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Abstract: In this paper, we study the problem of robust regulation for a class of linear
uncertain systems which admit the so-called Recursive Augmentation Structure. This
structure is known to be quadratically stabilizable and is a rich class, including lower-
triangular and upper-triangular structures (which correspond to the so-called back-
stepping and forwarding in nonlinear control) as special cases. The results of this
paper provide conditions on the Recursive Augmentation Structure under which robust
regulation can be achieved. Our work differs from existing work on robust regulation for
linear systems in the sense that we allow large uncertainties in the system. Our work is
also expected to be useful in searching for possible new structures for regulation control
of nonlinear system€opyright(©2005 IFAC
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1. INTRODUCTION the fact that a lot of results are available for robust
stabilization of linear systems. There is no general
approach for generalizing robust stabilization results
to robust regulation. Although the internal model prin-

Regulation control is one of the key problems in con-
trol because many control systems are designed fo o L .
the purpose of tracking certain reference signals. ForClple is still valid in the sense that robu;t regulation
linear systems with a precise model, this problem was amounts to rqbust stgbmzatlon of the given syst.em
thoroughly studied in the 1970’s and 1980's under the augm_ented_ W'th an internal mode_l, the underlyln_g
framework of internal model principle, and necessary t_ech_mcal d|ff|culty 1S that the resulting robust sta_b|-
and sufficient conditions for regulation are well under- !lzat|0n may be difficult to solve. In general, the ong-
stood: see, e.g., (Davison 1976) and (Francis 1977).mal sys_tem and the augmented system have different
The concept of robust regulation has been around foruncertainty structures.

a long time. Robust regulation requires the existencelin this paper, we study the robust regulation problem
of a fixed controller which yields regulation for all for a class of linear uncertain systems which admit
admissible uncertainties. By a simple continuity argu- the so-calledRecursive Augmentation Structufhis
ment, it is well known (Davison (1976) and Francis structure was first proposed by Barmish (1982) where
(1977)) that if a “fixed” linear system is regulated by it was referred to as thehuffle structureThis structure

an internal model-based linear controller, the regula- was later called thantisymmetric stepwise configura-
tion property is preserved when the system parametersion by Wei (1990) where it is proved that this struc-
are slightly perturbed. ture is quadratically stabilizable via state feedback and
a recursive construction algorithm is provided for sta-
bilizing controllers. Because this structure is obtained
via a sequences of the so-callep augmentations

However, it is somewhat surprising that not much is
known about robust regulation control for linear sys-
tems with large parametric uncertainties in view of



anddown augmentationsve call it a Recursive Aug-
mentation Structure. The structure includes the lower-
triangular and upper-triangular structures (which cor-
respond to back-stepping and forwarding in nonlinear
control) as special cases.

The aim of this paper is to generalize the quadratic
stabilization results of Barmish (1982) and Wei (1990)
to robust regulation for the Recursive Augmentation
Structure. The regulation controller employs dynamic
state feedback and is based on the internal model
principle. We provide two main results. The first one
deals with some necessary conditions for robust regu
lation, whereas the second one provides a number o
selections for the output which guarantees a solution
to robust regulation.

2. RECURSIVE AUGMENTATION STRUCTURE

In this section, we introduce the Recursive Augmenta-
tion Structure initially introduced in Barmish (1982)
and review the results in Wei (1990) on quadratic
stabilization of this structure.

Consider the following linear time-invariant uncertain
systemz (A(q),b(q)):

X(t) = A(Q)x(t) +b(q)u(t) 1)

wherex(t) € R"is the statey(t) € Ris the controlg e
RP is the model uncertainty restricted to a prescribed
bounding seQ.

The problem ofquadratic stabilization (via linear
feedbackyequires finding a linear feedback controller
u(x) = kx for some row vectork € R", ann x n
positive-definite symmetric matriR and constant >
0 such that
L(x,q) = X[A'(q)P+ PA(q)]x+ 2XPb(q)u(x)
< —ox'x

@)

holds for allx e R" andq € Q. Itis clear that_(x,q) is

the Lyapunov derivative associated with the quadratic
Lyapunov functionV/ (x) = X' Px The matrixP is called

the Lyapunov matrix and its inverse is called the
inverse Lyapunov matrix

The class of uncertain systeriigA(q),b(q)) studied
in (Wei 1990) admits the so-callestandard form
with structural independent uncertaintiés standard
formfor short), which is defined below:

Definition 1. Take the(n+ 1) x (n+ 1) matrix

A(Q) b
M@ = (my(@} = | A ° |
Then, the uncertain system(A(q),b(q)) is said to
be in the standard form if for every entrg;(q), the
following properties hold:

3)

e If itis a superdiagonal entry, i.ej,= i+ 1, then,
it is an uncertain term which varies indepen-
dently in [[ij,r_ij], where either;; > 0 or rij <0,

i.e.,mjj is bounded and bounded away from zero.
For notational simplicity, these entries will be
denoted by.

If it is a non-superdiagonal entry, i.e},# i +

1, then it is either zero or an uncertain term
which varies independently in;;, rij] for anyr;;
andrij, i.e., |mj| is either zero all the time or
varies in an arbitrarily large but bounded region.
Similarly, these entries, if not identically zero,
will be denoted by.

Definition 2. An uncertain systen®(A(q),b(q)) in

fthe standard form is said to admit &ecursive Aug-

mentation Structurd its corresponding matri®(q)
as in (3) satisfies the following condition: pf> k+ 2
andmyp(q) # 0, thenmyy(q) =0forallu>v,u< p—
landv<k+1.

The following key result is cited from (Wei 1990):

Lemma 3.SupposeZ(A(q),b(q)) is in the standard
form. Then, it is quadratically stabilizable if and only
if it admits the Recursive Augmentation Structure.

Definition 4. Let 2(A(q),b(q)) be n-dimensional. A
down-augmentedystemZ* (A (q),b*(q)) is given
by

b(q)

*

] L bt (q) = m eR™L,
4)

wherex and© are uncertain entries as defined earlier.
Similarly, supposex(A(q),b(q)) is in the following

form:
A - | }

for some(n—1) x (n—1) uncertain matriA~ (qg) with
n > 1. An up-augmentedystem> ™ (A (q),b™(q)) is

0 A (g)

b(q) (5)

given by
00 *x---% 0
AT(q) = [0 0 A (q) ] ; b (a) = {b(q)} (6)

The systenmz(A(q),b(q)) will be referred to as the
generating system

The Recursive Augmentation Structure is constructed
via a sequence of up and down augmentations, origi-
nated from a scalar system

)

where ax is either 0 orx. The system (7) will be
referred to as thgenerating system

Xk = aXy -+ Ou

3. REVIEW OF LINEAR REGULATION

Research on regulation problems was very active in
the 1970’s; see, for example, Davison (1976) and



Francis (1977) and their bibliographies. The main of (10). In particular, it does not depend anbut
results that are pertinent to our paper are summarizedt may depend orQ. The robust regulation problem

below. requires stabilization and regulation to be achieved for
Consider an uncertain LTI system all g€ Q. In this paper, we only consider dynamic state
feedback (10).

ég% ; E?:gcf)\lx: (Ejb:g;)uui((f :665))\)/ (8) Recall f[hat stgbilizability is a necessary c_ondition for

regulation. It is natural for robust regulation that we

wherex € R" andu € R are as beforey ¢ R™ is only consider uncertain systems which are robustly
the reference signak € R is the regulation error,  stabilizable and are so via state feedback because (10)

A,b,c,d,E andF are given, and thé terms represent s the required control law. Motivated by the above,

perturbations with arbitrarily small sizes. Assume that e study uncertain systems (11) which satisfy the

the reference signal is generated by following conditions:
V=~Av 9) i) (A(q),b(q)) admits the Recursive Augmentation
whereA; is a known matrix with eigenvalues in the ~ Structure;
closed right-half plane. The reference model is driven )
by some nonzero initial valug0). e=c(a)x+F(q)v 12)

for somek, where
The regulation problem is to design a (fixed) linear

feedback control law such that the closed-loop system (@) = [ # -oe % Bk 4] (13)
is asymptotically stable and the regulation error ap- with 8 being at thekth entry.
proaches zero asymptotically, regardless the perturba-iii) The pair(A;,F(q)) is detectable for atj € Q and
tionsdA, b, etc., provided they are sufficiently small. A1 has all the eigenvalues in the closed right-half
In this paper, we considelynamic state feedbadle- plane.
fined by . Without loss of generality, we assume tlatis in the
z = G1z+Gye (10) following f )
U = Kix+ Kz ollowing form:
The well-known internal model principle below as- c10 ..0
serts that the regulation problem is essentially a sta- 001 O
bilization problem. A= | - 0 (14)
Lemma 5.(Francis (1977) and Davison (1976)) Given 00.. 0 1
the system in (8) and reference model in (9), assume, ap 0z ... Om-1 Om
without loss of generality, thatA,b) is stabilizable.  Accordingly, we choose the internal mode;, G,)
Then, in (10) to be in the controllable canonical form:
e The necessary and sufficient condition for solv- n =2
ing the dynamic state feedback regulation prob- _ (15)
lem is that the eigenvalues 8§, o(A;), do not Im-1 = Zm
overlap with the zeros of systeR{A, b, c,d). Zn = zz+---+0mZm+e€

e Under the condition above, then a regulating con-
troller (10) contains amternal modebf the ref- ~ Theorem 6.Suppose the regulation erret) takes
erence signal, i.eg(A;) € 0(Gy) and (Gy,Gy) the form (12) and thatA(q),b(q)) admits the Re-
is a controllable pair. Further, with any internal cursive Augmentation Structure. Then, the following
model, the controller regulates the system if and results hold for dynamic state feedback robust regula-
only if it stabilizes the system. tion:

e If k> 1, then a necessary condition for ro-
bust regulation isa; # 0, even whenck(q) =
[0---010--- 0] (i.e., no uncertainty).

e Robust regulation can be achievedcif 1 and
aj=0foralli=1,--- ,m.

4. ROBUST REGULATION

The robust regulation problem is very similar to the
regulation problem except that the model uncertainties
(0A,db, etc.) are now allowed to be large. For this

reason, we rewrite (8) as Proof: Forthe f(irs;t cfase‘; taka((?) =[0---01 Oh 0,
o i.e.,e=xc+ F(q) for k> 1. If a; =0, we choose
X(t) = Al@x+b(qu+E(q)v (11) a special reference signat = 3;v. =0,--- ,v; =0,

&(t) = c(a)x+d(au+F(ayv where 3 is a nonzero constant. Certainly, this sig-
whereq € Q representing constant uncertain param- nal fits the reference model because = 0. Since
eters,A(+),b(-), c(g), d(q), E(q) andF(q) are con-  (A1,F(q)) is detectablel- (q)v must also be a nonzero
tinuous functions of}, andQ is a given compact set constant. Take
called thebounding setThe controller takes the form Xk—1 = OX (16)



i.e., set possible * terms to zero. Suppose on the
contrary that robust regulation is achieved. Than,
should approach to-F(q)v asymptotically, i.e., a
nonzero constant. This implies that ; would have
to approach to infinity asymptotically. Thus, we have

unbounded state for bounded input, i.e., the system is

not stable. By this contradiction, we conclude that the
system cannot be robustly regulated.

For the second case, we simply amalgamate the inter-

nal model (15) with (11). By setting= 0, we obtain

Z = D

Zn-1 = Zm (17)
Zm = OXptoRXp oo kX

X = A(Q)x+b(g)u

It is clear that the system above is obtained by up-
augmentations fronfA(q),b(q)), so it admits the Re-
cursive Augmentation Structure becauyg€q),b(q))
does so. Hence, it is robustly stabilizabletby Kix+
K>z By the internal model principle, this controller
also robustly regulates the system (11). [ |

It can be verified that the above admits the Recursive
Augmentation Structure. Therefore, there exists a ro-
bust stabilizing controlleu = Kyx+ Kz According

to the internal model principle, this controller will also
robustly regulates the system.

For the second case, we combine the generating sys-
tem (7) and the first series of down-augmentations (if
any) before up-augmentations as follows:

X« = O

. . 20
Xij—1 = X1+ % Xy j—1 + O | (20)
Xerj = *X+-o-kXepj+6u

for j > 0. Note that ifj = 0, then down-augmentations
are void, i.e., augmented systefA(q),b(q)) starts
with up-augmentations. Also note that in the fijst
lines above, they term does not appear on the right
hand side. This is a requirement for the subsequent
up-augmentation(s); see (6).

Define
Xic = 01121 + X (21)

Combining (20) with (15) and replacing by x gives

Theorem 7.Suppose the regulation erre(t) takes the following amalgamated system:

the form (12) and thatA(q),b(q)) admits the Recur- 2 = 2
sive Augmentation Structure generated from the gen-
erating system (7), i.e., the regulated state variable is zp-1 = zy
the variable of the generating system for the Recursive  zy = O2Z2+ -+ OmZm+ Xk
Augmentation Structure. Then, the following results X = 0012 + Oxki1 (22)
hold for dynamic state feedback robust regulation: X1 = *Xkp1+ OXcpo
(i) Robust regulation can be achievedki& 1 (i.e., :
(A(Q),b(q)) involves down-augmentations only) ~ ri=1 = Xt X1t sy
Xerj = *(—012Z13+Xc) 4+ Xy j 46U

andcg(q) =60 --- 0].
(i) Robust regulation can be achieved kif> 1, Note that in the 5th line above, the teamz, should

(q)=[0---010--- 0] anday # 0. be replaced byiixk if m= 1. Anyway, the structure
(iii) As a special (but interesting) case of (ii) above, above involves only down-augmentations.

robust regulation can be achievedif # 0, k =

n—1 with cc(q) = [0 --- 0 1 0 or k= n with

c(@) = [0 -+ 0 1], and the systeniA(q),b(q))

Now consider the next series of up-augmentations
Xeoi = OXiiq1 + #Ximip2 4+ Xieq |

involves up-augmentations only, i.e., _ (23)
. X1 = O+ #Xiep 1+ -+ 4 *Xiey |
X1 = OXp+*Xz—+---+*Xn .
for somei > 1. We have
X2 = OXno14#% (18) Xeoi = Oi1 + o Xuig2 + o
X1 = B o (=021 X) + K (24)
Xn = #Xp+---+#X,+6u
X1 = —01021 +6x¢

Proof: All we need to show is that in either case Stacking them on top of (22), the amalgamated sys-
above, the amalgamated system, consisting of (11) andem also admits the Recursive Augmentation Struc-
(15) with v = 0, admits the Recursive Augmentation ture. This process can continue until all state vari-
Structure. The first case is easy to check because th@blesxy,--- ,x, are exhausted. Hence, the Recursive
amalgamated system (with= 0) is given by Augmentation Structure is preserved, and like the first
case, robust regulation is achieved by sameKix+

2 =12 Koz
Zn-1 = Zm The third case is a special case of (ii) because the
Zn = 0121+ -+ 0mZm+6x1 (29) system (13) can be viewed as augmented from ei-
X1 = 6x ther x, with n up-augmentations ok,_; through

. a down-augmentation first followed by — 1 up-
Xn_1 = *Xg+---*X,+6u augmentations. [ ]



Remark. We point out that two results in Theorem 7 Then, any up augmented syst&h = (A" (q),b"(q))
have counterparts in nonlinear regulation. These areis quadratically stabilizable via the following inverse
Case (i), which can be found in Chen and Huang Lyapunov matrix

(2002) and Isidori (1997), and Case (iii) wikh= n, Tl T

which can be found in Marcoli, Isidori and Serrani St = 0+YeS e _\éco , (29)
(2001). Roughly speaking, the nonlinear counterparts Yo
of these results allow the * arfititerms to be replaced whereco=[100... 0]7, s is any positive number,
by nonlinear functions (but with some restrictions); andyis chosen to satisfy

see the references above for details. However, no bt (ST(AT(q))T +AT(g)ST)(b")] <0, VgeQ,
nonlinear counterparts exist so far for the more general (30)
results in Theorem 7. [ ] whereb?! = I, 0].

5. CONTROLLER DESIGN AND ILLUSTRATIVE  Controller Design Algorithm: We assume that the
EXAMPLE conditions in Theomrem 7 are satisfied.

Step 1: Form the amalgamated systemas in (22)
The results given in Theorem 7 address the solvabil-  hich consists of an internal model of the reference
ity of robust regulation. This section discusses the  gystem with the given uncertain systeén Initial-
controller design issue. We will introduce a design  jze 5, to be the generating system f& choose
algorithm and demonstrate it through an example. the corresponding inverse Lyapunov matfx =

Recall that we reduce a robust regulation problem to 1 and select the corresponding controller gign

a robust stabilization problem via the internal model ~ that(quadratically) stabilizes the generating system.
principle and that the Recursive Augmentation Struc- ~Denote by2j,i = 1,2,---,n, the sequence of aug-
ture is preserved in the process. Hence, it is sufficient Mented systems obtained recursively fragwhich

to explain how to design a quadratic stabilizer for an  leads to the final amalgamated system, kg~ =.
Recursive Augmentation Structure. This is done using Step 2: For i = 1,2,....n, design the inverse Lya-
the three results in the theorem below. The first two ~PuUnov matrixS for the augmented systelm using
results are from Barmish (1985) and the third one from  Theorem 8. Then, s&= Sy,

Wei (1990). Step 3: Design a quadratic stabilizer farusing The-
orem 8.
Theorem 8.Given ann-th order uncertain systel= lllustrative Example: The uncertain syster in this

(A(9),b(q)) with b(q) = [0 0 ... 0 8]T, continuous  example is given by
A(q) and a compact bounding $@t it is quadratically

stabilizable if and only if X1 = Xz +02X3

- - 5(2 = 61X3
b (SA () +A(@)S)by <0, VgeQ,  (25) %3 = O1%q + Bu
whereb, = [I,_1 0O]. If the condition above holds, y =X,
then a stabilizing controller is given by whereo € [-0.2, 0.2] and6; € [0.8,1.2] fori = 1,2.
K— fyng‘1, (26) The outputy is required to track a sinusoidal signal
generated by
whereby =[00... 0 1]T andyis any scalar satisfying Vi =V
b, Q(q)b] b, Q(q)b] V2 = v
T (@ T 7o (qT) ° | <0, vqeQ, (27) w = gvi
bo Q(q)b; by Q(q)by —y8 . . ot .
with g to be specified. It is verified thaf is a Re-
whereQ(q) = SA' (q) +A(Q)S cursive Augmentation Structure with the generating
Suppose above is is quadratically stabilizabls~ ~ SYStem o6
2=01

S’ > 0 is the corresponding inverse Lyapunov ma- _ _
trix and k is the corresponding controller gain. Then, and the sequence of augmentations being down-up.
any down augmented systeEt = (AT (q),b"(q)) This falls into Case (iii) of Theorem 7, therefore robust

is quadratically stabilizable via the following inverse regulation can be achieved. The amalgamated system

Lyapunov matrix is given by
s sk X1 = Xp+02X3
S = {ks $11+kSK ] (28) a-=2z
. o , = -z+x—-gtvs
wheresy;1 |s_an3+/ positive number. _The correspondlng X = 01%3
controller gaink™ can be found using the first part of X3 = Ol1X1+ 6oU

this theorem. Following Step 1 in the Controller Design Procedure,

Supposex above is is quadratically stabilizabl8— definingxy = —z1 +Xo, we transform the system above
S > Ois the corresponding inverse Lyapunov maitrix. into = below:



Xl = Zl + )?2 + GZXS 1o — Reference

2 =2
22 = )?2 - g(t)V]_ 1 ; A i
X2 = —22+01X3
X3 = O1X1+ 62U,

05

which we need to stabilize quadratically (whenis
set to zero). It is easy to verify that the system above o
admits the Recursive Augmentation Structure and the
sequence of augmentations is down-down-down-up .| |
with the generating system being

7 =2, 2

which is easily stabilized with any controller gain
ko < 0 and inverse Lyapunov matrix (scalar in this ™ s w0 1 2"I'Oime(seé)5 o % w0
case)S > 0. Next, we follow Step 2 in the Controller

Design Algorithm obtain the inverse Lyapunov matrix Fig. 1. Simulation of the Illustrative Example

Sfor . The result is given by

replaced by appropriate nonlinear functions) and sim-

26469 —100 O 0 0 ilar constraints on the regulated output as in Theo-
B -100 411 -05-1.04 -10 rems 6 and 7 can also have solutions to robust regu-
S= 0 -05 104 -05 -20|. (31 lation problems. This is a subject to be further studied.

0 -104-05 11 -30
0 -10 —20 —-3.0 7408
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In this paper, we have derived a number of results on
the problem of robust regulation for linear uncertain
systems. These uncertain systems are very general and
admit the Recursive Augmentation Structure. On one
hand, our results can be viewed as generalizations of
those in Barmish (1982) and Wei (1990) on quadratic
stabilization to robust regulation. On the other hand,
the results given in this paper can be used to motivate
new structures for nonlinear regulation. Itis likely that
nonlinear systems which admit a generalized Recur-
sive Augmentation Structure (with the * afdterms



