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Abstract: This paper introduces a closed-loop Guidance and Control optimal
algorithm that balances the propellant consumption and the need for collision
avoidance among formation �ying spacecraft. This model-based algorithm is purely
algebraic and computes the spacecraft trajectories from the knowledge of the
formation linearized relative dynamics equations and the formation full state.
Using Pontryagin�s maximum principle, Guidance generates the control inputs
required to obtain the optimal trajectory from the current state until the target
state, and does so for each of a set of regularly spaced time instants. After each
recomputation, Control applies the optimal inputs until the next regularly spaced
time instant, when Guidance updates the optimal trajectory again. Simulation
results for the algorithm applied to a 3-spacecraft formation in GTO are presented.
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1. INTRODUCTION

A current and/or future trend in space science
missions is the usage of several spacecraft �ying
in formation, in order to achieve higher accuracy
in Earth and extra solar planetary observations
or higher region coverage when monitoring sci-
ence data, than what would be possible by using
monolithic platforms. For example, to perform
ground observation at very high spatial resolution
of about 1 meter in the visible spectral band
with a monolithic-mirror telescope, an aperture
of about 30 meter would be required. However,
such a monolithic-mirror telescope would have a
much larger mass and would require the availabil-
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ity of a larger volume to be accommodated in-
side the launcher than a multi-spacecraft solution,
e.g., based on interferometry. This interest re�ects
both in the European and American space pro-
grams, through ESA (e.g., DARWIN, LISA) and
NASA (e.g., Earth Observing-1, Origins�NGST
and TPF) planned or ongoing missions.

This paper concerns the guidance and control of
a 3-spacecraft formation �ying in Geostationary
Transfer Orbit (GTO). More precisely, it concerns
the guidance and control during the Formation
Acquisition Maneuver (FAM), starting at time
t1 and ending at t2. The guidance goal during
FAM is to bring the 3 spacecraft from an initial
randomly dispersed disposition at t1 within a large
sphere, to the desired �nal disposition at t2, which
is a tight formation. This must be performed
while minimizing the propellant consumption of
all spacecraft and avoiding collisions. In this work,



guidance means model-based trajectory planning,
where the control inputs that lead to the desired
trajectory are generated.

In related work (Campbell et al., 2004), a general-
ized planning and control methodology for satel-
lite formations, based on Hamiltonian-Jacobi-
Bellman optimality, is presented. Fuel or time
are minimized, but the control is based only
on a bang-o¤-bang solution, and collision avoid-
ance is not included in the cost function. In
(Tillerson, 2002), linear programming is used to
plan the optimal trajectories, by considering the
linearized version of the relative dynamics equa-
tions in an eccentric orbit. Based on the same lin-
earized dynamics, our algorithm plans the optimal
trajectory using Pontryagin�s maximum principle.
The control solutions are continuous and collision
avoidance is included in the cost function.

2. FORMATION FLYING DYNAMICS

2.1 Reference frames

The following 2 reference frames are considered:

(1) The Inertial Planet Frame (IPQ) is the ref-
erence inertial coordinate system, de�ned by:
� Origin: Earth mass center;
� +�!x IPQ axis: in the equator plane, paral-
lel to the Earth vernal equinox direction;

� +�!y IPQ axis: completes the frame;
� +�!z IPQ axis: from the Earth mass center
towards North.

(2) The Local Vertical Local Horizon frame (LVLH,
see Fig. 1) is used to locate the 3 spacecraft
with respect to the reference orbit:
� Origin: located on the reference orbit;
� +�!x LV LH : completes the right-hand frame;
� +�!y LV LH : is normal to the orbital plane,
opposite the angular momentum vector
of the reference orbit;

� +�!z LV LH : points in the nadir direction.

Fig. 1. LVLH, view from above the orbital plane

Remark 1. The origin of LVLH can be regarded
as a virtual spacecraft placed on the reference

orbit, and experiencing the same perturbations
as the real ones. This virtual spacecraft located
at LVLH�s origin will be denoted by V SC4.

One can obtain the transformation matrix R
between IPQ and LVLH frames using the orbital
parameters right ascension of the ascending node

, inclination i, argument of perigee ! and true
anomaly � (Sidi, 1997, p.24-26):

R = [Rz(! + �)Rx(i)Rz(
)]

24 0 0 �1
1 0 0
0 �1 0

35
The following equivalent identities describe the
transformations between representations of a po-
sition vector �!x in IPQ and LVLH:
�!x IPQ = R�!x LV LH , �!x LV LH = RT�!x IPQ

where RT denotes the transpose of matrix R. For
velocity vectors, the transformation is de�ned by:

�!:
x IPQ =

:

R�!x LV LH +R
�!:
x LV LH

2.2 Relative Dynamics for Eccentric Orbits

The last two orbital parameters are the semi-
major axis a and the eccentricity e. The natural
frequency n of the reference orbit is de�ned by:

n =

r
�

a3
where � = G�mEarth = 3:986�105

km3

s2
:

The orbit�s true anomaly � increases monotoni-
cally with time t and provides a natural basis for
parameterizing the spacecraft motion. Thus, the
di¤erential dynamics equations will be expressed
with respect to �, rather than to t. For elliptic
orbits, the relation between t and � is (Sidi, 1997):

t�tp =
1

n

"
2 arctan
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1�e
1+e
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�

2

!
� e

p
1�e2 sin �
1+e cos �

#
(1)

where tp is the passage time at the perigee.

The motion of each spacecraft in the formation
is described with respect to the virtual space-
craft V SC4, located in LVLH�s origin. There
are 3 spacecraft in the formation and subscript
i = 1; 2; 3 will designate each of them. In the
LVLH frame, the set of linearized �-varying equa-
tions which describes the relative motion of the
ith spacecraft (denoted SCi) in an eccentric orbit
is ((Inalhan et al., 2002), (Tillerson, 2002)):

d

d�

2664
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x0i
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z0i

3775 = Axz(�)
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where Axz(�) is the following 4� 4 matrix:

Axz =

2666664
0 1 0 0

e cos �

1+e cos �

2e sin �

1+e cos �

�2e sin �
1+e cos �

2
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�2 3 + e cos �
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2e sin �
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and Ay(�) is the following 2� 2 matrix:

Ay(�) =

24 0 1
�1

1+e cos �

2e sin �

1+e cos �

35 (5)

Matrices Axz(�) and Ay(�) depend only on �.

xi, yi and zi are the coordinates in LVLH frame of
the relative position vector �!�i of SCi (i = 1; 2; 3)
with respect to V SC4:

�!�i =
�
xi yi zi

�T
(6)

x0i denotes
dxi
d�
, y0i =

dyi
d�

and z0i =
dzi
d�
. The

relative positions xi, yi and zi and the relative
velocities x0i, y

0
i and z

0
i characterize the state of

SCi with respect to V SC4. The relative dynamics
equations (2) describe the in-plane motion, while
equations (3) describe the out-of-plane motion.

fx;i, fy;i and fz;i are the components in LVLH

of the external forces vector
�!
fi , which includes

the control inputs �!ui acting on SCi and the
di¤erential perturbations experienced by SCi:

�!
fi =

�!ui +
X�!w i

The di¤erential perturbations are the relative per-
turbations experienced by SCi with respect to the
perturbations a¤ecting V SC4. There are several
perturbations: J2 e¤ect, third-body (Sun, Moon)
gravitational perturbations, solar radiation pres-
sure, atmospheric drag, micrometeoroids.

In this paper, the closed-loop GC (guidance and
control) algorithm neglects the di¤erential pertur-
bations, i.e.,

P�!w i = 0, since, along the trajec-
tory arc where the maneuver is performed, they
are small for the considered relative distances.
However, when testing the algorithm in a realistic
orbit dynamics simulator, all these perturbations
are present. To take the unmodelled perturbations
into account, as well as the state estimation errors,
the closed-loop GC algorithm is recomputed peri-
odically, and the planned trajectory is updated.

3. MODEL-BASED OPTIMAL TRAJECTORY
PLANNING PROBLEM

During the Formation Acquisition Maneuver (FAM),
i.e., between �1 and �2, with �1=�(t1) and
�2=�(t2) as provided by (1), the trajectory of

each spacecraft must minimize the propellant con-
sumption and avoid collisions. The optimal trajec-
tory planning problem during FAM includes:

� the state equations;
� the initial and �nal conditions;
� the limitations concerning the control inputs;
� the cost function to be minimized.

3.1 State equations

The state equations gather the relative dynamics
equations of all 3 spacecraft. The global state
variables vector is:

X=
�
x1 x

0
1 z1 z

0
1 y1 y

0
1 x2 x

0
2 z2 z

0
2 y2 y

0
2

x3 x
0
3 z3 z

0
3 y3 y

0
3

�T
or, written by components:

X1 = x1, X2 = x01, X3 = z1, : : : , X18 = y
0
3

All control inputs are gathered into vector U:

U =
�
u1;x u1;z u1;y u2;x u2;z u2;y u3;x u3;z u3;y

�T
By putting together the linearized �-varying rel-
ative dynamics equations (2) and (3) for all 3
spacecraft, the state equations of the model-based
optimal trajectory planning problem are:

dX

d�
= A(�)X+B(�)U = f(X;U; �) (7)

where:

A(�) =

26666664
Axz 04�2 04�4 04�2 04�4 04�2
02�4 Ay 02�4 02�2 02�4 02�2
04�4 04�2 Axz 04�2 04�4 04�2
02�4 02�2 02�4 Ay 02�4 02�2
04�4 04�2 04�4 04�2 Axz 04�2
02�4 02�2 02�4 02�2 02�4 Ay

37777775
with Axz expressed by (4) and Ay by (5). From
(2) and (3), it is obvious to express B(�).

3.2 Boundary conditions and control inputs limitations

The optimal trajectory planning problem is stud-
ied between �1 and �2. Both the initial and the
�nal state are given (see Section 4 for an example):

X(�1) = a and X(�2) = b (8)

The control inputs must satisfy the following
constraint inequalities:

umin � jUj j � umax, for j= 1; : : : ; 9 (9)



3.3 Cost function

The cost function must minimize propellant con-
sumption, while ensuring collision avoidance. The
relative distance between SCi and SCj is:

�ij =


�!�j��!�i

=q(xj�xi)2 + (yj�yi)2 + (zj�zi)2

where the relative position vector �!�i is de�ned in
(6). The cost function to be minimized is:

J = Jenergy + Javoidance =

�2Z
�1

L (X(�);U(�); �) d�

=

�2Z
�1

9X
j=1

U2j d� +

�2Z
�1

�
�12(�12��min)2+

+�13(�13��min)2 + �23(�23��min)2
�
d� (10)

where L(X;U; �) is the weight function. The �rst
part Jenergy of the cost function ensures the min-
imization of the overall control inputs between
�1 and �2. Since the control inputs are propor-
tional to the propellant consumption, the pro-
pellant consumption is minimized. By minimizing
Javoidance we ensure collision avoidance.

In the expression (10) of the cost function, �12,
�13 and �23 are weighting coe¢ cients given by:

�ij =

�
0 if �ij � �min
�0 if �ij < �min

for (ij) = (12); (13); (23)

As �ij is null for �ij � �min, this de�nes �min as
the relative distance between spacecraft at which

the collision avoidance term
�2R
�1

�ij(�ij��min)2d�

starts being considered. This is done by setting
�ij=�

0 6=0, with �0 chosen in order to ensure a con-
venient balance between Jenergy and Javoidance.

3.4 Application of Pontryagin�s Maximum Principle

The model-based optimal trajectory planning
problem consists of determining, for �1 � � � �2,
the optimal trajectory Xopt(�) and the associated
optimal control inputs Uopt(�), which:

� respect the state equations (7);
� meet the two-boundary conditions (8);
� satisfy the control inputs limitations (9);
� minimize the cost function given by (10).

This model-based optimal trajectory planning
problem is solved by using Pontryagin�s Maximum
Principle (PMP) (Bryson and Ho, 1975). This
optimization principle introduces 18 co-state (ad-
joint) variables �i, one for each state equation: �i

corresponds to state equation
dXi
d�

= fi(X;U; �),

for i= 1; : : : ; 18. These adjoint variables are re-
grouped into the co-state vector �:

� =
�
�1 �2 : : : �6 �7 : : : �12 �13 : : : �18

�T
By introducing the Hamiltonian:

H(X;U; �) = L(X;U; �) +�T f(X;U; �)

and by expressing the co-state equations as:

d�

d�
= �

�
@H

@X

�T
= �

�
@L

@X

�T
� @f

T

@X
�, (11)

the PMP states that the control inputs which sat-
isfy, for all �1����2, the stationarity conditions:

0 =

�
@H

@U

�T
=

�
@L

@U

�T
+
@fT

@U
� (12)

are the optimal ones, the corresponding trajectory
being optimal as well.

Under the PMP formulation, the stationarity con-
ditions (12) provide us with the optimal control
inputs Uoptj , as functions of the adjoint variables:

0 =
@L

@u1;x
+

18X
k=1

@fk
@u1;x

�k = 2u1;x +
(1�e2)3

(1+e cos �)4n2
�2

) Uopt1 = uopt1;x = �
1

2

(1�e2)3
(1+e cos �)4n2

�2 ,

Uopt2 = uopt1;z = �
1

2

(1�e2)3
(1+e cos �)4n2

�4 , (: : :)

So, the linear relation between the optimal control
inputs and the adjoint variables is:

Uoptj = �1
2

(1�e2)3
(1+e cos �)4n2

�2j , for j=1; : : : ; 9

(13)

By taking into account the stationarity conditions
(13), the state equations (7) at �k become:

dX

d�

����
�k

= A(�k)X(�k)+B
�(�k)�(�k) (14)

where:

B� = �1
2

�
(1�e2)3

(1+e cos �)4n2

�2 24 I�6�6 06�6 06�606�6 I
�
6�6 06�6

06�6 06�6 I
�
6�6
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with:

I�6�6 =

26666664
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

37777775

3.5 Closed-loop GC algorithm

The di¤erential linear two-boundary equations
system to be solved consists of the state equations



(14) and the co-state equations (11). Both initial
and �nal state vectors are known (8): X(�1)=a
and X(�2)=b, but there is no boundary condition
available for the adjoint variables. The di¤erential
linear two-boundary equations system is solved
by using the purely algebraic algorithm derived
below, called closed-loop GC algorithm.

By using the �nite di¤erences expression of the

derivative
dX

d�

����
�k

for a constant step �� in the

true anomaly, and the short notation k instead of
�k, equation (14) becomes:

X(k+1) = [(��)A(k) + I18]X(k)+
�
(��)B�(k)

�
�(k)

where I18 is the identity 18�18 matrix. Finally,
the recurrent expression of the state variables is:

X(k+1) = A(k)X(k) +B(k)�(k) (15)

where A(k) = (��)A(k) + I18 and B(k) =
(��)B�(k). Similarly, the di¤erential co-state equa-
tions (11) of the form:

d�

d�

����
�k

= C(k)�(k) +D(k)

can be transformed in the following recurrent
expression of the adjoint variables:

�(k+1) = C(k)�(k) +D(k) (16)

where C(k) = ��C(k)+I18 and D(k) = ��D(k).

Based on the recurrent expressions (15) and (16),
X(k+1) can be expressed directly as function of
X(0) and �(0), the same for �(k+1):

X(k+1) = P(k)X(0) +Q(k)�(0) + S(k) (17)

�(k+1) = N(k)�(0) +V(k) (18)
where P(k), Q(k), S(k), N(k) and V(k) are given
by the following recurrent sequence:

(1) P(0) = A(0), Q(0) = B(0), S(0) = 018
(null vector), N(0) = C(0), V(0) = D(0)

(2) FOR k=1 TO n�1

P(k) = A(k)P(k�1)
Q(k) = A(k)Q(k�1) +B(k)N(k�1)
S(k) = A(k)S(k�1) +B(k)V(k�1)
N(k) = C(k)N(k�1)
V(k) = C(k)V(k�1) +D(k)

The recurrent sequence above is nothing else
than propagating dynamics between �1=�k=0 and
�2=�k=n. The number of steps n is related to the
true anomaly step �� by: ��= �1��2

n . So, the initial
state bX(�1), provided by an a priori estimation
loop, corresponds to X(0), while the desired �nal
state X(�2) is the same as X(n). In this case, the
expression (17) written for k = n�1 becomes:

Q(n�1)�(0) = X(�2)�P(n�1)bX(�1)� S(n�1)
(19)

where Q(n�1), P(n�1) and S(n�1) are provided
by the recurrent sequence presented above. Ex-
pression (19) is an algebraic system of 18 linear

equations, with unknowns �(0), that is, the initial
adjoint variables at �1. This linear algebraic sys-
tem is easily solved by using the Gauss elimination
method. By using (18), the knowledge of �(0)
provides us with the knowledge of all �(�), for
�1 � � � �2. Finally, by means of the station-
arity conditions (13) of the PMP formulation, all
optimal control inputs Uopt(�) are known. The
optimal trajectories Xopt(�) are known as well,
by considering expressions (17).

The control inputs limitations (9) are considered
only a posteriori. The obtained control inputs
Uopt(�) are just not allowed to exceed the limita-
tions. For example, if control inputs�component
Uopt
j (�) > umax, then U

opt
j (�) = umax is imposed.

4. NUMERICAL EXAMPLE

The closed-loop GC algorithm was tested in a
realistic orbit dynamics simulator, including the
several perturbations listed in Section 2.2. The
results presented below concern a GTO orbit
characterized by the following orbital parameters:

a = 26624:1 km, e = 0:7304, 
 = 0, i = 7�, ! = ��
2
.

The duration of FAM is chosen to be 4 h, in
order not to saturate the control inputs, which
limitations are: umin = 0:1�N, umax = 50mN.
FAM is centered in duration around apogee,
where perturbations are much less signi�cant than
close to perigee. More precisely, FAM starts at
t1= 14416:94 s and ends at t2=28816:94 s. The
passage time at perigee was considered as the
time origin: tp=0. By using the relation (1), the
corresponding true anomalies are: �1=165:5566 �

and �2=194:4434 �.

The initial state X(�1)=a corresponds to a ran-
dom disposition of the 3 spacecraft within a sphere
of 8 km in diameter, with the origin of LVLH
as its center. The velocities included in X(�1)
have random values between �0:1 and 0:1m= s.
The desired �nal state X(�2)=b corresponds to
a tight formation. The goal is to attain, up to
1 h before the next orbit�s apogee, an isosceles
triangle formation with the equal edges of 250m
and with a 120o angle between them. In order to
meet this goal mostly by natural motion, by using
the periodicity conditions (Inalhan et al., 2002)
for the unforced linearized equations of motion,
the required tight formation X(�2)=b at the end
of FAM is obtained. Table 1 presents both a and
b, only for spacecraft i=2.

The closed-loop GC algorithm is recomputed at
regularly spaced time instants (every 70 s during
the last 1

2 h of FAM, and every 400 s for the rest
of FAM), and the planned optimal trajectory is



Table 1. Initial and �nal states, in LVLH

X(�1) = a X(�2) = b

x2[m] 2996.28 -242.10
:
x2[

m
s
] -0.041224 0.000559

z2[m] -866.78 62.35
:
z2[

m
s
] -0.040108 0.012858

y2[m] 296.12 0.00
:
y2[

m
s
] -0.040155 0.000155

updated. Fig.2 presents a projection in the x-
y plane of the 3 spacecraft relative trajectories
in IPQ, where the relative positions are with
respect to V SC4. Fig.3 presents the evolution of
the distances between SC1 and SC2, as well as
between SC1 and SC3. Close to the goal, the
distance between SC1 and SC2 goes down to
50m, then the collision avoidance consideration
together with the natural motion moves away the
two spacecraft to the desired �nal distance. Fig.4
shows the control inputs that have been applied
on SC2, expressed in IPQ. The "reactions" to
micrometeoroids are visible. Also noticeable is
that control inputs are more reactive when the
goal approaches.

Fig. 2. Projection in the x-y plane of the 3
spacecraft relative trajectories in IPQ

Fig. 3. The evolution of the distances between SC1
and SC2 (solid) and SC3 (dashed)

To conclude, the method of regularly recomput-
ing the closed-loop GC algorithm successfully
achieved an error between the obtained �nal state
X(�2) and the desired one b of the order of 0:1m

Fig. 4. SC2 optimal control inputs (u2;x, u2;y and
u2;z) with respect to time t, in IPQ

for position components and of 0:05 mms for ve-
locities, which agrees with speci�cations for this
mission.

5. CONCLUSIONS

This paper introduces a model-based optimal tra-
jectory planning algorithm for formation �ying
spacecraft. This planning leads to trajectories that
require less control e¤ort during the trajectory
tracking phase of the mission. This work is part of
an ESA project where the formation state estima-
tion is also handled by a decentralized estimator,
and where the goal is to obtain simulation results
for a 3-spacecraft formation �ying in a GTO orbit
with the estimator in the loop.
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