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1. INTRODUCTION

Many physical systems have variable structures sub-
ject to random changes, which may result from
abrupt phenomena such as component failures, pa-
rameters shifting, tracking, and time required to
mesure some of the variables at different stages. Sys-
tems with this character may be modeled as hybrid
ones, i.e, the state space of the systems contains
both discret and continuous states. Among this kind
of systems, fault tolerant control systems (FTCS)
have been a subject of great practical importance,
which has attracted a lot of interest for the last
three decades. FTCS have been developed in order
to achieve high levels of reliability and performances
in situations where the controlled system can have
potentially damaging effects on the environment if
failures of its components take place. A bibliograph-
ical review on reconfigurable fault tolerant control
systems can be found in (Zhang and Jiang, 2003).
The dynamic behaviour of active fault tolerant con-
trol systems (AFTCS) is governed by stochastic dif-

ferential equations (because the failures and failure
detection occur randomly) and can be viewed as a
general hybrid system(Srichander and Walker, 1993;
Mahmoud et al., 2003). A major class of hybrid
systems is jump linear systems (JLS). In JLS, a
single jump process is used to describe the random
variations affecting the system parameters. This
process is represented by a finite state Markov chain
and is called the plant regime mode. The theory
of stability, optimal control and H2/H∞ control,
as well as important applications of such systems,
can be found in several papers in the current liter-
ature, for instance in (de Farias et al., 2000; Ji and
Chizeck, 1990).
To deal with AFTCS, another class of hybrid sys-
tems was defined, denoted as active fault toler-
ant control systems with Markovian parameters
(AFTCSMP). For AFTCSMP, two random pro-
cesses are defined: the first random process repre-
sents system components failures and the second
random process represents the FDI (Fault Detec-
tion and Isolation) process used to reconfigure the



control law. This model was proposed by Srichander
and Walker (Srichander and Walker, 1993). Neces-
sary and sufficient conditions for stochastic stability
of AFTCSMP were developed for a single compo-
nent failure (actuator failures). In (Mahmoud et
al., 1999), the authors proposed a dynamical model
that takes into account multiple failures occurring
at different locations in the system, such as in con-
trol actuators and plant components. The authors
derived necessary and sufficient conditions for the
stochastic stability in the mean square sense. The
problem of stochastic stability of AFTCSMP in the
presence of noise, parameter uncertainties, detec-
tion errors, detection delays and actuators satura-
tion limits has also been investigated in (Mahmoud
et al., 1999; Mahmoud et al., 2001; Mahmoud et
al., 2003). Another issue related to the synthesis of
fault tolerant control laws was also addressed by
(Mahmoud et al., 2000; Shi and Boukas, 1997; Shi
et al., 2003). In (Mahmoud et al., 2000), the authors
designed an optimal control law for AFTCSMP us-
ing the matrix minimum principles to minimize an
equivalent deterministic cost function. The problem
of H∞ and robust H∞ control (in the presence of
parametric uncertainties) was treated in (Shi and
Boukas, 1997; Shi et al., 2003) for both continuous
and discret AFTCSMP.
In this paper the problem of dynamic output feed-
back control of AFTCSMP is addressed under a
convex programming approach. We will first de-
rive a testable necessary and sufficient condition
for the exponential stability in the mean square of
the AFTCSMP, under a dynamic output feedback
control, in terms of coupled matrix inequalities and
then we will give an LMI characterization of all
dynamical compensators that stabilize the closed-
loop system in the mean square sense (to the best
of our knowledge, this problematic has not been
yet fully investigated in the field of AFTCSMP).
This problematic was considered by (de Farias et
al., 2000) in the field of JLS. Therefore, the JLS
model assumes perfect regime knowledge, and does
not take into account the location of a fault and the
nature of the faulty components. These assumptions
are too restrictive to be used in practical AFTCSMP
(Mahmoud et al., 2003).
This paper is organized as follows: section 2 de-
scribes the dynamical model of the system with
appropriately defined random processes. A brief
summary of basic stochastic terms, results and def-
initions are given in section 3. The mathematical
formulation of the AFTCSMP is developed in sec-
tion 4. Section 5 derives the necessary and sufficient
conditions for the stochastic stability in the mean
square, and the LMI characterization of the dy-
namic compensators. Finally, a conclusion is given
in section 6.

2. DYNAMICAL MODEL OF AFTCSMP

Consider an active fault tolerant control system
shown in figure 1. The system under normal opera-
tion (ϕ) can be described by:

ϕ :

{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, x(t) ∈ R

n

is the system state, u(t) ∈ R
m is the system input

and y(t) ∈ R
p is the system measured output. For

the synthesis of the control action u(t), we introduce
a dynamical compensator (ϕc) of the form:

ϕc :

{

v̇(t) = Acv(t) + Bcy(t)

u(t) = Ccv(t)
(2)

where Ac ∈ R
n×n, Bc ∈ R

n×p, Cc ∈ R
m×n. It is
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Figure 1. General schematic diagram of AFTCSMP

important to note that a basic point to determine
the appropriate dynamical model which describe
the faulty system is the location of a fault and the
nature of the faulty components. In this paper, we
will consider that the system is subject to both
actuator and sensor failures. The random changes
affecting actuators are represented by a homoge-
neous Markov process η(t) with the finite state
space Z = {1, 2, ..., z}, and the random changes that
occur in sensors are represented by another homo-
geneous Markov process ξ(t) with the finite state
space S = {1, 2, ..., s}. In practice, these random
variations are not directly measurable but rather
can only be monitored by an FDI scheme. Let ψ(t)
denote the state of the FDI process which monitors
the states η(t) and ξ(t) of the random processes
describing the failures. The process ψ(t) is a finite
state stochastic process whose random behaviour is
conditioned on the failures processes states η(t) and
ξ(t), therefore, the state space of the FDI process
ψ(t) contains the state spaces of the two failure
processes (Mahmoud et al., 2003). This state space
is also finite and is denoted by R = {1, 2, ..., r}.
In AFTCS, we consider that the control law is
only a function of the mesurable FDI process ψ(t).
Therefore, the linear AFTCSMP can be modeled as:

ϕ :

{

ẋ(t) = Ax(t) + B(η(t))u(y(t), ψ(t), t)

y(t) = C(ξ(t))x(t)
(3)

ϕc :

{

v̇(t) = Ac(ψ(t))v(t) + Bc(ψ(t))y(t)

u(t) = Cc(ψ(t))v(t)
(4)

where B(η(t)), C(ξ(t)), Ac(ψ(t)), Bc(ψ(t)) and
Cc(ψ(t)) are properly dimensioned matrices which
depends on random parameters. η(t), ξ(t) and ψ(t)



are separable measurable Markov processes with
finite state spaces Z = {1, 2, ..., z}, S = {1, 2, ..., s}
and R = {1, 2, ..., r}, respectively.
For notational simplicity, we will denote B(η(t)) =
Bi when η(t) = i ∈ Z, C(ξ(t)) = Cj when
ξ(t) = j ∈ S, and Ac(ψ(t)) = Ack, Bc(ψ(t)) = Bck,
Cc(ψ(t)) = Cck when ψ(t) = k ∈ R. We also denote
x(t) = x, η(t) = η, ξ(t) = ξ, ψ(t) = ψ and the initial
conditions x(t0) = x0, η(t0) = η0, ξ(t0) = ξ0, and
ψ(t0) = ψ0.

3. BASIC DEFINITIONS

In this section, we will summarize some results
about exponential stability of AFTCSMP which
will be used in the paper. Under the assumption
that the system (ϕ) coupled with (ϕc) satisfies the
global Lipchitz condition, the solution χ(t) (where
χ(t) = [x(t), v(t)]T ) determines a family of unique
continuous stochastic processes, one for each choice
of the random variable χ(t0). The joint process
{χ, η, ξ, ψ} = {χ(t), η(t), ξ(t), ψ(t)} is a Markov
process.

3.1 Stochastic Lyapunov Function

A fondamental tool in the analysis of the stability of
stochastic systems is the stochastic Lyapunov func-
tion which is used to describe the stability behavior
without explicit solution of the differential equation.
Definition 1 (Srichander and Walker, 1993) The
random function ϑ(χ, η, ξ, ψ, t) of the joint Markov
process {χ, η, ξ, ψ} qualifies as a stochastic Lya-
punov function candidate if the following conditions
hold for some fixed ε < ∞:

a) The function ϑ(χ, η, ξ, ψ, t) is positive definite
and continuous in χ and t in the open set Oε =
{χ(t) : ϑ(χ, η, ξ, ψ, t) < ε} ∀η ∈ Z,∀ξ ∈ S,∀ψ ∈
R and ∀t ≥ t0, and ϑ(χ, η, ξ, ψ, t) = 0 only
if χ = 0. (The function ϑ(χ, η, ξ, ψ, t) is said
to be positive definite if ϑ(χ, η, ξ, ψ, t) ≥ W (χ)
∀η ∈ Z,∀ξ ∈ S,∀ψ ∈ R and ∀t ≥ t0, where W (χ)
is positive definite in the sense of Lyapunov).

b) The joint Markov process {χ, η, ξ, ψ} is defined
until t = τε where τε = inf{t : χ(t) /∈ Oε}. If
χ(t) ∈ Oε∀t < ∞, then τε = ∞.

c) The function ϑ(χ, η, ξ, ψ, t) is in the domain of L
where L is the weak infinitesimal operator of the
joint markov process {χ(τt), η(τt), ξ(τt), ψ(τt)}.
where τt = min(t, τε).

The definition of the weak infinitesimal operator is
given as follows:
Definition 2 (Srichander and Walker, 1993) A
bounded function f(ζ) is said to be in the domain
of the weak infinitesimal operator L of the random
process ζ(t) if the limit

lim
τ→0

E{f(ζ(t + τ))|ζ(t)} − f(ζ(t))

τ
= Lf(ζ) = h(ζ) (5)

exists pointwise in R and satisfies,

lim
τ→0

E{h(ζ(t + τ))|ζ(t)} = h(ζ(t)) (6)

If we generalize definition 2 to time varying func-
tions f(ζ, t), then we have

Lf(ζ, t) =
∂

∂t
f(ζ, t) + h(ζ, t) (7)

In general, Lf(ζ) is interpreted as the average time
rate of change of the process f(ζ) at time t given
that ζ(t) = ζ.

3.2 Exponential Stability of AFTCSMP

Definition 3 The solution χ = 0 of the system (ϕ)
coupled with (ϕc) is said to be exponentially stable
in the mean square if, for any η0 ∈ Z, ξ0 ∈ S,
ψ0 ∈ R and some γ(η0, ξ0, ψ0) > 0 there exists
two numbers a > 0 and b > 0 such that when
‖χ0‖ ≤ γ(η0, ξ0, ψ0), the following inequality holds
∀t ≥ t0 for all solution of (11) with initial condition
χ0:

E{‖χ(t)‖2} ≤ b‖χ0‖2 exp[−a(t − t0)] (8)

The following theorem gives a sufficient condition
for exponential stability in the mean square sense
for the system (ϕ) coupled with (ϕc).
Theorem 1 The solution χ = 0 of the system
(ϕ) coupled with (ϕc) is exponentially stable in the
mean square for t ≥ t0 if there exists a function
ϑ(χ, η, ξ, ψ, t) satisfying the conditions (a)-(c) in
definition 1 such that,

K1‖χ(t)‖2 ≤ ϑ(χ, η, ξ, ψ, t) ≤ K2‖χ(t)‖2 (9)

and
Lϑ(χ, η, ξ, ψ, t) ≤ −K3‖χ(t)‖2 (10)

for some positive constants K1, K2 and K3.
A necessary condition for exponential stability in
the mean square for the system (ϕ) coupled with
(ϕc) is given by theorem 2.
Theorem 2 If the solution χ = 0 of the system
(ϕ) coupled with (ϕc) is exponentially stable in the
mean square, then for any given quadratic positive
definite function W (χ, η, ξ, ψ, t) in the variables χ
which is bounded and continuous ∀t ≥ t0, ∀η ∈ Z,
∀ξ ∈ S and ∀ψ ∈ R, there exists a quadratic
positive definite function ϑ(χ, η, ξ, ψ, t) in χ that
satisfies the conditions (9)-(10) and is such that
Lϑ(χ, η, ξ, ψ, t) = −W (χ, η, ξ, ψ, t).
Remark 1 The proofs of these theorems follow the
same arguments as in (Srichander and Walker, 1993)
for their proposed stochastic Lyapunov function, so
they are not shown in this paper to avoid repetition.

4. MATHEMATICAL FORMULATION

The system (ϕ) coupled with (ϕc) can be written as
follows:

{

χ̇(t) = Λ(η, ξ, ψ)χ(t)

y∗(t) = Φ(ξ, ψ)χ(t)
(11)



where: χ(t) = [x(t), v(t)]T , y∗(t) = [y(t), u(t)]T ,

Λ(η, ξ, ψ) =

[

A B(η)Cc(ψ)

Bc(ψ)C(ξ) Ac(ψ)

]

,

Φ(ξ, ψ) =

[

C(ξ) 0
0 Cc(ψ)

]

.

η(t), ξ(t) and ψ(t) being homogeneous Markov pro-
cesses with finite state spaces, we can define the
transition probability of the actuator failure pro-
cess as (Mahmoud et al., 2003; Srichander and
Walker, 1993):







pij(∆t) = πij∆t + o(∆t) (i 6= j)

pii(∆t) = 1 −
∑

i6=j

πij∆t + o(∆t) (i = j) (12)

The transition probability of the sensor failure pro-
cess is given by:







pkl(∆t) = νkl∆t + o(∆t) (k 6= l)

pkk(∆t) = 1 −
∑

k 6=l

νkl∆t + o(∆t) (k = l) (13)

where πij is the actuator failure rate, and νkl is the
sensor failure rate. Given that η = k and ξ = l,
the conditional transition probability of the FDI
process, ψ(t), is:







pkl
iv(∆t) = λkl

iv∆t + o(∆t) (i 6= v)

pkl
ii (∆t) = 1 −

∑

i6=v

λkl
iv∆t + o(∆t) (i = v) (14)

Here, λkl
iv represents the transition rate from i to v

for the Markov process ψ(t) conditioned on η = k ∈
Z and ξ = l ∈ S. Depending on the values of i,
v ∈ R, k ∈ Z and l ∈ S, various interpretations,
such as rate of false detection and isolation, rate of
correct detection and isolation, false alarm recovery
rate, etc, can be given to λkl

iv (Mahmoud et al., 2003;
Srichander and Walker, 1993).

5. STABILIZATION OF THE AFTCSMP

In this section, we will first derive a necessary and
sufficient condition for the exponential stability in
the mean square of the system (ϕ) (subject to both
actuator and sensor failures) coupled with (ϕc),
in terms of coupled matrix inequalities, and then
we will give an LMI characterization of dynamical
compensators (ϕc) that stabilize the closed-loop
system in the mean square sense.
Proposition 1: a necessary and sufficient condition
for exponential stability in the mean square of the
system (11) is that there exist symmetric positive-
definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such
that

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk +
∑

l∈S

l6=j

νjlPilk

+
∑

v∈R

v 6=k

λ
ij

kv
Pijv < 0 (15)

∀i ∈ Z, j ∈ S and k ∈ R, where

Λ̃ijk = Λijk − 0.5I









∑

h∈Z

h6=i

πih +
∑

l∈S

l6=j

νjl +
∑

v∈R

v 6=k

λ
ij

kv









(16)

Proof

a) Sufficiency

Assume that there exist Pijk > 0, i ∈ Z, j ∈
S and k ∈ R such that (15) is verified. Then
ϑ(χ, η, ξ, ψ, t) = χT P (η, ξ, ψ)χ is a stochastic Lya-
punov function which satisfies conditions (a)-(c) of
definition 1 and also the condition (9) in theorem 1.
Evaluating Lϑ(χ, η, ξ, ψ, t) for the system (11) when
the quantities η = i ∈ Z, ξ = j ∈ S and ψ = k ∈ R
have occurred at some t ∈ [0,∞), we get:

Lϑ = χT















Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk

+
∑

l∈S

l6=j

νjlPilk +
∑

v∈R

v 6=k

λ
ij

kv
Pijv















χ (17)

i ∈ Z, j ∈ S, k ∈ R, where Λ̃ijk is given by (16).
Since by hypothesis {Pijk, i ∈ Z, j ∈ S, k ∈ R}
satisfies (15), then ∃ Q(η, ξ, ψ) > 0, such that
Lϑ(χ, η, ξ, ψ) = −χT Q(η, ξ, ψ)χ < 0, and by the-
orem 1 the dynamical system (11) is exponentially
stable in the mean square ∀t > t0.

b) Necessity

Assume that the system (11) is exponentially sta-
ble in the mean square. Let W (χ, η, ξ, ψ, t) =
χT Q(η, ξ, ψ)χ, where Q(η, ξ, ψ) are symmetric
positive-definite matrices ∀η ∈ Z, ∀ξ ∈ S and
∀ψ ∈ R. Then by theorem 2, there exists a
quadratic positive definite function ϑ(χ, η, ξ, ψ, t)
∀η ∈ Z, ∀ξ ∈ S and ∀ψ ∈ R that satisfies
the condition (9) in theorem 1 and is in the do-
main of the weak infinitesimal operator L such that
Lϑ(χ, η, ξ, ψ, t) = −W (χ, η, ξ, ψ, t). Let us denote
the quadratic function that satisfies these conditions
by ϑ(χ, η, ξ, ψ, t) = χT P (η, ξ, ψ)χ, P (η, ξ, ψ) being
symmetric positive-definite matrices ∀η ∈ Z, ∀ξ ∈ S
and ∀ψ ∈ R. Evaluating Lϑ(χ, η, ξ, ψ, t) for the sys-
tem (11), when the quantities η = i ∈ Z, ξ = j ∈ S
and ψ = k ∈ R have occurred at some t ∈ [0,∞),
we have:

Lϑ = χT















Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk

+
∑

l∈S

l6=j

νjlPilk +
∑

v∈R

v 6=k

λ
ij

kv
Pijv















χ = −χT Qijkχ < 0 (18)

From (18), we conclude that there exist Pijk > 0,
i ∈ Z, j ∈ S and k ∈ R such that (15) is verified.
Hence the proof is complete. ¥



Remark 2 For the LMI characterization of (ϕc),
we make the assumption, as in (Shi and Boukas,
1997; Shi et al., 2003; Mahmoud et al., 2003), that
all jump states η, ξ and ψ are available for feedback.
Proposition 2: a necessary and sufficient condition
for exponential stability in the mean square of the
system (11) is that the following matrix inequalities
(

ÃijkYijk + YijkÃT
ijk + F T

ijkBT
i + BiFijk Rijk(Y )

Rijk(Y )T Sijk(Y )

)

< 0

(19)

ÃT
ijkXijk + XijkÃijk + CT

j HT
ijk + HijkCj

+
∑

h∈Z

h6=i

πihXhjk +
∑

l∈S

l6=j

νjlXilk +
∑

v∈R

v 6=k

λ
ij

kv
Xijv < 0 (20)

(

Yijk I

I Xijk

)

> 0 (21)

where














































































Rijk = [R1ijk, R2ijk, R3ijk]

R1ijk =
[

αi1Yijk, ...αi(i−1)Yijk, αi(i+1)Yijk, ..., αizYijk

]

R2ijk =
[

βj1Yijk, ...βj(j−1)Yijk, βj(j+1)Yijk, ..., βjsYijk

]

R3ijk =
[

γk1Yijk, ...γk(k−1)Yijk, γk(k+1)Yijk, ..., γkrYijk

]

αil =
√

πil; βjl =
√

νjl; γkl =

√

λ
ij

kl

Sijk = −diag[S1ijk, S2ijk, S3ijk]

S1ijk = [Y1jk, ..., Y(i−1)jk, Y(i+1)jk, ..., Yzjk]

S2ijk = [Yi1k, ..., Yi(j−1)k, Yi(j+1)k, ..., Yisk]

S3ijk = [Yij1, ..., Yij(k−1), Yij(k+1), ..., Yijr]

Ãijk = A − 0.5I
∑

h∈Z

h6=i

πih − 0.5I
∑

l∈S

l6=j

νjl − 0.5I
∑

v∈R

v 6=k

λ
ij

kv

have feasible solutions Xijk = XT
ijk, Yijk = Y T

ijk,
Hijk, and Fijk. The corresponding compensator
(ϕc) is given by

Acijk = (Xijk − Y −1
ijk

)−1
[

ÃT
ijk + XijkÃijkYijk

+ XijkBiFijk + HijkCjYijk +

(

∑

h∈Z

h6=i

πihY −1
hjk

+
∑

l∈S

l6=j

νjlY
−1
ilk

+
∑

v∈R

v 6=k

λ
ij

kv
Y −1

ijv

)

Yijk

]

Y −1
ijk

+ 0.5I
∑

h∈Z

h6=i

πih + 0.5I
∑

l∈S

l6=j

νjl + 0.5I
∑

v∈R

v 6=k

λ
ij

kv
(22)

Bcijk = (Y −1
ijk

− Xijk)−1Hijk (23)

Ccijk = FijkY −1
ijk

(24)

Proof The proof essentially follows a similar line
to the proof of a result in the work of (de Farias
et al., 2000), except here we take three Markov
processes η(t), ξ(t) and ψ(t) into account.

a) Sufficiency

Assume that Xijk = XT
ijk, Yijk = Y T

ijk, Hijk, and
Fijk, ∀i ∈ Z, j ∈ S and k ∈ R are feasible solutions
of (19)-(21). Then, taken for each, i, j, k

Pijk =

(

Xijk Y −1
ijk

− Xijk

Y −1
ijk

− Xijk Xijk − Y −1
ijk

)

> 0 (25)

Tijk =

(

Yijk I

Yijk 0

)

(26)

and Acijk, Bcijk, Ccijk as defined in (22)-(24). It
follows (by using the Schur complement) that (27)
holds, and hence, (15) is verified. Then from propo-
sition 1, the system (11) is exponentially stable in
the mean square sense.

T T
ijk

(

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk +
∑

l∈S

l6=j

νjlPilk

+
∑

v∈R

v 6=k

λ
ij

kv
Pijv

)

Tijk =

(

Z1ijk 0
0 Z2ijk

)

< 0 (27)

where

Z1ijk = ÃijkYijk + YijkÃT
ijk + F T

ijkBT
i + BiFijk

+ Yijk

(

∑

h∈Z

h6=i

πihY −1
hjk

+
∑

l∈S

l6=j

νjlY
−1
ilk

+
∑

v∈R

v 6=k

λ
ij

kv
Y −1

ijv

)

Yijk (28)

Z2ijk = ÃT
ijkXijk + XijkÃijk + CT

j HT
ijk + HijkCj

+
∑

h∈Z

h6=i

πihXhjk +
∑

l∈S

l6=j

νjlXilk +
∑

v∈R

v 6=k

λ
ij

kv
Xijv (29)

b) Necessity

Assume that (11) is exponentially stable in the mean
square, then from proposition 1, (15) is verified.
Consider the following partition of Pijk:

Pijk =

(

P1ijk P2ijk

P T
2ijk P3ijk

)

(30)

Let us define the matrices

Yijk = (P1ijk − P2ijkP−1
3ijk

P T
2ijk)−1 > 0 (31)

Tijk =

(

Yijk I

Yijk 0

)

; Jijk =

(

I 0

0 −P−1
3ijk

P T
2ijk

)

(32)

by multiplying (15) to the left by TT
ijkJT

ijk, and to
the right by JijkTijk we get:

(

N1ijk MT
ijk

Mijk N2ijk

)

+

(

N3ijk 0
0 N4ijk

)

< 0 (33)

where

N1ijk = ÃijkYijk + YijkÃT
ijk + F T

ijkBT
i + BiFijk (34)

N2ijk = ÃT
ijkP1ijk + P1ijkÃijk + CT

j HT
ijk + HijkCj (35)

Mijk = ÃT
ijk + P1ijkÃijkYijk + P1ijkBiFijk

+ HijkCjYijk − P2ijkÃcijkP−1
3ijk

P T
2ijkYijk

+

(

∑

h∈Z

h6=i

πih(P1hjk − P2hjkP−1
3ijk

P T
2ijk)

+
∑

l∈S

l6=j

νjl(P1ilk − P2ilkP−1
3ijk

P T
2ijk)

+
∑

v∈R

v 6=k

λ
ij

kv
(P1ijv − P2ijvP−1

3ijk
P T

2ijk)

)

Yijk (36)



Ãcijk = Acijk−0.5I
∑

h∈Z

h6=i

πih−0.5I
∑

l∈S

l6=j

νjl−0.5I
∑

v∈R

v 6=k

λ
ij

kv
(37)

Fijk = −CcijkP−1
3ijk

P T
2ijkYijk; Hijk = P2ijkBcijk (38)

N3ijk =
∑

v∈R

v 6=k

λ
ij

kv
Yijk

[

Y −1
ijv

+ (P2ijkP−1
3ijk

P3ijv

− P2ijv)P−1
3ijv

(P2ijkP−1
3ijk

P3ijv − P2ijv)T

]

Yijk

+
∑

l∈S

l6=j

νjlYijk

[

Y −1
ilk

+ (P2ijkP−1
3ijk

P3ilk − P2ilk)

P−1
3ilk

(P2ijkP−1
3ijk

P3ilk − P2ilk)T

]

Yijk

+
∑

h∈Z

h6=i

πihYijk

[

Y −1
hjk

+ (P2ijkP−1
3ijk

P3hjk − P2hjk)

P−1
3hjk

(P2ijkP−1
3ijk

P3hjk − P2hjk)T

]

Yijk (39)

N4ijk =
∑

h∈Z

h6=i

πihP1hjk +
∑

l∈S

l6=j

νjlP1ilk +
∑

v∈R

v 6=k

λ
ij

kv
P1ijv (40)

The conditions Pijk > 0, ∀i ∈ Z, j ∈ S and k ∈ R
are equivalent to

T T
ijkJT

ijkPijkJijkTijk =

(

Yijk I

I P1ijk

)

> 0 (41)

Since
∑

v∈R

v 6=k

λ
ij

kv
(P2ijkP−1

3ijk
P3ijv − P2ijv)P−1

3ijv
(P2ijkP−1

3ijk
P3ijv

− P2ijv)T +
∑

l∈S

l6=j

νjl(P2ijkP−1
3ijk

P3ilk − P2ilk)P−1
3ilk

(P2ijkP−1
3ijk

P3ilk − P2ilk)T +
∑

h∈Z

h6=i

πih(P2ijkP−1
3ijk

P3hjk

− P2hjk)P−1
3hjk

(P2ijkP−1
3ijk

P3hjk − P2hjk)T ≥ 0 (42)

and using the Schur complement (Boyd et al.,
1994), it follows that (19)-(21) are verified for,
Xijk = P1ijk, Fijk and Hijk as defined in (38),
∀i ∈ Z, j ∈ S and k ∈ R. Hence the proof is
complete. ¥

6. CONCLUSION

In this paper, the problem of dynamic output feed-
back control of AFTCSMP has been considered.
This last one being subject to both actuator and
sensor failures. We have shown that the problem ad-
dressed can be recast as a convex optimization prob-
lem characterized by a linear matrix inequalities
(LMI); therefore, an LMI approach was developed
to derive the necessary and sufficient conditions for
the existence of all desired dynamic output feedback
controllers that achieve the stochastic stabilization
of the AFTCSMP. An effective design procedure

for the expected controllers was also presented. Our
forthcoming works will treat about the ability of
the AFTCSMP to cope with unknown-but-bounded
transition probability rates.
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