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1. INTRODUCTION

In the design of aircraft control systems, an air-
craft is traditionally designed first, then a con-
troller is designed for the given aircraft. How-
ever, combining these individually designed com-
ponents into a single vehicle does not necessarily
guarantee good vehicle performance. In addition,
following the rapid and substantial progress in
micro-electro-mechanical systems (MEMS), mi-
cro air vehicles (MAVs) are arousing the interest
of aeronautical engineers. As MAVs with flap-
ping wings have highly unsteady aerodynamics,
the separated aircraft and flight controller design
methods may not enable missions with stringent
performance requirements and even may not sta-
bilize them.
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As a result of these real and predicted prob-
lems, and motivated by the fact that signifi-
cant improvements in the overall system perfor-
mance and cost are possible if the process of
aircraft design and control system development
were integrated, much research in recent years
has been devoted to the development of inte-
grated aircraft/controller design methods. Sev-
eral integrated Ho, aircraft/controller design ap-
proaches have been presented (Niewoehner and
Kaminer, 1996; Grigoriadis and Wu, 1997; Yang
and Lum, 2003). In (Niewoehner and Kaminer,
1996), an iterative LMI-based algorithm is sug-
gested to solve the optimization problem. Unfor-
tunately, convergence properties cannot be guar-
anteed for the proposed algorithm. In (Yang and
Lum, 2003), Yang and Lum continue to pursue
the integrated aircraft/controller design optimiza-
tion problem. An iterative LMI-based algorithm
with convergence properties is proposed. Never-
theless, in (Niewoehner and Kaminer, 1996; Yang



and Lum, 2003), only state-feedback control prob-
lem is considered. The dynamic output-feedback
control problem was considered by Grigoriadis
and Wu in (Grigoriadis and Wu, 1997) where
a convergent iterative LMI algorithm was pro-
posed. However, the assumption that the control
input matrix is independent of design parame-
ters of the plant seems too restrictive. Although
all the above-mentioned approaches are proposed
for the integrated aircraft/controller design, they
only considered H, performance requirement and
used iterative LMI algorithms which greatly de-
pended on selection of initial values. Moreover,
model uncertainties and multi-mission operation
were not involved by these approaches.

An LMI-based integrated plant/controller opti-
mization approach has been presented by the au-
thors in (Liao, et al., 2005) where only one plant
parameter is to be determined. This paper inves-
tigates integrated aircraft/output-feedback con-
troller design optimization problems with more
aircraft parameters to be determined. And both
polytopic model uncertainties and multi-missions
are considered. By using the projection lemma,
the integrated design optimization problem is sep-
arated into aircraft parameter optimization prob-
lem and controller optimization problem. An LMI-
based sub-optimization approach is presented for
the design of aircraft parameters, such as con-
trol surface sizes of aircraft, subject to existing a
dynamic output-feedback controller for each mis-
sion that satisfies the closed-loop mixed Hs/H,
performance requirement. Then for the obtained
sub-optimal aircraft parameters, an LMI-based
optimization approach is proposed to solve for the
dynamic output-feedback controllers correspond-
ing to different missions.

2. PROBLEM FORMULATION

Consider a set of parameter-dependent dynamic
systems P; (I = 1,2,---,L) with polytopic un-
certainties, which are described by the following
state-space representation.
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Here the subscript ! (I = 1,2,---, L) represents
the linear aircraft model corresponding to the Ith
mission to be executed, hence there are in total
L missions to be executed. x;(t) € R™ is the
state vector, w;(t) € R™ is the control input
signal, y;(t) € R™! is the measured output,
Zo1(t) € R™2 describes the Hy performance
output vector, Zo;(t) € R™=! describes the H,
performance output vector, and wy;(t) € R w2

and W (t) € R™w=<t are the disturbance vectors.
The matrices Cq;, Dg;, Coo; and D; are known
constant matrices. And the matrices A;(&,©;),
B2:(¢,01), Bo(€,01), Bi(§,0:1) and C;(§) are
given by
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where the matrices Aijla Bijl) B%ﬂ, Booijl and
CiOl (7;:0’17""7’5]’:1727"'7ql7l:1727"'7L)
are known constant matrices of appropriate di-
mensions. The vector & =[& & --- &] is the
aircraft parameter vector to be optimized and
belongs to the set

226 & o &IERTE 2 0,i=1,2,,7}(3)

Without loss of generality, we assume that £ = 0
corresponds to the nominal aircraft parameters
(e.g., the largest sizes of control surfaces) that
have been chosen in a prior design stage. The
parameter ©; = [0y, Oy --- 047 € R% is the
uncertain constant parameter vector satisfying

0,06 é {[911 921-~-9qll]T c R%: gjl >0,
q1
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j=1

Consider the following stabilizing dynamic output-
feedback controllers

- {kkz =Apx + By
I

7l:172a"‘7L 5
w; = Cyxiq + Digy: (5)

where xy; € R™ is the state vector of the dy-
namic output-feedback controller corresponding
to the Ith mission. Denote this controller by

K, — {Dkl Ckl}

6
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Furthermore, denote
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Then, the closed-loop systems IT; (I =1,2,---, L)
are described by

%ert| [Aeu(&, 01, Kp) B2i(€,01) Boci(€,01) |[%cu
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The design objective is to optimize the aircraft
parameters subject to the existence of a set of
stabilizing dynamic output-feedback controllers as
in (5) satisfying the mixed Hs/H closed-loop
performance requirement. In other words, we seek
to solve the following optimization problem:

maximize c£ subject to

Mgy (8)]]2 <21, [Ty, (8)] [0 <2, (8)
K ek,, €€, 1=1,2,---, L

where ¢ = [c1ca-+-¢,] with ¢; > 0 (¢ = 1,2,-- 1)
is a known constant vector, and Il,, w,, (s) and
II,_,w.,(s) denote the transfer functions of the
Ith closed-loop system of (7). Hence, both the
aircraft parameter £ and controller parameters K;
(I = 1,2,---,L) are taken into account in the
optimization problem (8).

3. INTEGRATED AIRCRAFT/CONTROLLER
DESIGN OPTIMIZATION

Lemma 1. (Zhou and Doyle, 1998) Consider the
closed-loop systems II; (I = 1,2,---,L) as in
(7). For given scalars vy > 0 and v; > 0, ] =
1,2,--+, L, we have that ||II,,w,, (s)||2 <v; and
T, wo. (S)|loc < v if and only if there ex-
ist symmetric positive-definite matrices Yoo €
Rutne) X (ni+nr) gnd Yo € R (u+ne) X (ni+ng)
and Q; € R™w2xmw2r (] =1 2 ... L), controller
parameter matrices K; (I = 1,2,---,L) as in (6)
and an aircraft parameter vector £ € = such that
the following matrix inequalities are satisfied.

A (6,01, K1) Yool . 1
+Y o1 Acn(§, 01, K)
<0 (9
BL,(&,0) Yo —mI * ©)
Cooei (€, K7) 0 —yI]
Aeri(6,01,K) Yo
+Y21Acu (€, 01, K) 0 (10)
Caen(§, K1) —I |

Y2:B2:(£,01) Yy

trace(Qq) < v; (12)
1=1,2,---,L

Q iy ]>0(11)

Note that here * denotes symmetric entries of a
symmetric matrix. It is applicable to the rest of
this paper.

Remark 1. Lemma 1 gives a necessary and suf-
ficient condition to solve the integrated air-
craft/controller design problem with mixed Hy/H o
performance requirement. As &, Ya;, Yoo, Q; and
K; (I =1,2,---,L) are variables, the conditions
(9)-(11) are not LMIs.

Lemma 2. (Projection Lemma)(Apkarian, et al.,
2001): Given a symmetric matrix ¥ and two
matrices P and Q, there exists an X such that
the following LMI holds:

¥+ PTXTQ+QTXP <0 (13)

if and only if the following projection inequalities
are satisfied

NEBNp <0, NjUNG <0 (14)

where Np and Ng denote arbitrary bases of the
null spaces of P and Q, respectively.

According to Lemma 2, the inequality (9) is equiv-
alent to
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where Noop; and Nooq are the null spaces of
matrices [C;(§) 0 0] and [B](£,0;) 0 DL,], re-
spectively, and the inequality (10) is equivalent to
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where Nap; and Naq; are the null spaces of ma-
trices [C;(€) 0] and [B]' (¢, ©;) D3], respectively.

It is noted that the controller parameter K; is no
longer included in the inequalities (15)-(18) which



are equivalent to (9)-(10) in Lemma 1. Hence, the
integrated aircraft/controller design optimization
problem can be separated into the optimization
problem of aircraft parameter vector £ and that of
controller parameters K; (I = 1,2,---,L). In the
following, the aircraft parameters and controller
parameters are individually optimized.

3.1 Sub-Optimization of Aircraft Parameter Design

Before presenting the main result, partition Y
and Y_! as in (15) and (16) into

S lN l- 1 R lMool
YOO = -t o0 7Y- = x 19
! lNZ;l o | Yo" ML, S0 |1
and denote
IR | Set I
Zoo1= s Lisoa1= 20

Assuming that the matrix M, is invertible, per-
forming a congruence transformation with Z..q;
on Y > 0, we obtain

TSN |
l I Phwz] >0 (21)

Similarly, partition Yg; and Y;ll as in (17) and
(18) into

Sa; N _ Ry M
Y2l: [ 2] 2] ] , Y2l1: l 2] 2] ] (22)

N2, #a2 M1, $2
and denote
IR Sy 1
ZzuZlO Mzlel]’ Za21= [Nzgll 0] (23)

Assuming that the matrix My, is invertible, per-
forming a congruence transformation with Zgq; on
Y > 0, we obtain

Sy I
l : Rm] >0 (24)

As aresult, the LMI Yo, > 0 is equivalent to (21)
and Yg; > 0 is equivalent to (24).

Substituting the partitions (19), (22) and (2) into
(15)-(18) and introducing slack matrix variables
Eoi, Hei, Eo; and Ho;, we have the following
Theorem 1. Denote
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Theorem 1. Consider the closed-loop systems II;
(Il =1,2,---,L) as in (7). For given scalars y; >
0and vy, > 0 (I = 1,2,---,L), if there exist
an aircraft parameter vector £ € =, symmetric
positive-definite matrices So; € R™*™, Ry €
Rnlxnl, Sy € Rnlxnl, Ry € R™>™ and Q2l S
R7w2tXw2t and matrices Eoor, Hoor, Eg; and Hy,
(I =1,2,---,L) such that for all I = 1,2,---,L
andj =12, q,

D €D opiji(Sosots Boot)<—Aoop0ji (Soct Eoot, 1)
i=1

(25)

E £iD00Qiji (Root, Hoot)<—Aseqoji (Roots Hoots Y1)
im1
(26)



ZfiAzpijz(Szh Eq))<

i=1

Z &iA2qiji(Rar, Hy) <—A2qoji(Rai, Hay)  (28)

i=1

—A2poi(S2, E2)  (27)

Z &iA2i51(S21)>—N2051(S21, Rar, Qi) (29)

i=1
Seor I Sor I

l I Rool]>0, lI R2l]>0 (30)

trace(Qp)<v (31)

then there exist dynamic output-feedback con-
troller parameters K; (I = 1,2,---,L) as in
(6) such that the closed-loop systems II;, (I =
1,2,---,L) in (7) are robustly stabilized and sat-
isfy ||Hzoolwool(8)‘|oo <7 and HHZ21W21 (S)H2 <y
(1=1,2,---,L).

Based on the solution of the generalized eigenvalue
problem (GEVP) (Gahinet, et al., 1995), the
solution for sub-optimal aircraft parameter &,p:
is given as follows.

Step 1 Optimize a single aircraft parameter
while maintain the other aircraft parameters
as the mominal ones, this is, if only opti-
mize the aircraft parameter &;, then choose
E=100---0¢& 0 --- 0]. For given closed-
loop Hy performance upper bounds o (I =
1,2,---,L) and Hs performance upper bounds
v (I = 1,2,---,L), minimize X\; over S,
Rooi;, Ecot, Hoot, 11, S21, Rai, E2;, Hay and
Q (1 =1,2,---,L) subject to LMIs (30)-(31)
and

Aocpoji(Sosts B, M) < 0 39
Asoqojt (Risot; Hoor,7) < 0
Azpo;i(S21, Ez) <0
Azqoji(Rai, Hyy) <0
Az01(S21, Ra1, Q1) > 0

Yi<Yio0

33
34
35

(
(
(
(
(36
(

)
)
)
)
)
)
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Azqiji(Rar, Hap)<—A;Azqoji(Rai, Hay)
A2;51(S21)>—Ai A20;1(S21, Rar, Qi)
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ool)
)
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)
)

Then we have \iopt and the optimized aircraft
parameter Eiopt = 1/Niopt. Repeat the above
optimization procedures, we have all &opt, © =
1,27

<=AiAep0ji(Socts Boot, 1)

Step 2 L@t& = [Clglopt C2§2opt Crgropt]gc
where & is a variable, &op(t = 1,2,---,7) are
obtained from Step 1 and ¢ = [c1 ¢3 -+ ¢
with ¢; >0 (i =1,2---,r) is the given penalty
vector as in (8). For given closed-loop H
performance upper bounds o (I = 1,2,---,L)
and Hs performance upper bounds v, (I =
1,2,---, L), minimize A, over Seoi, Root; Eool,
Heooi, 71, S2i, Ray, Ez2p, Hyy and Q; subject to
LMIs (30)-(37) and

Z CigioptAooPijl (SOOI7 Eool)
=1
<_)\cAooPOjl(Sool7 Eool7 ’)/l)
r

Z CiéioptAooQijl (Rool) Hool)
i=1
<=AeAsqoji(Root, Hoots 1)

Zcifiopt A2piji(S21,E21) <-AcA2poji(S21,E2)
im1

Zcifiopt A2qiji Rz, Ha) <—AcA2qoji Rz, Ha))
im1

Z Ci&iopt A2i41(S21)>—AcA2051(S21, Rai, Qp)

=1

l:172>"'7La j:172>"'QI

Then we have &copt = 1/Acopt and the sub-
optimized atrcraft parameter vector Eopr =
[Clglopt C2£2opt Crgropt]gcopt-

Remark 2. Tt is noted that &, in Step 2 is a com-
mon factor of the aircraft parameter vector £ that
is to be optimized. The scalars ¢; (i = 1,2,---,7)
are used to penalize different aircraft parameters
according to the design requirement, while the op-
timal solutions &;ops (2 = 1,2, - -, 7) obtained from
Step 1 are used to normalize the corresponding
aircraft parameters &;(i = 1,2,---,r) so that the
designed aircraft parameter vector &,,: is closer
to the optimal one. It is noted that the above
proposed approach can not guarantee to achieve
the optimal aircraft parameters. Once the sub-
optimal parameter vector ., is obtained, the
optimal dynamic output-feedback controllers K;
(Il =1,2,---,L) as in (6) can be solved by using
the following approach.

3.2 Optimization of Controller Design

Performing congruence transformation with diag
{Z 11,1, 1} on (9) and with diag{Z21;,1} on (10),
respectively, and partitioning Zo1;, Zoo2i, Zi21;
and Zag; as in (20) and (23), we have the following
equivalent matrix inequalities

q
Zﬂoojl(AkuBkz,Ckz,Dkz)ejl <0 (38)
=1

q

Zﬂ2jl(Akl7Bkl7Cklkal)ejl <0 (39)
j=1



where Qi (Aki, Bk, Cxi, D) =

Q;jl(Bthkl) * * *
ﬂgijl(z%kz,Bkz,Ckz,Dkl) ﬂiile(Ckz,Dkz) * %
Boojl(goznt)sool Boojl(fOpt) S
CoottDociDwiCi(€opt) 252(CrasDia) 0 —y1
and Q2;;(Axs; Bk, Ca, D) =
Q34 (B, D
2j1(Bxi; D) * *
Q3% (Awt, B, Cit, Diat) 9257(Ci, i) *

Ca; + Dg;DyCi(€opt)
with

Q) (Bii, Dia) = SxiAji(€opt) + Ay (€opt)Sx
+CF (€opt) [NxiBra+S5B;i (€opt) Dit]”
+[NxiBri+SxBjji (§opt ) D] Ci (§opt)

Q2 (Axi, But, Cia, Diat) = Rt Cf (€opt) BN,
+MxlC£lB£ (goznf)sxl + MxlAglNzl
+B;t(€opt) D1 Ci(Eopt) + Rt AT (€opt) St
+Aj1(Eopt) + R Cf (€opt) Dy BT (€opt) S

022/ (Cut, Dit) = Aji(€opt) Rt + Rt AT (€opit)
+B1(éopt) [ClaM L 4D Ci (€opr) Rt

+[Cru ML ADwiCi(€opt) Roct] B (€opt)
257(Cit, Di) = CxRux

+ D5 [ClaM L 4D Cr(€opt )R]

Ny = (I - SxuRy)(MHT (40)

xl

25/ (Cw, Diy) 1

where the subscript x is either 2 or co and

A=A GiAij, Bu(O=Boj+Y &iBiji
=1

i=1

According to the above congruence transforma-
tion, the mixed Hs/Ho, conditions (9)-(12) in
Lemma 1 are equivalent to the conditions (38),
(39), (29)-(31). Unfortunately, for the known air-
craft parameter vector &y, the conditions (38),
(39), (29)-(31) are still nonconvex. However, they
are LMIs with respect to the control parameters
Akla Bkla Ckla Dkl if the matrices Sool> Roola
Moi, Noois Sai, Rar, Mg and N, are fixed. Here
we use the approach proposed by Theorem 1 to
solve for Seo;, Rool, S2; and Ry;. As Theorem 1
provides a sufficient condition for Lemma 1, the
solutions of Theorem 1 must satisfy the conditions
of Lemma 1, namely, the matrix inequalities (38),
(39), (29)-(31).

Hence, an approach for the optimal dynamic
output-feedback controllers Kjopt I = 1,2,---, Lis
proposed as follows: For chosen invertible matrices
My, and My, and known symmetric positive-
definite matrices Soo;, Roo, S2; and Ro; obtained
from Step 2 of the aircraft parameter optimization

in Section 3.1, the matrices N; and Ng; can be
obtained from (40). For the given scalar v, > 0,
find the matrix variables Ay;, By;, Ck;, Dx; such
that

Qooji(Axs, By, Ciy, Dig) <0 (41)
Q2;i(Axi, B, Cii, Dig) <0 (42)
j: 1727"'7(11

Then we obtain the dynamic output-feedback con-
troller parameters Aklopta Bklopt7 Cklopt7 Dklopt~

4. CONCLUSIONS

This paper proposes a sub-optimization approach
for integrated aircraft/controller parameter de-
sign. Based on the projection lemma Lemma 2,
the design of aircraft parameters can be sepa-
rated from the design of dynamic output-feedback
controller parameters. As the sub-optimization
approach is based on linear matrix inequalities,
the computational amount required by the pro-
posed approach is greatly less than that required
by the iterative-LMI-based approaches, especially
when disturbances, polytopic uncertainties, multi-
mission operation and mixed Hy/H., perfor-
mance requirement are considered simultaneously.
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