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Abstract: We consider the planning of pulp production for large sulphate and
sulfite mills. The production planning problem is formulated as a non-linear
program (NLP) given a process model of the mill as constraint. The objective
is to minimize the usage of expensive chemicals and to minimize the (squared)
deviation from specified set-points for selected variables, e.g. production, tank-
level and chemical composition of the cooking liquor. The problem formulation
also considers upper and lower limits on variables and limitations in the derivative
of production related variables. The NLP, which involves several tens of thousands
of variables, is solved using algorithms for large-scale optimization. To provide a
correct initial state of the process model, a moving horizon estimation is done to
estimate the current state of the process.
A model library consisting of common process units in pulp mills have been
developed. The models are described by differential algebraic equations. A software
platform, which enables the user to assemble complex process models of complete
mills based on the model library, has been developed. The platform also serves
as data collector for the measured values from process sensors, as well as storing
optimized and estimated values.
The pulp mill production planning system is installed on-line at Billerud Gruvön,
a large Swedish integrated pulp and paper mill, producing some 660000 tons of
sulphate and sulfite pulp. Copyright c© 2005 IFAC
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1. INTRODUCTION

The work presented in this paper was carried out
jointly by ABB Corporate Research and ABB Au-
tomation Technologies in connection with the in-
stallation of an advanced production planning tool
in the Billerud Gruvön Pulp mill. The aim was
twofold: to solve some specific production plan-
ning and chemical composition control problems
associated with the Gruvön mill. Secondary aims
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where to develop methods, procedures and tools
for the efficient solution of the generic problem
of controlling and optimizing large-scale compli-
cated chemical processes described by differential-
algebraic equations.

A modern pulp and paper plant is usually a
very complicated process, characterized by a lot
of recirculations of material. This is mostly an
effect of the natural aim in reducing cost be
re-using expensive chemical but also an effect
of current environmental legislation, which have



driven the mills to a high degree of closeness,
where almost the only effluents are purified water
and the pulp and paper produced in the mill. Also
in Scandinavia, where most of the larger mills
have an operating history dating back to the early
20th century, many mills have been gradually
rebuilt and extended over the years which have
created very complicated process configurations
and layouts.

1.1 Pilot Mill

The pilot mill, Billerud Gruvön, is one of Swe-
den’s largest pulp and paper producers with an
annual production of some 660000 tons paper.
The mill operates three pulp production lines with
a common chemical recovery island. The pulp is
consumed by six paper machines and two drying
machines, respectively. Key issues for the produc-
tion planning is to supply the paper machines with
correct amounts of pulp while keeping the relation
between sodium and sulfur in the cooking liquors
at a fixed ratio. It is also necessary to keep track
of various storage towers and buffers to prevent
over- or underflows. Currently this is the task of
the production engineers who manually decides
the production in the mill but there is a clear need
and wish to automate the planning process.

1.2 Proposed solution

Our approach to solve the planning problem is
outlined in the following steps:

(1) Develop a mathematical model of the com-
plete process based on relevant mechanism
and reactions. The model should be able to
adequately simulate and predict the mass-
and chemical balance of the mill.

(2) Find a suitable optimization criteria where
different objectives and requirements can be
addressed.

(3) Use the model and the optimization criteria
in a model-predictive framework where op-
timal production trajectories are calculated
by solving the optimization formulation with
the model as constraint. It is also desirable to
have limits on some of the production related
variables and their derivative.

This approach is clearly influenced by the concept
of model predictive control (MPC), which over the
last decade has gained an strong position within
the process control community. However, it is not
the primary intention to use this tool in a closed
loop fashion. Instead we consider the usage of this
tool as a scientific methodology and aid for the
daily planning of a large pulp mill.

2. MODELING

Modeling plays a key role in being able to control
the production and chemical composition of the
plant. Without a suitable mathematical descrip-
tion of the process it is naturally no use in trying
to optimize anything.

When designing mathematical models describing
the material- and chemical balance of chemical
process units it is quite natural to use differential
algebraic equations (DAE). The dynamic equa-
tions comes typically from the mixing of compo-
nents in large vessels and tanks. The algebraic
equations arises from e.g. reactions and flow-
balances, where the dynamics are very fast and
thus negligible. As a notation we have used the
following semi-explicit DAE:

0 = g(x(t), z(t), u(t), p) (1)

ẋ(t) = f(x(t), z(t), u(t), p) (2)

y(t) = h(x(t), z(t), u(t), p) (3)

where x is a vector of state variables, z are the al-
gebraic variables, u are the manipulated variables
and y are the measured variables, respectively. p

is a vector of time-invariant parameters, which
are assumed to be constant over the calculation
horizon but may vary during a longer time span
(e.g. due to seasonal variations). The functions
g(·, ·, ·, ·), f(·, ·, ·, ·) and h(·, ·, ·, ·) are vector val-
ued functions of appropriate dimension. For each
object type, a relevant set of equations like 1-3 is
defined. To create a composite model based on in-
stances of different model types, the instances are
connected by appropriate streams objects. This
results in a similar system of equations, but at a
larger scale.

2.1 Modeling tools

To handle the model development a set of Matlab-
based tools was developed. The models of each
object type (e.g. digester, pulp storage tower
etc) are written and stored in separate text-files,
using a very simple syntax. The syntax consists
of a header with declarations of variables and a
body where the equations are specified. Given
a set of such files, the Matlab tool parses the
files and makes a quick analysis of the syntax
and definitions. Obvious error are detected. A
tree of Matlab structs are created that represents
the attributes of each object (e.g. connectors,
equations, parameters etc).

As a first step, a Modelica library is created based
on the model set. This library contains different
packages of model classes, corresponding to the



object types that are used in the on-line appli-
cation. Using the Modelica based simulation en-
vironment Dymola, a two-level hierarchic model
of the Gruvön mill was built. The bottom level
in this hierarchy consists of separate models of
the process sections (fiber lines, evaporator plant,
etc) and the top level is the complete mill, in
which the process section models are components
together with their interconnecting streams and
buffer tanks. These models were used to off-line
simulate and analyze the process models. As a
heuristic verification procedure the simulated re-
sponse of the process models at different operat-
ing points was manually compared to operating
data from the Gruvön mill. When the dynamic
response, considering both amplitude and time-
constants, was sufficiently close to the available
measurements, a model was considered as verified.
Typical tuning parameters where the model pa-
rameters p and initial values of the state variables.
No more formal or quantitative method was used.

The Matlab tool also automatically generates the
necessary model information to use in the on-
line optimization and state-estimation steps, see
Section 5.

3. OPTIMIZATION

To achieve the objectives with the production
planning tool, a suitable objective function is
necessary. To standardize the implementation of
the objective function we have settled for the
following objective function types:

Quadratic As is common in optimal control, use
a functional in which the squared difference
between a variable and its corresponding set
point:

Qsp(t) =

T
∫

t=0

wsp(y(t) − ysp(t))
2dt (4)

where wsp is a weight factor, ysp(t) = (ŷ(0) −
y0
sp)(1−e−t/Tc)+y0

sp (Tc is the desired response

time) and y0
sp is the desired set point values to

which y(t) should approach. This formulation
will hopefully, if Tc is chosen carefully, result in
a control action which is not to aggressive.

Linear There is also a possibility to have a simple
linear objective function:

Qlin =

T
∫

t=0

wliny(t)dt (5)

where wlin is another weight factor.
Differential A third option is to have a penalty

on the squared differential value of the manip-
ulated variables:

Qd =

T
∫

t=0

(u̇(t))2dt (6)

with the weight factor wd. This term is moti-
vated by the wish to reduce large variations in
the manipulated variables.

For the first two objective function types, it is
possible to replace y with x, z or u, where appro-
priate. For the optimization formulation, it is also
meaningful to have (time-dependent) constraints
on all variables, i.e.:

xl(t) ≤ x(t) ≤ xu(t) (7)

ul(t) ≤ u(t) ≤ uu(t) (8)

zl(t) ≤ z(t) ≤ zu(t) (9)

yl(t) ≤ y(t) ≤ yu(t) (10)

We also consider hard constraints on the rate of
change for the manipulated variables,

uc
l ≤ u̇(t) ≤ uc

l (11)

such that impossible changes in the manipulated
variables are avoided.

We thus have a continuous-time optimal control
problem (CTOCP), defined by the objective func-
tions 4-6 and subject to the constraints 1-3 and 7-
11, which we need to solve.

In our solution, we follow the approach of solving
the DAE system simultaneously with the opti-
mization criteria 4-6. This is performed by the
discretization of the DAE and the objective func-
tion and cast them into a large non-linear pro-
gramming concept. As a discretization method,
a second order variable step-size version of the
backward differentiation formula (BDF) is used.
This results in the following non-linear program:

min
u,x,y

Q(u, x, z) = Qsp + Qlin + Qd (12)

s.t.

0 = g(xk, zk, uk, p) (13)

0 = αk2xk−2 + αk1xk−1 +

βkf(xk, zk, uk, p) (14)

0 = yk − h(xk, zk, uk, p) (15)

0 = us
k + uk − uk−1 (16)

0 = u0 − û0 (17)

0 = x0 − x̂0 (18)

(19)

and

xl
k ≤ xk ≤ xu

k (20)



zl
k ≤ zk ≤ zu

k (21)

yl
k ≤ yk ≤ yu

k (22)

ul
k ≤ uk ≤ uu

k (23)

ul
s ≤ us

k ≤ uu
s , k = 1, N (24)

where

Qsp =
N

∑

k=1

wsp(yk − yk,sp)
2 (25)

Qlin =
N

∑

k=1

wlinyk (26)

Qd =

N
∑

k=1

wd(uk−1 − uk)2 (27)

The parameters αk1, αk2 and βk are the step-
dependent BDF weights (Ascher and Petzold
1998).

To solve this NLP it is possible to utilize the time-
stage characteristics, see e.g. (Franke and Arnold
1997) and (Cervantes et al. 2000). However, we
have chosen to lump the optimization related
variables into the vector χ, such that

χ ≡
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The NLP can now be defined by

min
χ

Q(χ) (29)

s.t.

c(χ) = 0 (30)

χl ≤ χ ≤ χu (31)

where c(·) are the Equations 14-19. The con-
straints are defined with the same ordering as
in Equation 28. With this notation, any general
solver of NLP can be used.

4. STATE ESTIMATION

In order to perform a meaningful production plan-
ning it is necessary to know the current state of

the process, i.e. x̂0 and û0. Some of the state
variables are directly measured, most notably the
tank levels and pulp concentration at some posi-
tions, while many other are not. It is thus neces-
sary to estimate the state of the process by some
statistical method. For linear dynamic systems
the classical Kalman filter provides an optimal
estimate of the state. Kalman filter based methods
have been used to estimate the state also for non-
linear systems described by ordinary differential
equations (Anderson and Moore 1979) and by dif-
ferential algebraic equations (Becerra et al. 2001).
However, these methods requires some manual
and analytical manipulation of the original DAE
system, which seemed impossible given the mere
size of our problem. Instead, a moving horizon
estimation (MHE) approach, described in (Rao
2000), was taken. MHE methods also has the ad-
vantage over Kalman filter based methods in that
it allows for hard constraints on the variables, thus
ensuring that the solution is always physically
reasonable. It may be mentioned that for real-time
applications, where the solution time of the state-
estimation is very critical, MHE is probably not
suitable, but in our application this is really not
a problem.

Given the system of DAE:s from Section 2, we
augment it with process and measurement noise:

0 = g(x(t), z(t), u(t), p) (32)

ẋ(t) = f(x(t), z(t), u(t), p) + w(t) (33)

y(t) = h(x(t), z(t), u(t), p) + v(t) (34)

where w(t) and v(t) are vectors of independently
uncorrelated random variables with zero mean
and covariance matrices Q and R, respectively. It
must be mentioned that we are familiar with the
fact that Equation 33 is, from a strict mathemat-
ical point of view, nonsense. However, our excuse
is that in the control community in general and in
the chemical engineering community in particular,
it is common practice to use this notation.

To estimate the state we discretize ( 32)-(34) and
add upper and lower limits on the variables. The
objective is is based on minimizing the squared
estimated values of the process and measurement
noise. There is also an extra term in the objective
to penalize the deviation of the estimated initial
state from the prior estimated state. We thus have
a NLP formulated as follows:

min[||xT−N − x̄T−N ||2
Π−1 +

T
∑

k=T−N

(||wk||
2
Q−1 + ||vk||

2
R−1)] (35)

s.t.

0 = g(xk, zk, uk, p) (36)



0 = αk2xk−2 + αk1xk−1 +

βkf(xk, zk, uk, p) + wk (37)

0 = yk − h(xk, zk, uk, p) + vk (38)

0 = ym
k − yk, k = T − N,T (39)

where Q, R and Π are diagonal matrices of ap-
propriate dimensions, respectively. The vector ym

k

contains the measurements at the interval k. The
size of the estimation window, [0, N ] is usually
determined by a a trade-off between the required
computational effort and the accuracy, respec-
tively. If a measurement value is missing, or invalid
in some other way at an time interval, the cor-
responding equation in Equation 39 is removed.
Notice also that we are using hard constraints on
the measurement and process noise, respectively.
The vector x̄T−N is the estimated state from the
previous estimation.

From the NLP (35)-(39), we see that except for
the objective function and the additive noise, the
formulation of the constraints is similar to the
production planning problem, thus enabling the
re-use of much of the code implementation. Also
for this problem, we lump the free variables in a
single vector:
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and make the general formulation:

min
χe

Qe(χe) (41)

s.t.

ce(χe) = 0 (42)

χl
e ≤ χe ≤ χu

e (43)

where the annoying subscript e refers to the esti-
mation problem.

For an on-line application the MHE works as
follows:

(1) At start-up, the initial values x̄T−N are cho-
sen to some standard or nominal values.

(2) The estimation window is calculated from the
estimation horizon and the current time T .

(3) Measured values are collected for the estima-
tion window and re-sampled to represent the
N discrete time intervals.

(4) Solve the MHE problem (35)-(39).
(5) Set T := T + 1 and goto 2.

5. SOLUTION OF THE NON-LINEAR
PROGRAMS

The previous sections formulated two large non-
linear programs as the solution of the production
control and state-estimation problems, respec-
tively. To solve these NLP, two different solvers
for large scale optimization problems have been
used. The first one, SNOPT, is a software based
on a sequential quadratic programming (SQP)
method (Gill et al. 2000). SNOPT uses a limited
memory quasi-Newton method to approximate
the Hessian of the Lagrangian and uses a line
search based on an augmented Lagrangian merit
function. The user provides SNOPT with objec-
tive and constraint functions and their gradients.
It also allows for the user to explicitly specify
which variables and equations that enters the
constraints and objective linearly. Thus, SNOPT
is claimed to be more effective when most con-
straints and variables are linear.

The second solver, IPOPT, is based on a primal-
dual algorithm interior point algorithm (Wachter
and Biegler 2004). Here the user provides the ob-
jective function, constraint function, their gradi-
ents and the analytical Hessian of the Lagrangian.
A filter line search is used to find proper descent
directions.

6. PRACTICAL EXPERIENCE WITH THE
PRODUCTION PLANNING

This section will make a brief description on
the on-line application is performing at Billerud
Gruvön. All relevant information is stored in a
SQL data base. For example, measured values
from the process sensors are collected using an
OPC connection to the mills information system
and stored as time series in the data base. All
instances of the process object models are stored
in the database. Composite models are also stored
in the data base with information on which ob-
jects that are part of the model and how they are
connected.

This vast information is accessed through a graph-
ical user interface (UI). Here the user may change
values on the instanced objects, create new ob-
jects, change the connection configuration, etc.



To perform a state-estimation or an production
control optimization, there are two options. Either
the user performs an off-line calculation where he
can choose the starting time arbitrarily, or he can
configure a scheduled task list, which is performed
on a chosen regular basis. The task list defines a
series of calculations to be performed, typically
it involves a state-estimation to provide the pro-
duction control optimization which a consistent
initial value. The frequency of schedule must be
chosen such that the calculation if finished before
the next job is to start, otherwise the previous job
is terminated and a new one is started.

Although the scheduled solution of the production
control optimization is the main deliverable of this
project, the off-line calculation possibilities proved
to be very valuable during the engineering phase
of the project, e.g. for fitting parameters in the
models and for tuning of the production control
strategy.

During the period from May 2004, when the final
version of the production planning system was
installed, until September 2004, the system has
been in scheduled action. The scheduler is set on
a cycle in which a state estimation with a horizon
of 5 hours is solved first, followed by a production
optimization with a horizon of 40 hours. This
corresponds to NLP:s with 15000 and 30000 vari-
ables, respectively. The cycle is repeated every 40
minutes. The average computational times are 30
seconds for the state estimation and 15 minutes
for the production optimization. The rate of suc-
cessful solutions is 95% for the state estimation
and 90% for the production optimization, respec-
tively. The main reason for not being able to solve
the problem is to the computational time, which
occationally is dramatically increased, compared
to the average values.

7. SUMMARY AND CONCLUSIONS

This paper has presented results from the devel-
opment and implementation of methods for the
solution of optimal control problems applied to
systems described by differential algebraic equa-
tions. A framework for the specification of mod-
els and the subsequent generation of Modelica
libraries and solver specific Fortran code. A pilot
installation has been done at Billerud Gruvön.

Two state-of the art solvers, SNOPT and IPOPT,
are integrated for the solution of the resulting
large-scale non-linear programs. Pre-processing is
done in order to find a suitable start vector for
the optimization, resulting in an acceptable and
robust performance. The production control tool
has been running on-line at Gruvön for several
months, scheduled to solve a state-estimation and
a production planning problem every 40 minutes.

The main conclusion that so far can be made
is that it is indeed possible to on-line solve the
production planning problem using optimization
methods. The proposed production trajectories
are generally accepted by the production engi-
neers, although it is to early to summarize the
actual benefit for the mill. More quantitative anal-
ysis and results on the system performance will
most surely be available during the next 6 months
of operation.
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