
MIXED H2/H∞ SUB-OPTIMIZATION
APPROACH FOR INTEGRATED

AIRCRAFT/CONTROLLER DESIGN ?

Fang Liao ∗,1, Kai Yew Lum ∗ and
Jian Liang Wang ∗∗

∗Temasek Laboratories, National University of Singapore,
Singapore 117508

∗∗ School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798.

Abstract: This paper presents a new methodology to solve the optimization
problem of integrated aircraft/dynamic output-feedback controller design where
both polytopic model uncertainties and multi-missions are considered. This design
optimization is based on mixed H2/H∞ performance requirement. According to
the projection lemma, the integrated design optimization problem is separated
into aircraft parameter optimization problem and controller optimization problem.
An LMI-based sub-optimization approach is proposed for the aircraft parameter
design. Then for the obtained sub-optimal aircraft parameters, an optimization ap-
proach is given to solve for the dynamic output-feedback controllers corresponding
to different missions. Copyright c°2005 IFAC

Keywords: integrated aircraft/controller design; optimization; mixed H2/H∞
control; polytopic uncertainty; parameter-dependent; linear matrix
inequalities(LMIs).

1. INTRODUCTION

In the design of aircraft control systems, an air-
craft is traditionally designed first, then a con-
troller is designed for the given aircraft. How-
ever, combining these individually designed com-
ponents into a single vehicle does not necessarily
guarantee good vehicle performance. In addition,
following the rapid and substantial progress in
micro-electro-mechanical systems (MEMS), mi-
cro air vehicles (MAVs) are arousing the interest
of aeronautical engineers. As MAVs with flap-
ping wings have highly unsteady aerodynamics,
the separated aircraft and flight controller design
methods may not enable missions with stringent
performance requirements and even may not sta-
bilize them.
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As a result of these real and predicted prob-
lems, and motivated by the fact that signifi-
cant improvements in the overall system perfor-
mance and cost are possible if the process of
aircraft design and control system development
were integrated, much research in recent years
has been devoted to the development of inte-
grated aircraft/controller design methods. Sev-
eral integrated H∞ aircraft/controller design ap-
proaches have been presented (Niewoehner and
Kaminer, 1996; Grigoriadis and Wu, 1997; Yang
and Lum, 2003). In (Niewoehner and Kaminer,
1996), an iterative LMI-based algorithm is sug-
gested to solve the optimization problem. Unfor-
tunately, convergence properties cannot be guar-
anteed for the proposed algorithm. In (Yang and
Lum, 2003), Yang and Lum continue to pursue
the integrated aircraft/controller design optimiza-
tion problem. An iterative LMI-based algorithm
with convergence properties is proposed. Never-
theless, in (Niewoehner and Kaminer, 1996; Yang



and Lum, 2003), only state-feedback control prob-
lem is considered. The dynamic output-feedback
control problem was considered by Grigoriadis
and Wu in (Grigoriadis and Wu, 1997) where
a convergent iterative LMI algorithm was pro-
posed. However, the assumption that the control
input matrix is independent of design parame-
ters of the plant seems too restrictive. Although
all the above-mentioned approaches are proposed
for the integrated aircraft/controller design, they
only consideredH∞ performance requirement and
used iterative LMI algorithms which greatly de-
pended on selection of initial values. Moreover,
model uncertainties and multi-mission operation
were not involved by these approaches.

An LMI-based integrated plant/controller opti-
mization approach has been presented by the au-
thors in (Liao, et al., 2005) where only one plant
parameter is to be determined. This paper inves-
tigates integrated aircraft/output-feedback con-
troller design optimization problems with more
aircraft parameters to be determined. And both
polytopic model uncertainties and multi-missions
are considered. By using the projection lemma,
the integrated design optimization problem is sep-
arated into aircraft parameter optimization prob-
lem and controller optimization problem. An LMI-
based sub-optimization approach is presented for
the design of aircraft parameters, such as con-
trol surface sizes of aircraft, subject to existing a
dynamic output-feedback controller for each mis-
sion that satisfies the closed-loop mixed H2/H∞
performance requirement. Then for the obtained
sub-optimal aircraft parameters, an LMI-based
optimization approach is proposed to solve for the
dynamic output-feedback controllers correspond-
ing to different missions.

2. PROBLEM FORMULATION

Consider a set of parameter-dependent dynamic
systems Pl (l = 1, 2, · · · , L) with polytopic un-
certainties, which are described by the following
state-space representation.⎡⎢⎣ ẋlz2lz∞l
yl

⎤⎥⎦=
⎡⎢⎢⎢⎣
Al(ξ,Θl) B2l(ξ,Θl) B∞l(ξ,Θl) Bl(ξ,Θl)

C2l 0 0 D2l

C∞l 0 0 D∞l

Cl(ξ) 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎣ xlw2lw∞l
ul

⎤⎥⎦
(1)

Here the subscript l (l = 1, 2, · · · , L) represents
the linear aircraft model corresponding to the lth
mission to be executed, hence there are in total
L missions to be executed. xl(t) ∈ Rnl is the
state vector, ul(t) ∈ Rnul is the control input
signal, yl(t) ∈ Rnyl is the measured output,
z2l(t) ∈ Rnz2l describes the H2 performance
output vector, z∞l(t) ∈ Rnz∞l describes the H∞
performance output vector, and w2l(t) ∈ Rnw2l

and w∞l(t) ∈ Rnw∞l are the disturbance vectors.
The matrices C2l, D2l, C∞l and D∞l are known
constant matrices. And the matrices Al(ξ,Θl),
B2l(ξ,Θl), B∞l(ξ,Θl), Bl(ξ,Θl) and Cl(ξ) are
given by

Al(ξ,Θl)=

qlX
j=1

µ
A0jl +

rX
i=1

ξiAijl

¶
θjl

B2l(ξ,Θl)=

qlX
j=1

µ
B20jl +

rX
i=1

ξiB2ijl

¶
θjl

B∞l(ξ,Θl)=
qlX
j=1

µ
B∞0jl +

rX
i=1

ξiB∞ijl

¶
θjl

Bl(ξ,Θl)=

qlX
j=1

µ
B0jl +

rX
i=1

ξiBijl

¶
θjl

Cl(ξ)=C00l +
rX
i=1

ξiCi0l

(2)

where the matrices Aijl, Bijl, B2ijl, B∞ijl and
Ci0l (i= 0, 1, · · · , r, j = 1, 2, · · · , ql, l= 1, 2, · · · , L)
are known constant matrices of appropriate di-
mensions. The vector ξ =[ξ1 ξ2 · · · ξr] is the
aircraft parameter vector to be optimized and
belongs to the set

Ξ
4
={[ξ1 ξ2 · · · ξr]∈R

r: ξi ≥ 0, i = 1, 2, · · · , r} (3)

Without loss of generality, we assume that ξ = 0
corresponds to the nominal aircraft parameters
(e.g., the largest sizes of control surfaces) that
have been chosen in a prior design stage. The
parameter Θl = [θ1l θ2l · · · θqll]

T ∈ Rql is the
uncertain constant parameter vector satisfying

Θl ∈ Θ
4
=

½
[θ1l θ2l · · · θqll]

T ∈ Rql : θjl ≥ 0,

j=1, 2, · · · , ql, l=1, 2, · · · , L,
qlX
j=1

θjl = 1

¾
(4)

Consider the following stabilizing dynamic output-
feedback controllers

Kl:

½
ẋkl=Aklxkl +Bklyl
ul=Cklxkl +Dklyl

, l=1, 2, · · · , L (5)

where xkl ∈ Rnkl is the state vector of the dy-
namic output-feedback controller corresponding
to the lth mission. Denote this controller by

Kl =
hDkl Ckl
Bkl Akl

i
(6)

Furthermore, denote

Al(ξ,Θl)=
hAl(ξ,Θl) 0

0 0

i
,

Bl(ξ,Θl)=
hBl(ξ,Θl) 0

0 I

i
,

xcll=
h xl
xkl

i
Cl(ξ)=

hCl(ξ) 0
0 I

i



B∞l(ξ,Θl)=
hB∞l(ξ,Θl)

0

i
,

B2l(ξ,Θl)=
hB2l(ξ,Θl)

0

i
,

C∞l=[C∞l 0]
D∞l=[D∞l 0]
C2l=[C2l 0]
D2l=[D2l 0]

Then, the closed-loop systems Πl (l = 1, 2, · · · , L)
are described by⎡⎣ẋcllz2l
z∞l

⎤⎦=
⎡⎣Acll(ξ,Θl,Kl) B2l(ξ,Θl) B∞l(ξ,Θl)
C2cll(ξ,Kl) 0 0
C∞cll(ξ,Kl) 0 0

⎤⎦⎡⎣xcllw2l
w∞l

⎤⎦
(7)

with

Acll(ξ,Θl,Kl) =Al(ξ,Θl)+Bl(ξ,Θl)KlCl(ξ)

C2cll(ξ,Kl) = C2l+D2lKlCl(ξ)

C∞cll(ξ,Kl) = C∞l+D∞lKlCl(ξ)

The design objective is to optimize the aircraft
parameters subject to the existence of a set of
stabilizing dynamic output-feedback controllers as
in (5) satisfying the mixed H2/H∞ closed-loop
performance requirement. In other words, we seek
to solve the following optimization problem:

maximize cξ subject to

||Πz2lw2l
(s)||2 <νl, ||Πz∞lw∞l

(s)||∞ <γl,
Kl∈Kl, ξ∈Ξ, l=1, 2, · · · , L

(8)

where c = [c1c2 · · · cr] with ci > 0 (i = 1,2,· · ·,r)
is a known constant vector, and Πz2lw2l

(s) and
Πz∞lw∞l

(s) denote the transfer functions of the
lth closed-loop system of (7). Hence, both the
aircraft parameter ξ and controller parametersKl

(l = 1, 2, · · · , L) are taken into account in the
optimization problem (8).

3. INTEGRATED AIRCRAFT/CONTROLLER
DESIGN OPTIMIZATION

Lemma 1. (Zhou and Doyle, 1998) Consider the
closed-loop systems Πl (l = 1, 2, · · · , L) as in
(7). For given scalars γl > 0 and νl > 0, l =
1, 2, · · · , L, we have that ||Πz2lw2l

(s)||2 <νl and
||Πz∞lw∞l

(s)||∞ < γl if and only if there ex-
ist symmetric positive-definite matrices Y∞l ∈
R(nl+nkl)×(nl+nkl) and Y2l ∈ R(nl+nkl)×(nl+nkl)

and Ql ∈ Rnw2l×nw2l (l = 1, 2, · · · , L), controller
parameter matrices Kl (l = 1, 2, · · · , L) as in (6)
and an aircraft parameter vector ξ ∈ Ξ such that
the following matrix inequalities are satisfied.⎡⎢⎢⎣

Acll(ξ,Θl,Kl)
TY∞l

+Y∞lAcll(ξ,Θl,Kl)
∗ ∗

BT∞l(ξ,Θl)Y∞l −γlI ∗
C∞cll(ξ,Kl) 0 −γlI

⎤⎥⎥⎦ < 0 (9)

⎡⎣ Acll(ξ,Θl,Kl)
TY2l

+Y2lAcll(ξ,Θl,Kl)
∗

C2cll(ξ,Kl) −I

⎤⎦ < 0 (10)

"
Ql ∗

Y2lB2l(ξ,Θl) Y2l

#
> 0 (11)

trace(Ql) < νl (12)

l = 1, 2, · · · , L

Note that here * denotes symmetric entries of a
symmetric matrix. It is applicable to the rest of
this paper.

Remark 1. Lemma 1 gives a necessary and suf-
ficient condition to solve the integrated air-
craft/controller design problem with mixedH2/H∞
performance requirement. As ξ,Y2l,Y∞l,Ql and
Kl (l = 1, 2, · · · , L) are variables, the conditions
(9)-(11) are not LMIs.

Lemma 2. (Projection Lemma)(Apkarian, et al.,
2001): Given a symmetric matrix Ψ and two
matrices P and Q, there exists an X such that
the following LMI holds:

Ψ+PTXTQ+QTXP < 0 (13)

if and only if the following projection inequalities
are satisfied

NT
PΨNP < 0, N

T
QΨNQ < 0 (14)

where NP and NQ denote arbitrary bases of the
null spaces of P and Q, respectively.

According to Lemma 2, the inequality (9) is equiv-
alent to

N T
∞Pl

⎡⎢⎢⎣
ATl (ξ,Θl)Y∞l
+Y∞lAl(ξ,Θl)

∗ ∗

BT∞l(ξ,Θl)Y∞l −γlI ∗
C∞l 0 −γlI

⎤⎥⎥⎦N∞Pl<0 (15)

NT
∞Ql

⎡⎢⎢⎣
Y−1∞lA

T
l (ξ,Θl)

+Al(ξ,Θl)Y
−1
∞l

∗ ∗

BT∞l(ξ,Θl) −γlI ∗
C∞lY−1∞l 0 −γlI

⎤⎥⎥⎦N∞Ql<0 (16)
where N∞Pl and N∞Ql are the null spaces of
matrices [Cl(ξ) 0 0] and

£
BTl (ξ,Θl) 0 D

T
∞l
¤
, re-

spectively, and the inequality (10) is equivalent to

N T
2Pl

⎡⎣ ATl (ξ,Θl)Y2l

+Y2lAl(ξ,Θl)
∗

C2l −I

⎤⎦N2Pl<0 (17)

NT
2Ql

⎡⎣ Y−12l A
T
l (ξ,Θl)

+Al(ξ,Θl)Y
−1
2l

∗

C2l −I

⎤⎦N2Ql<0 (18)

where N2Pl and N2Ql are the null spaces of ma-
trices [Cl(ξ) 0] and

£
BTl (ξ,Θl) D

T
2l

¤
, respectively.

It is noted that the controller parameter Kl is no
longer included in the inequalities (15)-(18) which



are equivalent to (9)-(10) in Lemma 1. Hence, the
integrated aircraft/controller design optimization
problem can be separated into the optimization
problem of aircraft parameter vector ξ and that of
controller parameters Kl (l = 1, 2, · · · , L). In the
following, the aircraft parameters and controller
parameters are individually optimized.

3.1 Sub-Optimization of Aircraft Parameter Design

Before presenting the main result, partition Y∞l
and Y−1∞l as in (15) and (16) into

Y∞l=

"
S∞l N∞l
NT
∞l #∞l

#
,Y−1∞l=

"
R∞l M∞l
MT
∞l $∞l

#
(19)

and denote

Z∞1l=

"
I R∞l
0 MT

∞l

#
, Z∞2l=

"
S∞l I
NT
∞l 0

#
(20)

Assuming that the matrixM∞l is invertible, per-
forming a congruence transformation with Z∞1l
on Y∞l > 0, we obtain"

S∞l I
I R∞l

#
> 0 (21)

Similarly, partition Y2l and Y
−1
2l as in (17) and

(18) into

Y2l=

"
S2l N2l

NT
2l #2l

#
, Y−12l =

"
R2l M2l

MT
2l $2l

#
(22)

and denote

Z21l=

"
I R2l

0 MT
2l

#
, Z22l=

"
S2l I
NT
2l 0

#
(23)

Assuming that the matrix M2l is invertible, per-
forming a congruence transformation with Z21l on
Y2l > 0, we obtain"

S2l I
I R2l

#
> 0 (24)

As a result, the LMIY∞l > 0 is equivalent to (21)
and Y2l > 0 is equivalent to (24).

Substituting the partitions (19), (22) and (2) into
(15)-(18) and introducing slack matrix variables
E∞l, H∞l, E2l and H2l, we have the following
Theorem 1. Denote

∆∞P0jl(S∞l,E∞l, γl) =⎡⎢⎢⎣
AT
0jlS∞l

+S∞lA0jl
∗ ∗

BT∞0jlS∞l −γlI ∗
C∞l 0 −γlI

⎤⎥⎥⎦+E∞l
⎡⎣CT00l0
0

⎤⎦T+
⎡⎣CT00l0
0

⎤⎦ET∞l
∆∞Pijl(S∞l,E∞l) =

⎡⎢⎢⎣
AT
ijlS∞l

+S∞lAijl
∗ ∗

BT∞ijlS∞l 0 ∗
0 0 0

⎤⎥⎥⎦+E∞l
⎡⎣CTi0l0
0

⎤⎦T+
⎡⎣CTi0l0
0

⎤⎦ET∞l
∆∞Q0jl(R∞l,H∞l, γl) =⎡⎢⎢⎣
A0jlR∞l
+R∞lAT

0jl
∗ ∗

BT∞0jl −γlI ∗
C∞lR∞l 0 −γlI

⎤⎥⎥⎦+H∞l
⎡⎣B0jl0
D∞l

⎤⎦T+
⎡⎣B0jl0
D∞l

⎤⎦HT
∞l

∆∞Qijl(R∞l,H∞l) =⎡⎢⎢⎣
AijlR∞l
+R∞lAT

ijl
∗ ∗

BT∞ijl 0 ∗
0 0 0

⎤⎥⎥⎦+H∞l
⎡⎣Bijl0
0

⎤⎦T+
⎡⎣Bijl0
0

⎤⎦HT
∞l

∆2P0jl(S2l,E2l) ="
AT
0jlS2l+S2lA0jl ∗

C2l −I

#
+E2l

"
CT00l
0

#T
+

"
CT00l
0

#
ET2l

∆2Pijl(S2l,E2l) ="
AT
ijlS2l+S2lAijl ∗

0 0

#
+E2l

"
CTi0l
0

#T
+

"
CTi0l
0

#
ET2l

∆2Q0jl(R2l,H2l) ="
A0jlR2l+R2lA

T
0jl ∗

C2lR2l −I

#
+H2l

"
B0jl
D2l

#T
+

"
B0jl
D2l

#
HT
2l

∆2Qijl(R2l,H2l) ="
AijlR2l+R2lA

T
ijl ∗

0 0

#
+H2l

"
Bijl
0

#T
+

"
Bijl
0

#
HT
2l

∆20jl(S2l,R2l,Ql) =⎡⎣ Ql ∗ ∗
S2lB20jl S2l ∗
B20jl I R2l

⎤⎦
∆2ijl(S2l) =⎡⎣ 0 ∗ ∗
S2lB2ijl 0 ∗
B2ijl 0 0

⎤⎦
Theorem 1. Consider the closed-loop systems Πl

(l = 1, 2, · · · , L) as in (7). For given scalars γl >
0 and νl > 0 (l = 1, 2, · · · , L), if there exist
an aircraft parameter vector ξ ∈ Ξ, symmetric
positive-definite matrices S∞l ∈ Rnl×nl , R∞l ∈
Rnl×nl , S2l ∈ Rnl×nl , R2l ∈ Rnl×nl and Q2l ∈
Rnw2l×nw2l , and matrices E∞l, H∞l, E2l and H2l

(l = 1, 2, · · · , L) such that for all l = 1, 2, · · · , L
and j = 1, 2, · · · , ql,

rX
i=1

ξi∆∞Pijl(S∞l,E∞l)<−∆∞P0jl(S∞l,E∞l, γl)

(25)
rX
i=1

ξi∆∞Qijl(R∞l,H∞l)<−∆∞Q0jl(R∞l,H∞l, γl)

(26)



rX
i=1

ξi∆2Pijl(S2l,E2l)<−∆2P0jl(S2l,E2l) (27)

rX
i=1

ξi∆2Qijl(R2l,H2l)<−∆2Q0jl(R2l,H2l) (28)

rX
i=1

ξi∆2ijl(S2l)>−∆20jl(S2l,R2l,Ql) (29)"
S∞l I
I R∞l

#
>0,

"
S2l I
I R2l

#
>0 (30)

trace(Ql)<νl (31)

then there exist dynamic output-feedback con-
troller parameters Kl (l = 1, 2, · · · , L) as in
(6) such that the closed-loop systems Πl (l =
1, 2, · · · , L) in (7) are robustly stabilized and sat-
isfy ||Πz∞lw∞l

(s)||∞ <γl and ||Πz2lw2l
(s)||2 <νl

(l = 1, 2, · · · , L).

Based on the solution of the generalized eigenvalue
problem (GEVP) (Gahinet, et al., 1995), the
solution for sub-optimal aircraft parameter ξopt
is given as follows.

Step 1 Optimize a single aircraft parameter
while maintain the other aircraft parameters
as the nominal ones, this is, if only opti-
mize the aircraft parameter ξi, then choose
ξ = [0 · · · 0 ξi 0 · · · 0]. For given closed-
loop H∞ performance upper bounds γl0 (l =
1, 2, · · · , L) and H2 performance upper bounds
νl (l = 1, 2, · · · , L), minimize λi over S∞l,
R∞l, E∞l, H∞l, γl, S2l, R2l, E2l, H2l and
Ql (l = 1, 2, · · · , L) subject to LMIs (30)-(31)
and

∆∞P0jl(S∞l,E∞l, γl) < 0 (32)

∆∞Q0jl(R∞l,H∞l,γl) < 0 (33)

∆2P0jl(S2l,E2l) < 0 (34)

∆2Q0jl(R2l,H2l) < 0 (35)

∆20jl(S2l,R2l,Ql) > 0 (36)

γl<γl0 (37)

∆∞Pijl(S∞l,E∞l)<−λi∆∞P0jl(S∞l,E∞l, γl)

∆∞Qijl(R∞l,H∞l)<−λi∆∞Q0jl(R∞l,H∞l,γl)

∆2Pijl(S2l,E2l)<−λi∆2P0jl(S2l,E2l)

∆2Qijl(R2l,H2l)<−λi∆2Q0jl(R2l,H2l)

∆2ijl(S2l)>−λi∆20jl(S2l,R2l,Ql)

l = 1, 2, · · · , L, j = 1, 2, · · · ql

Then we have λiopt and the optimized aircraft
parameter ξiopt = 1/λiopt. Repeat the above
optimization procedures, we have all ξiopt, i =
1, 2, · · · , r.

Step 2 Let ξ = [c1ξ1opt c2ξ2opt · · · crξropt]ξc
where ξc is a variable, ξiopt(i = 1, 2, · · · , r) are
obtained from Step 1 and c = [c1 c2 · · · cr]
with ci > 0 (i = 1, 2 · · · , r) is the given penalty
vector as in (8). For given closed-loop H∞
performance upper bounds γl0 (l = 1, 2, · · · , L)
and H2 performance upper bounds νl (l =
1, 2, · · · , L), minimize λc over S∞l, R∞l, E∞l,
H∞l, γl, S2l, R2l, E2l, H2l and Ql subject to
LMIs (30)-(37) and

rX
i=1

ciξiopt∆∞Pijl(S∞l,E∞l)

<−λc∆∞P0jl(S∞l,E∞l, γl)
rX
i=1

ciξiopt∆∞Qijl(R∞l,H∞l)

<−λc∆∞Q0jl(R∞l,H∞l, γl)
rX
i=1

ciξiopt∆2Pijl(S2l,E2l)<−λc∆2P0jl(S2l,E2l)

rX
i=1

ciξiopt∆2Qijl(R2l,H2l)<−λc∆2Q0jl(R2l,H2l)

rX
i=1

ciξiopt∆2ijl(S2l)>−λc∆20jl(S2l,R2l,Ql)

l = 1, 2, · · · , L, j = 1, 2, · · · ql

Then we have ξcopt = 1/λcopt and the sub-
optimized aircraft parameter vector ξopt =
[c1ξ1opt c2ξ2opt · · · crξropt]ξcopt.

Remark 2. It is noted that ξc in Step 2 is a com-
mon factor of the aircraft parameter vector ξ that
is to be optimized. The scalars ci (i = 1, 2, · · · , r)
are used to penalize different aircraft parameters
according to the design requirement, while the op-
timal solutions ξiopt (i = 1, 2, · · · , r) obtained from
Step 1 are used to normalize the corresponding
aircraft parameters ξi(i = 1, 2, · · · , r) so that the
designed aircraft parameter vector ξopt is closer
to the optimal one. It is noted that the above
proposed approach can not guarantee to achieve
the optimal aircraft parameters. Once the sub-
optimal parameter vector ξopt is obtained, the
optimal dynamic output-feedback controllers Kl

(l = 1, 2, · · · , L) as in (6) can be solved by using
the following approach.

3.2 Optimization of Controller Design

Performing congruence transformation with diag
{Z∞1l, I, I} on (9) and with diag{Z21l, I} on (10),
respectively, and partitioning Z∞1l, Z∞2l, Z21l
and Z22l as in (20) and (23), we have the following
equivalent matrix inequalities

qlX
j=1

Ω∞jl(Akl,Bkl,Ckl,Dkl)θjl < 0 (38)

qlX
j=1

Ω2jl(Akl,Bkl,Ckl,Dkl)θjl < 0 (39)



where Ω∞jl(Akl,Bkl,Ckl,Dkl) =

⎡⎢⎢⎣
Ω11∞jl(Bkl,Dkl) ∗ ∗ ∗

Ω21∞jl(Akl,Bkl,Ckl,Dkl)Ω
22
∞jl(Ckl,Dkl) ∗ ∗

BT∞jl(ξopt)S∞l BT∞jl(ξopt) −γlI ∗
C∞l+D∞lDklCl(ξopt) Ω

42
∞l(Ckl,Dkl) 0 −γlI

⎤⎥⎥⎦
and Ω2jl(Akl,Bkl,Ckl,Dkl) =⎡⎣ Ω112jl(Bkl,Dkl) ∗ ∗
Ω212jl(Akl,Bkl,Ckl,Dkl) Ω

22
2jl(Ckl,Dkl) ∗

C2l +D2lDklCl(ξopt) Ω422l (Ckl,Dkl) −I

⎤⎦
with

Ω11xjl(Bkl,Dkl) = SxlAjl(ξopt) +A
T
jl(ξopt)Sxl

+CTl (ξopt)[NxlBkl+SxlBjl(ξopt)Dkl]
T

+[NxlBkl+SxlBjl(ξopt)Dkl]Cl(ξopt)

Ω21xjl(Akl,Bkl,Ckl,Dkl) = RxlC
T
l (ξopt)B

T
klN

T
xl

+MxlC
T
klB

T
jl(ξopt)Sxl +MxlA

T
klN

T
xl

+Bjl(ξopt)DklCl(ξopt) +RxlA
T
jl(ξopt)Sxl

+Ajl(ξopt) +RxlC
T
l (ξopt)D

T
klB

T
jl(ξopt)Sxl

Ω22xjl(Ckl,Dkl) = Ajl(ξopt)Rxl +RxlA
T
jl(ξopt)

+Bjl(ξopt)[CklM
T
xl+DklCl(ξopt)Rxl]

+[CklM
T
xl+DklCl(ξopt)Rxl]

TBTjl(ξopt)

Ω42xl (Ckl,Dkl) = CxlRxl

+Dxl[CklM
T
xl+DklCl(ξopt)Rxl]

Nxl = (I− SxlRxl)(M
−1
xl )

T (40)

where the subscript x is either 2 or ∞ and

Ajl(ξ)=A0jl+
rX
i=1

ξiAijl, Bjl(ξ)=B0jl+
rX
i=1

ξiBijl

According to the above congruence transforma-
tion, the mixed H2/H∞ conditions (9)-(12) in
Lemma 1 are equivalent to the conditions (38),
(39), (29)-(31). Unfortunately, for the known air-
craft parameter vector ξopt, the conditions (38),
(39), (29)-(31) are still nonconvex. However, they
are LMIs with respect to the control parameters
Akl, Bkl, Ckl, Dkl if the matrices S∞l, R∞l,
M∞l,N∞l, S2l,R2l,M2l andN2l are fixed. Here
we use the approach proposed by Theorem 1 to
solve for S∞l, R∞l, S2l and R2l. As Theorem 1
provides a sufficient condition for Lemma 1, the
solutions of Theorem 1 must satisfy the conditions
of Lemma 1, namely, the matrix inequalities (38),
(39), (29)-(31).

Hence, an approach for the optimal dynamic
output-feedback controllersKlopt l = 1, 2, · · · , L is
proposed as follows: For chosen invertible matrices
M∞l and M2l, and known symmetric positive-
definite matrices S∞l, R∞l, S2l and R2l obtained
from Step 2 of the aircraft parameter optimization

in Section 3.1, the matrices N∞l and N2l can be
obtained from (40). For the given scalar γl > 0,
find the matrix variables Akl, Bkl, Ckl, Dkl such
that

Ω∞jl(Akl,Bkl,Ckl,Dkl) < 0 (41)

Ω2jl(Akl,Bkl,Ckl,Dkl) < 0 (42)

j = 1, 2, · · · , ql

Then we obtain the dynamic output-feedback con-
troller parameters Aklopt, Bklopt, Cklopt, Dklopt.

4. CONCLUSIONS

This paper proposes a sub-optimization approach
for integrated aircraft/controller parameter de-
sign. Based on the projection lemma Lemma 2,
the design of aircraft parameters can be sepa-
rated from the design of dynamic output-feedback
controller parameters. As the sub-optimization
approach is based on linear matrix inequalities,
the computational amount required by the pro-
posed approach is greatly less than that required
by the iterative-LMI-based approaches, especially
when disturbances, polytopic uncertainties, multi-
mission operation and mixed H2/H∞ perfor-
mance requirement are considered simultaneously.
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