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Abstract: This paper describes an approach for automatic robot motion planning. A 
starting path consisting of the direct line connection from start to goal in the 
configuration space is generated first. At the most colliding configuration a new 
point is added and moved out of the collision. For this the configuration space is 
approximated using a corresponding skeleton robot and a point-like obstacle. A 
collision free path for this approximation is generated by using the inverse 
kinematics of the skeleton robot. Then the algorithm is started again. By this the 
whole path is moved stepwise out of the collision. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Before a robot manufacturing cell is built up in a 
real production hall it is simulated first within a 
robot simulation tool. Here the placement of the 
robots in the environment can be planned and it can 
be tested, whether the robots are able to reach all 
desired points in the cell. These points should of 
course be reached without any collisions. At present 
this motion planning process is still done by the 
users of the simulation system. They are forced to 
generate paths and to test them for collisions. The 
paths must be varied and tested again, until they are 
collision free. This procedure is very time 
consuming and expensive. Existing path planning 
algorithms are often not used, because a lot of 
parameters for these algorithms have to be set right 
depending on the actual planning problem to get the 
algorithms working well.  
 
Nevertheless there are lots of algorithms available 
for automatic robot motion planning in literature 
(see e.g. in Gupta, Kamal K. (1998); Hwang, Y. K., 
Ahuja, N. (1992); Latombe, Jean-Claude (1991); 
Lozano-Peres, T. (1986)). Almost all use the so 
called configuration space. Most of these algorithms 
need to determine the colliding areas within the 

configuration space in a kind of precalculation before 
starting the planning phase. After this time consuming 
precalculation the information is used for a fast path 
planning. But unfortunately all generated information 
is worthless, after something has changed in the robot 
cell, e.g. an obstacle has moved to another position. In 
this case the precalculation has to be done again. 
Another problem of many algorithms in the literature 
is the use of randomized search. By this it is possible 
that the user will get two completely different paths, if 
the algorithm is executed twice, without changing 
anything. 
 
The algorithm presented here does not need any kind 
of precalculation before the planning phase. The user 
will always get the same solution, if the system is used 
more often with the same conditions. The algorithm 
determines the most colliding configuration at the 
direct line connection between the start and the goal 
configuration. Then an approximation of the obstacle 
within the configuration space is developed by the use 
of a corresponding skeleton robot and a point-like 
obstacle. A collision free path for this approximation 
is generated by using the inverse kinematics of the 
skeleton robot. Tangents at the approximated obstacle 
are determined and used for a collision free path 
around this obstacle. Hereafter the algorithm checks 



     

the generated path for further collisions. By this the 
whole path is moved stepwise out of the collision. 
Further tests show that this algorithm is able to 
generate collision free paths for robots with many 
degrees of freedom in a very short time period.   
 

 
2. THE CONFIGURATION SPACE 

 
The main idea of the configuration space is to 
represent the robot as a single point in an appropriate 
space and to map the obstacles in this space. By this 
the problem of motion planning for a dimensioned 
body is transformed into the problem of planning the 
motion of a single point.  
 
A position of a manipulator robot can be completely 
described using the values of all joints of the robot at 
a particular robot position. This list of joint values is 
called a configuration. All possible configurations 
build the configuration space. The number of joints 
of the robot is equal to the dimension of the 
configuration space. Figure 1 demonstrates the 
correlation between a robot’s position and the 
corresponding point in the configuration space for a 
planar manipulator robot with two degrees of 
freedom. 
 
In the configuration space all configurations which 
lead to a collision between the robot and at least one 
obstacle in its environment can be marked. This can 
be done pointwise by moving the robot in the 
simulation to every possible configuration and 
performing a collision check at this position. 
Thereby the obstacles are mapped from the 
workspace into the configuration space. 
Unfortunately there is no direct and easy way to do 
this mapping. It is very difficult to calculate the 
shape of the obstacles in the configuration space 
directly from the position and shape of the obstacles 
in the workspace for every type of robot, because the 
kinematic chain and geometry of the robot has to 
taken into account. In addition, as the dimension of 
the configuration space grows up exponentially with 
the number of joints, it is not possible to do a 
collision check for every configuration for robots 
with a high number of joints. In Figure 2 the 
mapping of two obstacles is shown for a robot with 
only two joints. 
 
 

 
 
 

Fig. 1. Correlation between the robot’s position and 
the point in the configuration space 

 
 

  
 
Fig. 2. Workspace and configuration space of a robot 

with two obstacles and two degrees of freedom 
 
 

3. STATE OF RESEARCH 
 
There are a lot of algorithms available for robot 
motion planning in literature. Almost all use the 
configuration space described above. A good 
overview of these algorithms can be found in the book 
of Jean-Claude Latombe (1991). He describes three 
different types of robot motion planning algorithms. 
 
One type is the so called roadmap method. In this 
approach path planning consists of capturing the 
connectivity of collision free areas in the 
configuration space by developing a network of 
collision free curves. These curves build a set of 
standardized paths which is called roadmap. After this 
roadmap has been constructed path planning is 
reduced to connecting the initial and the goal 
configuration to points of this set of paths and to 
searching within the roadmap for a connection 
between these points. There are several different 
methods available for developing the roadmap, e.g. 
visibility graph, Voronoi diagram or randomized 
methods. The advantage of this type of path planning 
algorithm is a fast planning after the roadmap has 
been developed. The disadvantage is a high 
computational effort to develop the roadmap. And 
after changing the position of at least one obstacle, the 
whole roadmap has to be developed again. 
 
Another type of robot motion planning algorithm is 
the cell decomposition method. Here the configuration 
space is decomposed in simple regions, called cells, so 
that a collision free path between any two 
configurations within a cell can easily be generated. 
The adjacency relation between these cells is then 
searched and stored. The outcome of the search is a 
sequence of cells from the initial to the goal 
configuration from which a continuous path can be 
computed.  
 
The third type of algorithms described in (Latombe, 
1991) is the potential field method. An artificial 
potential produced by the goal configuration and the 
obstacles is introduced. The goal has an attractive and 
the obstacles have a repulsive potential. The robot 
moves in the direction of the gradient of this potential 
field. The main problem of this method is the 
existence of local minima in the potential field.  
 



     

 

 
 
Fig. 3. Example for the basic principle of presented 

algorithm 
 
 

4. DEVELOPED ALGORITHM 
 
The algorithm described in this paper does not 
require any kind of precalculation. Collision checks 
are only performed at interesting configurations and 
there is no need to calculate the whole configuration 
space. Therefore this algorithm can be used for 
robots with a high number of joints.  For one 
planning phase the robot should be the only moving 
device. But between two runs of the motion planner 
the obstacles can be moved around in the workspace 
and the planning can be started again without 
additional calculations. 
 
 
4.1 Basic Principle 

 
The basic idea of the presented robot motion 
planning algorithm is to generate an initial path 
between the start and the goal configuration and to 
vary this path until it is collision free. The initial 
path consists of the direct line connection from start 
to goal in the configuration space. If this path is 
collision free, the algorithm has already found a 
solution and can stop planning. In general the initial 
path is of course not collision free. In this case the 
algorithm searches the “most colliding 
configuration”. A description of this operation can 
be found in the next chapter.  
 
This configuration is moved out of the collision and 
added to the path. The resulting path consists of the 
start configuration, the added and moved point and 
the goal configuration. In the next step the algorithm 
checks the complete path for possible collisions 
again. In case of further collisions the loop will be 
started again. By this the algorithm moves the path 
step by step out of the collision. In Figure 3 a simple 
example for the basic principle of the presented 
algorithm can be seen. 
 
 
4.2 Determination of most colliding configuration 
 
As described before the presented algorithm has to 
determine the most colliding configuration. This is 
done by using a rating function for the “badness” of 

a collision. In reality all colliding configurations are 
just colliding and cannot be rated. But by using the 
geometry models within a simulation tool it is possible 
to calculate virtual properties of colliding 
configurations and compare them. The used rating 
function was introduced by Boris Baginski. A more 
detailed description can be found in (Baginski, 1998). 
 
The rating function does not measure the intersecting 
of the robot and the obstacle but the size reduction 
required for the robot’s geometry model to avoid the 
collision. In the first step the first colliding link – 
coming from the base of the robot – is detected. For 
manipulator robots it is obvious that a collision gets 
worse if the collision occurs at a link that is nearer to 
the base of the robot.   
 
In the second step all links that are behind the first 
colliding link are neglected. The first colliding link is 
then reduced or scaled down to its joint, until the rest 
of the robot is no more colliding. Figure 4 gives an 
example. The relative size reduction of the robot can 
be used as a rating value for the corresponding 
configuration. This value can vary between “zero” for 
a completely downscaled link to “one” for its normal 
size. 
 
In this way all configurations of a path segment have 
to be rated. This can be done either by using a 
discretization of the path segment, or by using the 
swept volume of the robot. A detailed description of 
this path segment rating can be found in (Baginski, 
1998). After rating all configurations, the most 
colliding configuration of a path segment can be 
found. It is the configuration at which the robot has to 
be scaled down mostly. Here the scaling value is the 
smallest within the path segment. This configuration 
has to be moved out of the collision. For this 
movement it would be very useful to know the shape 
of the obstacle in the configuration space. But as 
described before it is very difficult to calculate this 
shape directly from the geometry of the obstacle in the 
workspace. One alternative is to use not the exact 
shape but an approximation and to find a collision free 
path around this approximated obstacle within the 
configuration space. The construction of this 
approximation is described in the next chapter. 
 
 
 

  
 
 
Fig. 4. Example for scaling down the robot size to get 

the robot collision free 
 
 



     

 
Fig. 5. Approximation of 1. obstacle by the point-

like 2. obstacle within the workspace 
 
 
4.3 Approximation of the obstacle in configuration 

space 
 
For an approximation of the shape of an obstacle 
within the configuration space the robot itself is 
approximated first. The geometry of the robot is 
reduced to a skeleton geometry. This means that the 
reduced robot consists only of the base points of 
each link and the connection line between these 
points. The links behind the first colliding link are 
neglected. An additional joint is added to the robot’s 
kinematics which describes the scaling value. In 
Figure 5 the reduced robot for the two-dimensional 
example can be seen.  
 
In the next step the reduced robot is set to the most 
colliding configuration which was determined 
before. The additional joint is set to the scaling value 
that corresponds to this configuration. At the end of 
the kinematic chain of the skeleton robot a point-like 
obstacle is then created. This obstacle is used as an 
approximation for the original one. Figure 5 
illustrates this in the robot’s workspace. The added 
point-like obstacle is labelled with “2. obstacle” in 
this picture.  
 
By this construction the added obstacle is placed in a 
way that the collision with the original obstacle is 
almost completely avoided, if the robot is able to 
circumvent this point-like obstacle. At least the 
scaling value for the examined path segment and the 
original obstacle’s and robot’s geometry will be 
improved. 

 
In Figure 6 the shape of the original obstacle in the 
configuration space for the example of Figure 5 can 
be seen. In addition the shape of the added point-like 
obstacle is illustrated in this picture. This shape is a 
nonlinear curve in the configuration space which has 
an inflection point at the centre of the original 
obstacle’s shape and is clinging to the boundary of 
this shape at its endings. As one can see from the 
picture, if it is possible to find a path from the given 
start to the goal configuration which does not 
intersect with this curve, this path would be almost 
collision free, i.e. it does not intersect with the shape 
of the original obstacle. In the next chapter the 
construction of this path is described. 

 
 

Fig. 6. Approximation of the obstacle within the 
configuration space by the black line 

 
 
4.4 Determination of a collision free path around the 

approximated obstacle 
 
For a given robot the forward kinematics can be 
calculated by  
 ( )x f q=  (1) 
In this equation the vector x describes the position and 
orientation of the end of the kinematic chain, the so 
called tool centre point (TCP). The vector q is a list of 
all joint values of the robot and f(q) is a nonlinear 
function of q. This function can be determined for 
every robot with an open chain kinematics by using 
the D-H-parameter (Denavit and Hartenberg, 1955). 
 
The equation (1) can also be used to determine the 
position of the point-like obstacle described above. In 
this case x contains only a position-vector, as a single 
point has no orientation. The vector q consists of all 
joints of the skeleton robot including the added joint 
for the scaling value (see chapter 4.3). Thus, the 
vector q has always a higher dimension than the 
position vector x. This means that the skeleton robot 
used here is always redundant, i.e. the robot has an 
infinite number of configurations q which yield to the 
same position vector x. 
 
To determine a collision free path around the point-
like obstacle we need the inverse function of equation 
(1) to be able to calculate different joint values of the 
robot from the position of the obstacle. This equation 
is given by 
 ( )invq f x=  (2) 
The determination of this equation is a well researched 
problem in the field of robotics and called the inverse 
kinematics. Especially for redundant robots this is a 
nontrivial problem as the inverse kinematics has no 
single solution but a solution subspace within the 
configuration space. Several methods have been 
developed to solve this quite complex problem. An 
overview can be found in (Nakamura, 1991). 
 



     

One very often used method to solve the inverse 
kinematics problem is to use not equation (1) 
directly but their derivative given by 
 ( )x J q q=  (3) 
Here J(q) is the so called Jacobian matrix which 
describes the movement of the vector x for small 
changes of the vector q. Equation (3) is therefore a 
linearization of equation (1) at a given configuration. 
For non redundant robots (3) can be rewritten to 
 1( )q J q x−=  (4) 
With a numerical integration (4) yields to a solution 
for equation (2). Unfortunately the inverse matrix of 
J(q) does not exist for redundant robots as in this 
case the matrix is not of quadratic form. The general 
form of (4) which is also valid for non quadratic 
Jacobian matrices is 
 ( )q J x I J J v+ += + −  (5) 
In this equation J+ is the so called Moore-Penrose 
Pseudoinverse of the Jacobian matrix. This is the 
generalized matrix inverse for a non quadratic 
matrix. The matrix I in (5) is the identity matrix and 
v is a free eligible vector.  Equation (5) consists of 
two parts. The first addend gives only one solution 
for the inverse kinematics problem. As the 
pseudoinverse is used this solution is the minimum 
norm solution. The second part describes the so 
called self moving manifold of the configuration 
space. If the joint values of a redundant robot are 
moved in a direction from this subspace the TCP of 
the robot will not move at all. 
 
The vector v in equation (5) can be chosen freely. In 
(Liègeois, 1977) this vector is used to optimize a 
scalar quality function h(q). The gradient of this 
function replaces the vector v in order to maximize 
the value of h(q). This yields to  

 ( )( ) h qq J x k I J J
q

+ + ∂
= + −

∂
 (6) 

which can be used to determine a collision free path 
for the approximated obstacle. If for the function 
h(q) the scaling value for the most colliding 
configuration (see chapter 4.2) is used, (6) will 
maximize this scaling value. By this a configuration 
can be determined by which the robot will just touch 
but not collide with the obstacle. As the scaling 
value was added as the last value of q, the function 
h(q) and the gradient can be written as 

  

0
( )( )    

1
n scale

h qh q q e
q

 
∂  = = = ∂  

 

 (7) 

In (6) x describes the movement of the point-like 
approximation of the obstacle. As the obstacle 
should not be moved within the motion planning this 
value can be set to zero. So we come up with an 
equation that describe the direction in which the 
robot should move to escape from the collision  
 ( ) scaleq k I J J e+= −  (8) 

 
 

 

 
Fig. 7. Collision free path construction using the 

tangent at the approximated obstacle 
 
Starting from the most colliding configuration, with 
(8) new configurations can be calculated that improve 
the scaling value. By this the robot can be moved out 
of the collision step by step. When the last value of q 
which is equal to the scaling reaches the value “one”, 
the robot is no more colliding with the point-like 
obstacle. This new configuration can be added to the 
original path segment in order to create a collision free 
path around the point-like obstacle. 
 
In many cases the path constructed in a way described 
above is already collision free corresponding to the 
approximation of the original obstacle. But in other 
cases this path is still colliding with the point-like 
obstacle. In these cases in addition to the collision free 
configuration with the scaling value of “one” (see 
above) a tangent at the curve of the approximated 
obstacle in the configuration space should be taken 
into account. Figure 7 gives an example. Here the path 
consisting of the configurations start, q1 and goal is 
still colliding with the obstacle. Therefore a tangent at 
the obstacle’s curve in the configuration qt was 
determined. The configuration q1 was replaced by q2 
which is the point of intersection between the two 
lines start-qt and goal-q1. The resulting path is no 
more colliding with the point-like obstacle. 
 
To determine the configuration qt which is needed for 
the tangent described above the second part of 
equation (5) can be used. The matrix M given by  
 ( ) ( ( ) ( ))M q I J q J q+= −  (9) 
consists of vectors, which are the partial derivations of 
the self moving manifold at the configuration q. The 
rank of this matrix  
 ( )r rank M=  (10) 
is equal to the degree of redundancy of the robot at 
this configuration. The direction of the tangent in the 
configuration qt must be part of this self moving 
manifold. Therefore the difference vector 
 d start qt= −  (11) 
must be linear dependant of the vectors in M. Thus, if 
the matrix M is extended by the vector d, i.e. 
 2 (  )M M d=  (12) 
the rank of this extended matrix M2 should not 
increase. That means that both the rank of M and the 
rank of M2 should be equal 
 2( ) ( )r rank M rank M= =  (13) 



     

Thus, equation (13) can be used to check, if a linear 
line connection from start to a configuration qt is a 
tangent at the curve of the approximated obstacle.  
  
 

5. EXPERMENTAL RESULTS 
 
Several experiments were made to test the abilities 
of the described algorithm. The robots were 
simulated by the robot simulation tool IGRIP on a 
PC with a Pentium IV Processor with 3 GHz. The 
algorithm was able to find a collision free path in 
almost all cases. Two examples are shown below. In 
Figure 8 a collision free path for a robot with three 
joints can be seen. There are four obstacles in the 
workspace of the robot that are partly very close to 
the base of the robot. The algorithm generated the 
shown collision free path for this example in about 
seven seconds. 
 

 
 
Fig. 8. Example for a collision free path for a robot 

with three joints 
 
The second example is quite similar to the first one. 
But here we used a robot with five degrees of 
freedom. Again the algorithm was able to find a 
collision free path. For this task the path was 
generated in about 20 seconds. 
 
 

CONCLUSIONS 
 

In this paper a new approach for automatic robot 
motion planning has been presented. It has been 
shown that the geometry of an obstacle in the robot’s 
workspace can be approximated by a well placed 
point-like obstacle. After the geometry of the robot 
has been approximated by a skeleton robot, the 
shape of this obstacle is computable by using the 
inverse kinematics of this robot. To determine a 
collision free path around the approximated obstacle 

 
 
Fig. 9. Example for a collision free path for a robot 

with five joints 
 
the tangents at the obstacle’s shape within the 
configuration space have been used. This path is 
mostly collision free for the original obstacle, too. At 
least the scaling value for the determined path 
segment has been improved. This algorithm has been 
successfully tested for different robot motion planning 
problems. 
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