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Abstract: Radio Frequency (RF) power amplifiers (PAs) are one of the most
important elements in radio telecommunication facilities, which are used to amplify
the power of input signals. At the same time, they gradually become the bottle-
neck for modern telecommunication systems due to the confliction between the
linearity and the efficiency, resulting in their relatively high level energy consump-
tion. Volterra kernels are naturally good representations of intermodulation and
harmonic distortions, the main distortions in typical power devices, because of
their convolutional structures. Some work has been done to model the distortions
by using Volterra series. However, Volterra series expansions are usually truncated
severely, due to complexity of computation, so that they do not give accurate
representations of the original system. It is intended ultimately to apply a time-
invariant, discrete-time Volterra series method in the modelling of RF power
amplifiers to assess distortion levels to eliminate or reduce them. Owing to our
limited computational facilities, the experimental PA in this preliminary work is
only excited in a moderate frequency range, 100Hz to 1kHz. Copyright c© 2005
IFAC
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1. INTRODUCTION

Radio Frequency (RF) power amplifiers (PAs)
are required in almost all electronic and digital
telecommunication systems to amplify the power
of input signals. One of the most general and
important problems is the trade-off between the
linearity and efficiency of RF PAs. In the modern
telecommunication area, especially in a mobile
or base station, linear amplification, based on
a wide power range, is important. However, to
achieve good linearity, a RF PA usually needs
to be backed off, resulting in relatively low effi-
ciency. Much work has been done to solve such a
conflict (Kenington, 2000; Cripps, 1999; Cripps,
2002). Because of the similarity between their

structures, Volterra kernels are theoretically good
at representing the intermodulation and harmonic
distortions. Hence, Volterra series (VS) are usu-
ally a good model for an inherently nonlinear
PA as well as many other typical power devices
(Vuolevi, 2001; Lee et al., 1997; Ahmad and
Gudimetla, 2002). But, in practice, the evaluation
of “large ” VS is usually computationally difficult,
resulting in the truncation of the model and mak-
ing the prediction performance less promising. To
avoid the truncation of a VS model, which causes
relatively poor representation, a kernel method is
introduced to enable the computation of finite or
infinite degree, finite memory length VS.
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Fig. 1. Typical transfer property of a RF PA.
[−A,A] is a weakly nonlinear area, [−B,B] is
slightly into saturation and [−C, C] is largely
saturated.

In the next section, the conflict between linearity
and power efficiency in RF PAs and the rea-
sons for using kernel-based VS are discussed in
more detail. In Section 3, the kernel method of
identifying a PA’s nonlinear transfer property is
presented. The corresponding theoretical basis is
also developed. Then, in Section 4, an experiment,
based on a real but simple PA circuit, is analyzed.
The motivation of the experiment is to test the
effectiveness of the kernel based VS in identifying
RF PAs’ nonlinearities, but because of the limited
computational facilities, the experimental PA is
only excited from 100Hz to 1kHz to establish the
principle. Finally, we summarize the paper and
present some conclusions.

2. THE MOTIVATION

RF transistors are inherently nonlinear devices,
resulting in the creation of distortions in the
amplification process, as shown in Fig.(1).

The closer it is to the mid-point (origin in this
case) of the curve, the more linear is the transfer
property. That is the reason why, to achieve better
linearity, a PA is often backed off, narrowing the
input power range, hence, reducing efficiency.

By introducing the kernel method for identifying
VS, we intend, first, to provide a good RF PA
model for linear PA design and, second, to help
improve distortion cancellation by means of some
basic linearization techniques, e.g. the predistor-
tion method (Cripps, 1999).

3. PA MODELING

Owing to their convolutional structures, Volterra
kernels are naturally good representations of inter-
modulation and harmonic distortions, which are
the main distortions in a RF PA (Vuolevi, 2001).

Hence, Volterra models are often used to model
intermodulation and harmonic distortions in RF
PAs as well as in many other power semiconductor
devices. The current problem is that a Volterra
model is usually truncated severely to make the
computation feasible. The accuracy of the model,
thus, deteriorates severely.

It has been shown in (Harrison, 1999; Drezet,
2001; Dodd and Harrison, 2002a; Dodd and Har-
rison, 2002b; Wan et al., 2003; Wan et al., 2004)
that a time-invariant, discrete-time, finite or infi-
nite degree, finite memory length VS y

y (u) = h0+

D∑
n=1

{
M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · , mn)

n∏
j=1

umj

}

(1)

where u , [u0, · · · , uM−1]
T is the vector of lagged

input samples, can be represented in the form of

y(u) =
∑

i

αik(ui, u)

in a reproducing kernel Hilbert space (RKHS)
H, equipped with a reproducing kernel k. In
a practical system identification situation with
N pairs of sample data, the corresponding least
squares (LS) solution ŷ is (Dodd and Harrison,
2002a; Wan et al., 2003)

ŷ(u) =
N∑

i=1

αik(ui, u) (2)

Express Eq.(2) in vector form

ŷ = Kα (3)

where

ŷ = [ŷ(u1), · · · , ŷ(uN )]T

α = [α1, · · · , αN ]T

and K is the kernel Gram matrix, Kij = k(ui, uj).
Given that u1, · · · , uN are distinct, the kernel
Gram matrix K is nonsingular, providing a unique
solution (Zyla and De Figueiredo, 1983)

α = K−1y (4)

In the case of identifying finite degree VS, a
polynomial kernel kp = (1 + 〈u, v〉l2)D (Dodd
and Harrison, 2002a) can be used, replacing k in
Eq.(2), to reveal ŷ. If the target is infinite degree

VS, an exponential kernel ke = exp
( 〈u, v〉l2

p

)

(Wan et al., 2003) should be used. The use of
these kernels can largely reduce the computational
burden of this RKHS-based algorithm (Dodd and
Harrison, 2002a; Wan et al., 2003).

Thus, the problem of estimating a finite or infi-
nite degree VS model is simplified to computing
the parameter vector α = [α1, · · · , αN ]T . Addi-
tionally, individual Volterra kernels can also be



extracted from the linear combination of the cor-
responding polynomial terms

ĥn(m1, · · · ,mn) = λn(m1, · · · ,mn)
N∑

i=1

αi

n∏

j=1

uimj

(5)
in which λn(m1, · · · ,mn) is a sequence of positive
numbers(Dodd and Harrison, 2002b; Wan et al.,
2004).

Generalized frequency response functions (GFRFs)
can be evaluated from hns through the Fourier
transform,

Hn (ω1, · · · , ωn) =
M−1∑
m1=0

· · ·
M−1∑
mn=0

hn (m1, · · · ,mn)

× exp

(
−j

n∑
a=1

ωama

)
(6)

where j is the imaginary unit.

Let us summarize the above algorithm. First, con-
struct the polynomial or exponential kernel by
using the training data and compute α through
Eq.(4). Second, based on the testing data, com-
pute the LS approximated output ŷ by using
Eq.(2). Then, extract ĥn through Eq.(5). At last,
reveal the nth order GFRFs through Eq.(6) and
the distortions of interest can be computed from
the GFRFs (Bedrosian and Rice, 1971).

It should be noted that, in many practical envi-
ronments, the fundamental condition that ui, i =
1, 2, · · · , N , are distinct elements in RM is not eas-
ily achieved, numerically, even in the noise-free sit-
uation, especially when N becomes large (Wan et
al., 2003). So, a regularization parameter ρ is often
used to get a biased solution α̃ = (K + ρI)−1

y.

4. EXPERIMENT

A PA circuit, as shown in Fig.(2), was built and
stimulated by a chirp input signal, sweeping from
100Hz to 1kHz in 10ms. The circuit’s supply
voltage Vcc was 25V and the sampling rate, 80kHz.
There are 2000 pairs of vin and vout sampled for
both training and testing. The data acquisition
card samples the two ports, input and output,
alternately, which means the sampled vin and vout

are not truly synchronous. However, to identify
the PA properly, synchronous input and output
data are required. To tackle this problem, the
original data are downsampled by a factor of 5
to be 400 pairs. Thus, the difference between the
sample times of one pair of vin and vout, which
is 12.5µs, is less significant and neglected in the
following analysis so that vin and vout are treated
as synchronous.
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Fig. 2. Ampifier circuit with R1 = 370Ω, R2 =
430Ω, RC = 198Ω, RE1 = 18Ω, RE2 = 19Ω
and C1 = C2 = 0.1mf. The NPN epitaxial
silicon transistor is BC546 from FAIRCHILD
SEMICONDUCTORr.

By adjusting the amplitude of vin, the PA op-
erates in three zones, weakly nonlinear ([−A,A]
in Fig.(1)), slightly into saturation ([−B, B] in
Fig.(1)) and largely into saturation ([−C, C] in
Fig.(1)).

In all the estimations, those model parameters,
including memory length M , exponential con-
stant p and polynomial degree D, are chosen by
hold-out cross validation based on the minimum
value of the total normalized mean square error
(NMSE) 1 . The fast Fourier transform (FFT) is
performed for computing the power spectrum of
a discrete signal x[n], n = 0, 2, · · · , N − 1,

psi =
1
N
F(yi)F∗(yi)

where F(yi) is the FFT of yi and F∗(yi) is its
conjugate.

4.1 Model parameters and estimation results

When the PA works in [−A,A], its property is
estimated by an infinite degree VS at first with
M = 11, p = 0.5 and ρ = 1 × 10−3. Then the
PA is identified by a finite degree VS with M =
11, D = 5 and ρ = 1×10−3. The estimation results

1 NMSE consists of two parts: normalized MSEs in
the time domain (NTMSE) and the frequency domain
(NPMSE), respectively, thus NMSE = NTMSE + NPMSE.

NTMSE(ŷ) =

N∑
i=1

(
yi − ŷi

yi

)2

and NPMSE
(
p̂s

)
=

N∑
i=1

(
psi − p̂si

psi

)2

, where p̂s = [p̂s1, · · · , p̂sN ]T is the

power spectrum of ŷ and ŷi = ŷ(ui).
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Fig. 3. The measured time series and frequency
response when the PA works in [−A,A].
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Fig. 4. The estimation errors in both the time and
frequency domains given by the infinite VS
model.

are shown in Fig.(3), (4) and (5), respectively.
Note that, to make the corresponding figures
comparable, their scales are set to be the same. In
many cases, this means the errors look like zero all
the time because they are trivial compared with
the corresponding measured signals, whose exact
values can be checked in Table (1) 2 .

The predicted first order Volterra kernel vector ĥ1

of the infinite VS is

ĥ1 =
[−3.6446 0.4168 0.9681 0.8722 0.4344 · · ·

· · · 0.2464 0.1421 0.1031 0.1613 0.1579 0.5421
]

When the PA works in [−B, B], both infinite and
finite degree VS models are also identified. The
parameters of the infinite VS are M = 11, p =
0.28 and ρ = 1 × 10−3. With the same M
and ρ, the finite VS model is of degree 6. The
corresponding results are displayed in Fig.(6), (7)
and (8), respectively.

2 The Inf and Fin in the table mean infinite and finite
degree VS identifications, respectively.
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Fig. 5. The estimation errors in both the time
and frequency domains given by the finite VS
model.
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Fig. 6. The measured time series and frequency
response when the PA works in [−B, B].
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Fig. 7. The estimation errors in both the time and
frequency domains given by the infinite VS
model.

The predicted first order Volterra kernel vector ĥ1

of the infinite VS is

ĥ1 =
[−3.2919 0.3381 0.6265 0.4091 0.3737 · · ·

· · · 0.4196 0.3461 0.1967 0.1359 0.2332 0.1446
]
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Fig. 8. The estimation errors in both the time
and frequency domains given by the finite VS
model.
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Fig. 9. The measured time series and frequency
response when the PA works in [−C, C].

Lastly, we run the PA in [−C, C] and identify its
property by an infinite and a finite degree VS
model, respectively. The infinite VS model is of
M = 6, p = 0.18 and ρ = 1 × 10−3 and the finite
VS model has the same M and ρ with D = 9.
The results are shown in Fig.(9), (10) and (11),
respectively.

The predicted first order Volterra kernel vector ĥ1

of the infinite VS is

ĥ1 =
[−3.1909 −0.4606 0.9296 · · ·
· · · 1.0559 1.5730 1.1146

]

The predicted second order frequency response,
given by the infinite VS model, is shown in
Fig.(12).

The NTMSEs, NPMSEs and NMSEs for all the
modeling processes are summerized in Table (1).

4.2 Analysis

By using the kernel methods presented in Section
3, higher order hn and Hn can also be computed.
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Fig. 10. The estimation errors in both the time
and frequency domains given by the infinite
VS model.
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Fig. 11. The estimation errors in both the time
and frequency domains given by the finite VS
model.

Fig. 12. Predicted second order frequency re-
sponse given by the infinite VS model.

But because of the space limit, they are not listed
here.

From the figures and the table, we can see that
those “large” VS models do fit the PA well even
in the severely nonlinear situation as shown in



Table 1. NTMSEs, NPMSEs and NM-
SEs for all the modeling processes.

AA AA BB BB CC CC
Inf Fin Inf Fin Inf Fin

NTMSE(10−4) 0.30 0.32 2.18 2.25 10.00 13.00
NPMSE(10−5) 0.63 0.80 2.51 2.84 23.57 20.82
NMSE(10−4) 0.36 0.40 2.43 2.54 12.00 15.00

Fig.(10). On the other hand, the deeper the PA
works into the saturation area, the more difficult
it is to identify the nonlinearity, which is clearly
shown by Table (1).

As mentioned before, the frequency range of the
input chirp signal is from 100Hz to 1kHz. If we
observe the frequency domain estimation results
more carefully, it can found that the VS models
work better on [100Hz, 1kHz]. Most estimation
errors, that can be identified by eyes from the
figures, happen on the outside, or distortion, area.

In this experiment, generally speaking, infinite
degree VS models work better than finite degree
ones in both the time and frequency domains,
based on the same memory lengths and regular-
izations.

5. CONCLUSION

VS, especially high or even infinite degree VS,
are powerful models in identifying PAs. By using
the kernel method, the practical utilization of
high and infinite degree VS is achievable and
the computational burden of estimating a large
number of Volterra coefficients is reduced. The use
of high or infinite degree VS benefits identification
of PA nonlinearities, which potentially could help
reduce the distortions in PAs and increase their
linearities while keeping reasonable efficiency.

Future work will focus on the more detailed identi-
fication and analysis of individual distortion com-
ponents, mainly harmonic and intermodulation
effects. Tests will be done based on RF inputs
instead of the current relatively low frequency
([100Hz, 1kHz]) ones. Exact methods of using
identified VS models to reduce distortions will also
be investigated.
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