the MLP, the RBF is preferred. Indeed, the 
cross-validation results (Fig. 5) show that the RBF 
generalises better than the MLP. Moreover, remind 
another RBF quality: the first estimation of the 
centres and the widths are done automatically thanks 
to a clustering algorithm while the first estimation of 
the hidden parameters of the MLP is obtained 
randomly which implies the requirement of different 
identifications from diverse initial estimations of 
hidden parameters. 
 
 

7. CONCLUSION 
 
In this paper, several hybrid models based on MLP or 
RBF neural networks are studied and compared 
thanks to simulated data of fed-batch bacterial 
cultures. The considered hybrid models have a serial 
structure: the neural network models the whole 
reaction term including the pseudo-stoichiometry and 
the kinetics. 
 
After presenting neural parameters identification 
procedures, the choice of the optimisation criterion 
and the number of hidden neurons is discussed. On 
the basis of this discussion, several models with 
different numbers of hidden neurons, identified for 
various weight decays values, are compared. As a 
result of this comparison, RBF hybrid models appear 
superior to MLP hybrid models. Indeed, for the same 
number of hidden neurons a hybrid model based on a 
RBF identified thanks to high weight decays gives 
better results in cross-validation than a hybrid model 
based on a MLP. Hence, the RBF allows having a 
better generalisation than the MLP. 
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Fig. 4. Simple validation of the 3 hidden nodes models, 

culture )),1(),1(( 100 FXS , o: measurements (with their 

associated 95% confidence intervals), ._: MLP simulated 
values, __: RBF simulated values. 
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Fig. 5: Cross-validation of the 3 hidden nodes models, 

culture )),3(),3(( 200 FXS , o: measurements (with their 

associated 95% confidence intervals), ._: MLP simulated 
values, __: RBF simulated values. 
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