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Abstract: This paper presents a new theory for solving the continuous-time stochastic optimal control problem
for a very general class of nonlinear (nonautonomous and nonaffine controlled) systems with partial state
information. The proposed theory transforms the nonlinear problem into a sequence of linear-quadratic Gaussian
(LQG) and time-varying problems, which converge (uniformly in time) under very mild conditions of /ocal
Lipschitz continuity. These results have been previously presented for deterministic nonlinear systems under
perfect state measurements for finite horizons, but the present study shows how an additional class of nonlinear
problems, involving partially observable stochastic systems, can be handled with the same theory. The method
introduces an “approximating sequence of Riccati equations” (ASRE) to explicitly find the error covariance
matrix and nonlinear time-varying optimal feedback controllers for such nonlinear systems, which is achieved
using the framework of Kalman-Bucy filtering, separation principle and LQR theory. The paper shows a
practical way of designing optimal feedback control systems for complex nonlinear stochastic problems using a
combination of modern LQG estimation and LQ control-design methodologies. Copyright © 2005 IFAC

Keywords: Nonlinear non-affine systems, Stochastic systems, Optimal control, Optimal
filtering, Kalman filter, LQG control, Separation principle, Approximation theory,

Iterative methods, Continuous-time systems, Time-varying systems.

1. INTRODUCTION

Nonlinear optimal control theory has advanced apace
in recent years. Research effort has been directed
towards theoretical challenges in deterministic
optimal control of general nonlinear systems, which
have resulted in the development of innovative and
practically useful designs that significantly extend
existing theory. Recently, a novel algorithm has been
proposed in Cimen and Banks (2004a, b) for solving
finite-time nonlinear deterministic optimal regulator
and tracking control problems. The nonlinear optimal
control problem is transformed into a sequence of
linear-quadratic (LQ) and time-varying optimal
control problems, which can be solved using well-
known results from existing theory. Under very mild
conditions of local Lipschitz continuity, the limit of
the approximating sequences has been shown to
converge globally in time. The proposed method
does not involve any partial derivatives, and only
requires solving an “Approximating Sequence of
Riccati Equations” (ASRE), which can be achieved
by classical methods. These ASRE solutions
converge to nonlinear time-varying feedback
controllers for such nonlinear systems. The ASRE
theory has been illustrated in designing autopilots for

complex nonlinear models of practical real-world
applications, including super-tankers and fighter
aircraft systems. It has been shown that automatic
finite-time nonlinear optimal ASRE feedback control
systems provide very effective control, which is
computationally simple to apply by using classical
numerical techniques.

This paper presents an attack to the problem of
dealing with partially observable systems subject to
stochastic disturbance variables at the input and
stochastic measurement errors at the output, where
nonlinearities in the state and control input are
explicitly taken into consideration. This is achieved
through the theoretical development of an ASRE
framework using classical linear stochastic optimal
estimation and control theory. Thus this paper is a
generalization of the deterministic ASRE framework
in order to achieve similar results for a stochastic
framework. For convenience, continuous-time
models are treated to provide the basis of the
appropriate optimal filter and optimal control design
algorithms for general nonlinear dynamical systems,
with a particular focus on nonlinear time-varying
feedback design for optimal regulation in the
presence of noise.



The paper is organized as follows. First, the notation
adhered in the paper is presented in Section 2. A new
technique is then introduced in Section 3 for
designing an optimal filter for general nonlinear
systems. The proposed method is the dual of ASRE
control, and provides an explicit way of solving the
nonlinear optimal filtering problem by using the well
established theory of linear Kalman-Bucy filtering.
This is achieved by transforming the nonlinear
problem into a sequence of LTV approximations,
which uniformly converge under very general and
weak conditions of local Lipschitz continuity of the
system dynamics. Optimal synthesis of general
nonlinear (nonautonomous) stochastically disturbed
nonaffine control systems is studied in Section 4. The
stochastic separation principle of linear control
theory is of central importance in formulating this
problem. The solution is achieved by separating the
stochastic nonlinear control problem into a problem
of deterministic nonlinear control and a problem of
stochastic nonlinear filtering, for which separation
remains mathematically valid. The conclusions of
this theoretical study are summarized in Section 5.

2. NOTATION

Let {x(®,0);t€(t),1,]} denote a stochastic
(random) process whose state-space is an -
dimensional Euclidean space R” (for n>1) and
whose index set ¢, referred to as “time”, is an
[ty,1,1€[0, )
Throughout the discussion to follow, the initial time
{, and final time 7, will be kept fixed. As a rule, the

interval of the real axis R'.

argument @ of random vectors will be omitted in the
paper. For brevity, the notation x, will be written to

denote the random state vector Xx(w,?) at any

particular time ¢e[f),¢,], as is customary in

probability theory. The conditional mean (that is, the
unique unbiased estimate) of the probability
distribution of the inaccessible n -dimensional state

vector X, is represented by X, = E{x,}, which is a

linear function of the measurement vy, eR’,

t, <t <t,. The sequence using the proposed iterative

LTV process for synthesizing optimal controls will
be denoted by a superscript [i] above the variable

being iterated, where i=0,1,2,... so that the

sequence is started with i =0.

3. NONLINEAR STOCHASTIC OPTIMAL
ESTIMATION

The Kalman filter is an optimal estimator for the
discrete-time LQG estimation problem, which is
simple in form and powerful in effect. Analogous to
the discrete-time case, Kalman-Bucy filter is the
continuous-time equivalent of the Kalman filter (for
details, see Anderson and Moore, 1979; Brammer
and Siffling, 1989; Grewal and Andrews, 2001).

For the rest of the discussion in this section on
nonlinear optimal filtering, suppose u, =0 and thus

consider a nonlinear stochastic dynamical system
whose state x, evolves in time according to

dx, =f(x,,)dt +G(x,, )do,, E{x, }=x, (1)
for t>1,. Suppose that Eq. (1) describes a physical
system, the state x, of which is not observable
directly, but only through the nonlinear stochastic
observation

dy, =g(x,,t)dt+dv,, y, =0. 2)
Here ®, and v, are standard Brownian motions
(Wiener processes) of appropriate dimensions on the
interval [¢,,¢,] whose respective formal time

“derivatives” are w, and v,. The plant and

t
measurement noise models w, and v, are assumed

zero-mean mutually correlated Gaussian white noise
random processes (since this accords well with what
occurs in practice) with known symmetric positive-
semidefinite  and  positive-definite  covariance

matrices (strengths) Q(f) and R(r), respectively,
and a known positive-semidefinite cross-covariance
matrix S(7). The initial estimated value X, Is a

biased Gaussian variate, with known mean x, € R”

and known covariance matrix P(#,), which is

mutually uncorrelated with w, and v,. In

mathematical terms, these conditions become:
E{Xtu } = X0
E{lx, —Efx }[x, —E{x,}]'} =P(,) = P,
E{w }=E{v,}=0
Efw,w,}=Q(0)5(1~5) 3)
E{vv}=R()5(t—s)
E{wv, "} =8(0)5(t-s)
Eix, w/}= E{x, v, }1=0.

where O(t) is the Dirac delta function. Note that the
two random processes w, and v, are mutually

uncorrelated if S(t) is zero.

The stochastic process and measurement models (1)
and (2) represent a linear function of the additive

disturbance w, and measurement noise V,,

respectively. On the other hand, f, g and G are, in
general, nonlinear functions of the state x, (and/or

control input wu,) of the system. Applications

involving nonlinear systems in this form generally
require nonlinear optimal filters. The solution to the
nonlinear filter problem was proposed by Kushner
(1964) and is given by the Kushner-Stratonovitch
stochastic PDE. This is a very awkward equation and
its application to practical systems presents
formidable numerical difficulties, which makes
implementation very hard, if not impossible.



Since the general Kushner-Stratonovitch equation is
so difficult to solve, approximation techniques have
often been applied to nonlinear estimation problems
to derive clearly suboptimal filters. More formal
derivations of these nonlinear filters are given by
Anderson and Moore (1979). However, common
practice has been extensions of linear estimator
methods for nonlinear problems, often using partial
derivatives as linear approximations of nonlinear
relations. The linearized and extended Kalman filter
techniques are well-known and often used.

Now assuming that the origin x, =0 is an isolated

equilibrium point, that is f(0,¢)=0 and g(0,7)=0,

(1) and (2) can be represented in a (ronunique)
factored state-space form

dx, = A(x,, )x,dt + G(x,, t)do,, E{x, }=Xx,(4)

dy, =C(x,,1)x,dt +dv,, y, =0. (5)

where A, C and G are continuous matrix-valued

nonlinear functions. A sequence of LTV

approximations can then be introduced to (4) and (5),
which have the form (Banks and McCaffrey, 1998)

ax!l = A(in'l], t)xE”dt + G(in'l], t)dco,, E{x}"} =x,(6)
ay"l = C(in'l], t)xgi]dt +dv,, y!'=0 (7)
for i > 0, where the iteration is initiated by assuming

[i-1]
t

estimate for the bound on ®""(¢,7,)-®" (1, ¢,) is
I(t,t,) and @'

transition matrices generated by A(X[H](t)) and

x, ' =X, when i=0. To prove convergence, an

required, where @' (t,t,) are

A(X[H] (1)), respectively. This has been presented in

Cimen and Banks (2004a), and is restated here as
Lemma 2. First bear in mind the next Lemma.

Lemma 1 (Brauer, 1966, 1967). The fundamental
matrix ®" (£, ,) of the linear system

K@) = A (X)) X (1)

satisfies

"CI)[FH (¢, to)" <exp |:.[: ,u(A(X[H](T))) dr}, 121,

where the measure of the matrix A, denoted by
H(A), is the logarithmic norm of A defined by

1(A) 2 hlga(n I+hA | -1)/h.

Lemma 2 (Cimen and Banks, 2004a). Suppose the

following conditions are satisfied for finite

tefty,1,]:

(Al)  wu(A(x, 1)) <y, for some finite constant u,
for all x, and

(A2) Lipschitz continuity:

E{lAR,, )= A, O [l SaE{lx, - x, ||}, VX,, x, e R"
for some finite constant o > 0.

Then

{ch[’ (t, 1) - D" (e, 1 )H}<L sup E{\

s€lty, t]

-1] XLi—Z] H}

where L, 2 a(t—ty)explu,(t—1t,)].

Now, using the variation of constants formula, on
integrating (6) over [7,,7,] the solution becomes

X0 =@, 1,)x, + [ @71, )G (X, 5) da, (8)
1 N

] [i-1]

.~ can be written as

X x = [0, 1)~ @ e, 1) x,
+J‘: D" (1, 5) [G(Xﬂi'l], s)—G(ij‘”, S):| do

+ j (@, 5)- @ (t,5) |G (x!7
Under conditions (A1), (A2), and
(A3)  Eflx,[[}=c,
(A4) E{|G(x,0l}<g, VxeR",
(A5)  E{|G(x;,N-G(x,, ) |I} < & E{ X, =%, |1},
vx,, X, eR",

for finite numbers

and so x/'T—x

K

],s)dco )

s

c20 and g,g,>0 with

t€(ty,1,], using Lemma 1
B[ —x} < E{|f e, 1) - @ 1) x|
i1y, s)"”G (x[si’l] , s) -G (x[s”z] , s)” do,

+J‘t "(D“'” (t, s)—®" ), s)" ”G (x[s"'z] , s)” do, }

[i-1] _ "*2]
<L Sf[l,lp,]E {”X U -x| "}C
+I exp[,u0 (t— to)]g2 "X[sl_]] - XEH] " do,
j L sup E{x —xIlg, do,.

\'Etl

Suppose that £ = sup E{||x? —xU" ||} . Then

selty, t]

& <Lg™ (€)]
for 1 €[t,,1,] where
L, = L1c+{exp[,uo(t—to)]g2 +ngl}_|.; do,
= Llc+{exp[,uo(t—t0)]g2 +ngl}(m, ~o,)
since every approximation of the integral J-: dw, by
means of Riemann-Stieltjes sums of tlule form
S, :z;l(m[}_ —®, ), <4 <<t =1

this value (Arnold, 1974). From (9), by induction,
£ satisfies

leads to

< eEN (10)

Theorem 1. Under conditions (Al)-(AS) and
provided that | L, <1, (4) has a unique solution on

[#.1,], given by the limit of the solutions of the
approximating equations (6) on C([z,,¢,];R").

Proof. The proof follows directly from (10) since this
implies that x!” is a Cauchy sequence in the Banach
space C([¢,,1,];R"). The value of &"

from (8). Using Lemma 1 and assumptions (Al)-
(AS),

is calculated



Efffj e ] e

where L, = exp[x,(t—1,)]{c+ g (0, —®, ,)} - Hence

&= sup E{fxt! ) < £{} £

sefty. 1]
<2L,.
and thus, from (10), &Y' <2L"'L,. Therefore, if
| L, [<1 for t€[ty,1,], it follows that

i {10 ) <o

i—0

[y (1=19)] g dms} —

ty

and almost certainly lim,  x=x,. [

Using similar ideas as above, it can be shown that
lim__ E{||y"—y""||}=0, that is, the unique
solution of (5) is given by the limit of the
approximating sequence (7) on C([#,,,]; R') . Thus,
using results from Cimen and Banks (2004a), the
sequence of approximations (6) and (7) globally
converge (uniformly in time) as i — oo . The general
(nonautonomous) nonlinear system (4) with
nonlinear stochastic observations (5) can therefore be
represented by the sequence of approximations (6)
and (7), respectively. Since each approximating
problem in (6) and (7) is now linear, time-varying
(with the exception of the first sequence), quadratic
and Gaussian, the Kalman-Bucy filter algorithm for
the LQG estimation problem can be applied to find
an estimate X, of x,. The optimal ASRE filter for

the nonlinear system is hence given by

Theorem 2 (Nonlinear optimal ASRE filter).
Suppose the functions f, g and G are locally
Lipschitz with respect to their arguments on
t€[t,,t,]. Provided that the origin is an equilibrium

point, (1) and (2) can be written in factored form (4)
and (5), respectively. The ASRE minimum variance
estimate on the interval [¢,,7,] for the state x, of the

continuous-time stochastically disturbed nonlinear
system (1), (2) with conditions (3) is then given by
the stochastic differential equation

& = A(R, 1)+ B C (7,1)+8(0) |
11
xfrl(t)[dy,—C(iE””,t)&E”dt], (b
with  %"=x,.  The  covariance  matrix

P (r)= EERTy of  the
£ =x!" -3 satisfies the ASRE
Pi(r) = G( ) t)Q(t)GT(ﬁE"‘”,t)

+A (X, )P () + P (AT (K7, 1) (12)

—PU(OCT (R, )R (OC (R, 1) P (1)

estimation  error

for i >0, where P'(z,) =P, (that is, the covariance
matrix of x, ) is given. For i=0, R in (11) and

(12) is setto x,.

Proof. By using methods similar to those presented
in Cimen and Banks (2004a), the ASRE (12) can be
shown to converge uniformly in time to solutions

P(r) for telty,t,]. From Theorem 1, therefore, it

follows that the approximating sequence (11) for %!

A

will also converge globally in time to an estimate X,

of x, on C([#,,¢,];R"). [
Remark 1. ASRE theory in a deterministic setting
(Cimen and Banks, 2004a, b) utilizes the actual state
x, in the sequence of approximations, such as

Ax"(¢), 1) . The same notion is used to transform

nonlinear equations (4) and (5) into LTV ones (6)
and (7). However, the reader should be aware of the
use of the estimated state X, in the approximating

sequences of Theorem 2. Therefore, A(X''(¢),?)
must now be adopted for the ASRE filter problem.

Remark 2. The propagation over time of the
probability distribution of the state of a nonlinear
dynamic system is described by the Fokker-Planck
nonlinear PDE. Certainly, the filter has to be infinite
dimensional as a solution of the general Fokker-
Planck equation. Theorem 2 provides a finite-
dimensional approximation to this solution. Recall
from conditions (3) that the input to the actual system
is assumed Gaussian. Therefore, the output
distribution will, in effect, be nonGaussian as a result
of nonlinear dynamics. However, the ASRE filter,
which admits Gaussian noise inputs, will clearly
converge to solutions with Gaussian output
distributions, due to the linear (time-varying) nature
of the sequence of subproblems given by Theorem 2.
This implies that the sequence of LTV systems of the
ASRE filter will not, therefore, converge to the
nonGaussian probability distribution corresponding
to the nonlinear filtering density.

4. NONLINEAR STOCHASTIC OPTIMAL
CONTROL

For linear systems, the solution to the stochastic
optimal control problem can be achieved by
separating the control system, the quadratic
performance index, linear control law, Gaussian
disturbance and measurement noise into a problem of
deterministic linear optimal control and a problem of
stochastic linear optimal filtering for which both
topics have a fully developed theory. A controller
and a filter can hence be designed completely
separately from each other. The resulting optimal
system is given by the closed-loop system consisting
of the process, filter and controller, in which the
optimal estimate X, of the state vector x, is fed back

to the controller. The separation theorem thus
provides a method of designing a Kalman-Bucy filter
while ignoring the control problem, and designing an
LQG control strategy as though the system states
were available, but in fact using the estimated states



in the knowledge that the strategy is optimal in the
same sense. Therefore, if the process noise
corruption of a linear stochastic system is Gaussian,
classical optimal regulator and tracking design
strategies apply almost directly to the LQG control
strategy, with appropriate changes in the cost
function definitions. However, the separation
principle does not hold in the strict sense for
nonlinear systems or for nonGaussian noise.
Nevertheless, in the synthesis of nonlinear stochastic
control systems, there has been seldom any other
choice available than to proceed as if separation were
still valid. Even though this has at least been feasible
for some nonlinear stochastic control problems, it is
not a completely satisfactory method mathematically,
with no guarantee for absolute optimization. A new
method is now presented, which is mathematically
valid for optimal control of partially observable
nonlinear stochastically disturbed systems.

In Cimen and Banks (2004a), the ASRE theory has
been developed to derive explicit solutions to the
deterministic nonlinear optimal tracking problem for
input-affine nonlinear systems. These solutions can
be generalized to include nonlinearities in the control
input u,, as in Cimen and Banks (2004b). In order to

simplify mathematics, the formulation for nonlinear
stochastic optimal control in the following discussion
will be presented for the state-regulation problem,
which can easily be extended to the more general
tracking framework as in Cimen and Banks (2004a).
Thus, consider a nonlinear stochastically disturbed
nonaffine control system governed by the equation

dx, =f(x,,u,,0)dt +G(x,,u,, )do,, E{x, } =x,(13)

together with nonlinear partial-state information
dy, =g(x,,u,, t)dt+dv,, y, =0 14)

where the control input ueR™ is unconstrained.
The minimum nonlinear control problem on a fixed
finite-time interval 7, <7<t is given by a feedback

control u, which minimizes a Bolza-type cost

t
criterion, represented here by a finite-time nonlinear
(nonquadratic) and time-varying cost functional

Jw=1El, TRk, x,
: (15)
+J-:, [xtTQ(x,, DX, + utTR(xt, t)u,} dt},

Analogous to the LQR problem, F and Q are
positive-semidefinite, R is positive-definite, and
there are no control constraints associated with the
nonlinear stochastic optimal regulator control
problem. Thus, provided that f£(0,0,7)=0 and
2(0,0,7)=0, (13) and (14) can be represented in
factored form
dx, = A(x,,u, t)x,dt +B(x,,u,, t)u,dt 6
+G(x,,u,,)dw,, E{x, } =X, (16)

and
dy, =C(x,,u,,)xdi+dv,, y, =0, (17)

respectively, where the matrices

B(x, u,?)
continuous in their arguments, as well as in the time
variable ¢. Then, using methods similar to those
presented in Section 3 and Cimen and Banks (2004a,

b), Egs. (15)-(17) can be replaced by the sequence of
approximations

. 1 : . e , , .
i(y) = PR (1) x4 [T <70 (x gl £)x!?
J ()= ZE{X,/ F(x,/ )x,/ +LO [xt Q(xt ,u, ,t)x,

A(x,u,t),
C(x,u,t) and G(x,u,?) are jointly

+u£i]TR(in’l], uEH], t)ui'q a’t} s
(18)

dx!l = A(x“‘”, u ™, t)xg”dt + B(in‘]], u ™, t)uE"]dt

t

(19)

dy!! =C(x™, ul™, £)xdt + dv,, y =0 (20)

for i>0. The iteration is initiated at i=0 with
-1 uEi“]:O. The

t
approximations (18)-(20) then converge globally in
time as i — o (Cimen and Banks, 2004a, b).

x, =X, and sequence of

Since each approximating problem (18)-(20) is LTV,
quadratic and Gaussian, the stochastic separation
principle is valid for each sequence of problems here.
Hence the well-known results of LQG theory for
stochastic optimal control of partially observable
linear systems can now be applied to (18)-(20), thus
extending the solution to the general case of
continuous, nonlinear nonautonomous stochastic
optimal regulation problem (13) and (14) with (15).
The problem with partial-state information of the
nonlinear system will be solved using the results of
Section 3 for ASRE filtering. Therefore, the solution
to the stochastic optimal control problem for partially
observable nonlinear systems may be given by

Theorem 3 (ASRE separation theorem). Consider
the general (nonautonomous) nonlinear stochastic
process (13) and measurement (14) together with
conditions (3) and the nonlinear (nonquadratic and
time-dependent) performance index (15) where Xx,,

u, y,, ® and v, assume values in Euclidean
spaces of arbitrary dimensions, Q(x,¢), F(x) are
R(x, 1) is

symmetric positive-definite, X, is a normally

symmetric  positive-semidefinite,

distributed random vector with expectation x,, and
w,=®, and v,=0, are vector-valued Gaussian
white random processes. Suppose the origin is an
equilibrium point so that £(0,0,7)=0 and
2(0,0,¢)=0. Then (13) and (14) can be written in a
factored form (16) and (17), which, together with
(15), can be replaced by the LTV systems (18)-(20).
Hence, control and filtering can be separated from

each other by analogy with the separation principle
of linear stochastic control theory. The ASRE



solution of the continuous-time nonlinear stochastic

control problem is thus achieved by

(1) The deterministic optimal control law on the
interval [7,,7,], given by the limit of the
approximating controls
W =R (55, ) B (560, ), ) PY (1) R0
where PU!(¢) is the solution of the backward-
integrated ASRE

P =—Q(&7, 1)~ P (OA (X, ul ", 1)
—AT (R0 a0 ) P @) + PU)S (K177, ul ™, 1) P ),

PU() = F (7).
with
SEB(RI ™ )R (K, )BT (R0, ul N, 1)

(i) The stochastic optimal filter law

d%" = A (R0l ) e+ B0, ul Y ¢ uldt
+[f>m (OCT (K, ul ™, 1)+ S(t)]li" (t)
x[dy, ~C(& 7wl ) ar], & =x,

on the interval [f,,¢,], where the covariance

matrix PU(r) of the estimation error obeys the
forward integrated ASRE

P =G (7, ul ™, 1) Q)G (X7, ul ™, 1)
FA(RIT W, 1) B () + B () AT (R0, ul Y, 1)
—PI(OCT (K7, ul ™, )R (OC(K, ™, 1) PU(0),

t

P(t,) =P,

Proof. The proof follows directly from Section 3 and
the deterministic theory presented in Cimen and
Banks (2004a,b). [

Remark 3. Similar to the sequence of
approximations (11) and (12), the initial function

X (and %) when i=0 is fixed at x, for

t€lty,t,] in the ASRE control and filter equations

of Theorem 3. In addition, the approximations for the
nonlinear stochastic optimal control problem require
an initial guess for ul™ when i=0, which is

assumed 0.

Remark 4. For each LTV subproblem, the
operations (i) and (ii) in Theorem 2 are independent
in the sense that the ASRE filter does not depend in
any way on the matrices F, Q, R defining the

control problem, whereas the control function u,

does not depend on the “noise parameters” G, P,
Q, R, S. Thus, “separation” holds in each
sequence of LTV approximations. This does not, of
course, yield a global separation theorem for the
nonlinear system. Theorem 3 only gives separation
on each individual solution of the nonlinear system,
and thus provides a method of approximating the
separation principle to each solution trajectory.

5. CONCLUSIONS

A new theory has been proposed for finite-time
optimal regulation of general nonautonomous
nonlinear stochastic systems with nonquadratic
performance criteria, where the origin of state-space
is an equilibrium point of the nonlinear system. The
nonlinear stochastic control problem has been solved
using modern linear control design methodologies by
replacing the general nonlinear equations
representing the plant with a convergent sequence of
LTV equations. The separation principle is valid here
since the nonlinear problem is replaced by a
sequence of LQG and time-varying approximations
that converge under very mild conditions of local
Lipschitz continuity. A new theory of separation
principle has therefore been derived, which is valid
for the optimal control of nonlinear stochastic
systems. While this does not provide a global
separation theorem for the nonlinear problem, the
method is straightforward and practically realizable,
and is achieved without having to wuse the
mathematical tools of Itd stochastic integrals for
continuous-time models. The simplicity of the ASRE
approach is appealing compared with other methods
that solve complex PDEs.
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